Homework 03: MATH 6210

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

1. Prove the following claim used in lecture: if $E, F \subset \mathbb{R}$ are disjoint compact sets, then

$$
d(E, F)>0 .
$$

2. Show that every closed subset of \mathbb{R} is a countable intersection of open sets.
3. We define the Sierpinski carpet $\mathcal{S} \subset \mathbb{R}^{2}$ as the intersection $\bigcap_{n=0}^{\infty} \mathcal{S}_{n}$, where \mathcal{S}_{n} is constructed as follows. We start with \mathcal{S}_{0} a solid square of side length 1 , and then obtain \mathcal{S}_{i} by dividing \mathcal{S}_{i-1} into squares, and removing the middle (1/9)th of each square, as in the images below.

Show that the Sierpinski carpet \mathcal{S} is measurable and compute its measure.

