Homework 03: MATH 6210

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

1. Prove the following claim used in lecture: if $E, F \subset \mathbb{R}$ are disjoint compact sets, then

$$d(E,F) > 0.$$

- 2. Show that every closed subset of $\mathbb R$ is a countable intersection of open sets.
- 3. We define the Sierpinski carpet $S \subset \mathbb{R}^2$ as the intersection $\bigcap_{n=0}^{\infty} S_n$, where S_n is constructed as follows. We start with S_0 a solid square of side length 1, and then obtain S_i by dividing S_{i-1} into squares, and removing the middle (1/9)th of each square, as in the images below.

Show that the Sierpinski carpet \mathcal{S} is measurable and compute its measure.