Homework 4 : MATH 6210

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

- 1. Let E_1, E_2, \ldots be measurable subsets of \mathbb{R} with $\mu(E_i) = \infty$ for all *i*. Must $\bigcap_{i=1}^{\infty} E_i$ also have infinite measure?
- 2. (Corrected) We say that a subset of \mathbb{R}^d is a G_δ set if it can be expressed as a countable intersection of open sets. Let $E \subset \mathbb{R}^d$. Show that E is measurable if and only if E can be written as G Z where G is a G_δ set and Z is a set with $\mu(Z) = 0$.
- 3. Show that if $E \subset \mathbb{R}^d$ is measurable then

$$\mu(E) = \sup_{F \text{ closed, } F \subset E} \mu(F).$$

4. Prove that there is some positive integer n for which there exist pairwise disjoint sets E_1, \ldots, E_n in \mathbb{R} with

$$\mu^*(E_1 \cup \dots \cup E_n) \neq \mu^*(E_1) + \dots + \mu^*(E_n).$$

Show that in fact one can take n = 2. (Hint: think about outer measure of the Vitali sets we constructed in class).

Extra-credit (worth half a normal problem): If $E \subset \mathbb{R}$ is measurable, can E can be written as $G \cup Z$ where G is a G_{δ} set and Z is a set with $\mu(Z) = 0$?