Homework 5 : MATH 6210

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

- 1. Find a set that is not Lebesgue measurable and contains an uncountable subset of Lebesgue measure 0.
- 2. Let X be any set. Let $\{\Sigma_{\alpha}\}_{\alpha \in A}$ be an arbitrary collection of σ -algebras on X. Show that the intersection

$$\bigcap_{\alpha \in A} \Sigma_{\alpha}$$

is also a σ -algebra on X. Is the union $\bigcup_{\alpha \in A} \Sigma_{\alpha}$ necessarily a σ -algebra?

- 3. Let Σ be the collection of subsets $S \subset \mathbb{R}$ such that either (i) S has Lebesgue measure 0, or (ii) $\mathbb{R} S$ has Lebesgue measure 0. Show that Σ is a σ -algebra on \mathbb{R} .
- 4. Show that any Lebesgue measurable set $X \subset \mathbb{R}$ is a union of a Borel set and a set of Lebesgue measure 0.
- 5. Let X be an uncountable set, and $\Sigma = \mathcal{P}(X)$ be the σ -algebra of all subsets of X. Consider the following function $m : \Sigma \to \mathbb{R}$ whose value on a set S is given by

$$m(S) = \begin{cases} 1 \text{ if } X - S \text{ is countable} \\ 0 \text{ otherwise} \end{cases}$$

Is m a measure on the measurable space (X, Σ) ?