Homework 06: MATH 6210

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

1. Consider the Cantor dust fractal $\mathcal{D} \subset \mathbb{R}^{2}$ defined as follows. Let \mathcal{D}_{0} be the unit square, and construct sets that are unions of disjoint squares inductively as follows. To form \mathcal{D}_{n}, start with \mathcal{D}_{n-1}, break each of its squares into 9 smaller squares, and remove all but the four squares at the corners. We then define $\mathcal{D}=\cap_{j=0}^{\infty} \mathcal{D}$.

Figure 1: Constructing the Cantor dust. Stages $\mathcal{D}_{0}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \mathcal{D}_{4}$ are shown

Compute heuristically the dimension of \mathcal{D} using self-similarity, as we did in class for the Cantor set. (This does not need to be justified rigorously).
2. Prove the following fact stated in class. If d is a non-negative real number, and $E_{1}, E_{2} \subset \mathbb{R}^{n}$ are positively separated, i.e. $d\left(E_{1}, E_{2}\right)>0$, then $h_{d}^{*}\left(E_{1} \cup E_{2}\right)=h_{d}^{*}\left(E_{1}\right)+h_{d}^{*}\left(E_{2}\right)$.
3. Does there exist some positive integer n, non-negative real $d<n$, and countably many sets $E_{1}, E_{2}, \ldots \subset \mathbb{R}^{n}$ such that $h_{d}\left(E_{i}\right)<\infty$ for all i, and $\bigcup_{i=1}^{\infty} E_{i}=\mathbb{R}^{n}$.
4. Prove (rigorously) that the Hausdorff dimension α of the standard Cantor satisfies $\alpha \leq \log _{3} 2$.
5. Compute the Hausdorff dimension of the set $\{0,1,1 / 2,1 / 3,1 / 4, \cdots\} \subset \mathbb{R}$.

