Homework 7 : MATH 6210

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

- 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a measurable function, and $g : \mathbb{R} \to \mathbb{R}$ a continuous function. Show that $g \circ f : \mathbb{R}^m \to \mathbb{R}$, i.e. the function $x \mapsto g(f(x))$, is measurable.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a measurable function. Show that $\{(x, y) : 0 \le y \le f(x)\}$ is a measurable subset of \mathbb{R}^2 . (Hint: consider the function F(x, y) = f(x) y.)
- 3. Prove that there exists a function $f : \mathbb{R} \to \mathbb{R}$ that is *not* measurable.