Homework 10: MATH 6210

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

1. Let I be a finite length interval in \mathbb{R}. Show that for every $\epsilon>0$, there exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $\left\|f-\chi_{I}\right\|_{L^{1}}<\epsilon$.
2. Let $C \subset \mathbb{R}$ be a closed set, and let $f: C \rightarrow \mathbb{R}$ be a continuous function. Show that there is a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ with $F(x)=f(x)$ for all $x \in C$.
3. Suppose that $f, f_{1}, f_{2}, \ldots \in L^{1}(\mathbb{R})$ and $f_{n} \rightarrow f$ in $L^{1}(\mathbb{R})$. Prove that there exists a subsequence $\left\{f_{n_{k}}\right\}$ and a function $g \in L^{1}(\mathbb{R})$ such that for all $k,\left|f_{n_{k}}\right| \leq g$ almost everywhere.
4. Show that there exists an integrable continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\limsup _{x \rightarrow \infty} f(x)=+\infty
$$

Optional problem: Show that the vector space of Riemann integrable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ equipped with the norm $\|f\|:=\int|f|$ is not complete.

