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1 Motivations for hyperbolic geometry

Euclid’s postulates:

1. Any two points can be joined by a unique line segment.

2. Any line segment can be extended indefinitely in both directions.

3. Given any line segment, a circle can be drawn with center at one endpoint,
and with the other endpoint lying on the circle.

4. Any two right angles are congruent.

5. (“Parallel Postulate”) If a line ` intersects two other lines m1,m2 and the
sum of the angles made on one side of ` sum to less than 180 degrees, then
m1 and m2 meet at some point.

Certain terms such as point, line, congruent are not defined by the postu-
lates.

People spent literally thousands of years trying to prove the 5th postulate
from the other 4 (as well as some “common notions” and implicitly used axioms
about notions like “betweenness”). There was a good reason they failed: it is
not possible, as the example of hyperbolic geometry would show. This was one
of the great intellectual surprises in history.

Closed surfaces. Compact orientable surfaces (without boundary) are clas-
sified by genus, which takes values 0, 1, 2, . . .. On the sphere (genus 0), one can
put a very nice geometric structure, the “round” sphere, coming from the stan-
dard embedding in R3 as the locus of solutions to x2 + y2 + z2 = 1. The torus
has an infinite (2 real dimensional) family of nice geometries; each comes from
gluing pairs of parallel sides of some parallelogram. The geometry of the sphere
is positively curved ; the geometries on the torus have zero curvature. Are there
similar “natural” geometries on surfaces of higher genus?
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2 First models of hyperbolic geometry

2.1 Upper half-space model of hyperbolic plane

• Space: H := {x+ iy : y > 0} ⊂ C.

• Riemannian metric: ds2 = 1
y2 (dx2 + dy2).

• Geodesics: Half circles that meet the real axis perpendicularly, and vertical
lines.

One sees quickly that there exists a unique such object through any two
distinct points (for two points not on the same line, take the perpendicular
bisector of the segment formed by the two points. The intersection of this
line with the real axis is the center of the desired circle).

To see that these are in fact geodesics, start with the vertical lines, which
are easier to deal with. Any path between two points on the same vertical
line can be projected to the line without decreasing length. In fact, this
argument shows that this is the only geodesic segment connecting two
points on the same vertical line.

The maps H → H given by z 7→ λz for λ > 0, z 7→ z + c for c ∈ R, and
z 7→ −1/z are all seen to preserve the metric, and hence are isometries.
For instance, the pullback of the arc-length element |ds| = (1/ Im(z))|dz|
along z 7→ −1/z is, using the identity Im(1/z) = − Im(z)/|z|2:

1

Im(1/z)
|d(1/z)| = −|z|

2|
Im(z)

−1

|z|2
|dz| = 1

Im(z)
|dz|.

The group generated by these acts transitively on the set of objects we
claim are geodesics. Since vertical lines are geodesic, and isometries pre-
serve geodesics, the rest are too.

• Isometry group. The isometries used above generate the group{
az + b

cz + d
: a, b, c, d ∈ R, ad− bc = 1

}
∼= PSL2(R).

This is exactly the group of orientation preserving isometries of H. The
full group of isometries is obtained by adding one additional generator:
the map z 7→ −z̄. To see this is the full group of isometries, one can use
that in a connected Riemannian manifold, an isometry is determined by
what it does to a frame, i.e. a basis for the tangent space at a point.

Inversions. Given a circle C in the Euclidean plane, with center p and radius
r, the inversion iC about C is the map that takes a point z 6= p to z′ on the
same line through 0 such that |pz| · |pz′| = r2. The point p is thought of as
mapping to ∞.
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Note that iC is the identity on C. It fixes setwise any circle orthogonal to
C (by power of a point). Inversion is conformal : it preserves angles (given two
tangent vectors at a point not on C, construct circles A1, A2 through them and
orthogonal to C. The image of the two tangent vectors will be at the other
intersection of A1, A2, and the angle is the same here).

Inversion through the unit circle is given by the formula z 7→ 1/z. This map
(restricted to H) is a composition of two of the isometries discussed above, and
is hence itself an isometry for the hyperbolic metric.

Proposition 2.1. Inversion iC takes circles/lines to circles/lines.

Proof (from Thurston book). We begin with the family T of circles/lines that
are tangent to the circle C at some z ∈ C. These fill the plane, and they define a
tangent line field VT on the plane. We already know the family O of circles/lines
orthogonal to C and passing through z is preserved; this family gives another
line field VO. Note that VT and VO are orthogonal (at some other point z′, the
lines are tangent to some circle/line C1 ∈ T and C2 ∈ O; these intersect at right
angle at z, hence also at z′).

Now consider the image under iC of VT . Since iC is conformal, iC(VT ) is
orthogonal to iC(VO) = VO. Since VT is also orthogonal to VO, we must have
that iC(VT ) = VT . And iC(VT ) = ViC(T ). The family of curves is determined
by its tangent line field, so from VT = ViC(T ) we get that iC(T ) = T .

We can reduce to the tangent case by applying a scaling through the center
of C (homothety), which interacts nicely with inversion. �

Such maps are called Möbius transformations.

Failure of parallel postulate. Take m1 (resp. m2) a semicircle centered
at 0 and going through 2i (resp. i). Take ` the vertical line through 0. This
situation does not violate the parallel postulate; m1 and m2 do not intersect,
but the angles do not satisfy the required strict inequality. However, we deform
m2 slightly so that it goes through i but does make a right angle there, then we
do get a violation of the parallel postulate.

2.2 Poincaré disc model

• Space: D := {z : |z| < 1} ⊂ C.

• Riemannian metric: ds2 = 4
(1−|z|2)2 (dx2 + dy2).

• Geodesics: circular arcs that meet the unit circle perpendicularly, and
diameters of the unit circle.

To find such an object connecting two distinct points w, z ∈ D, we use
inversion. Begin by constructing the point iC(w), where C is the unit
circle. We claim that circle C ′ through w, z, iC(w) meets D in the desired
arc (if w, z lie on the same diameter, these three points do not form a
triangle; in this case that diameter is the required object). To see that C ′

is perpendicular to C, use power of a point.
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• Isometries. Rotation about 0 through any angle is clearly an isometry.
Others are harder to see.

2.3 Relation between half-space and disc models

We can find an inversion that takes the unit circle to a line (union {∞}). Com-
posing this with an affine transformation, we can map this line to the real axis.
Composing all of this with a reflection if necessary gives a map D → H that
preserves circles/lines. The map is also conformal, so it takes arcs/segments
perpendicular to unit circle to arcs/segments perpendicular to real axis. That
is, the map takes geodesics to geodesics.

One example of such a map φ : D→ H, written in complex coordinates is,

φ(z) := i · 1− z
1 + z

.

To see that the disc and upper-half space models are isometric other, we pull

back the metric on H by the map φ above, using that Im(φ(z)) = Re
(

(1−z)(1+z̄)
(1+z)(1+z̄)

)
=

1−|z|2
|1+z|2 :

φ∗
(

1

Im(z)
|dz|

)
=

1

Im(φ(z))
|dφ(z)| = |1 + z|2

1− |z|2
·
∣∣∣∣ 2

(1 + z)2

∣∣∣∣ |dz| = 2

1− |z|2
|dz|.

Thus the map φ is an isometry. This means that intrinsic geometric properties
are really the same for both models.

Nevertheless the models are useful for different things. Real scaling and
translation are natural isometries of H. There are corresponding isometries of
D, but they are a little harder to see. On the other hand, rotation about the
origin is a natural isometry of D; this is harder to see in H.

2.4 Boundary at infinity

The boundary line of H is not part of the space itself, nor is the unit circle
part of D. Nevertheless, these objects have intrinsic geometric significance. The
boundary ∂H := R ∪ {∞} is augmented with the point ∞, while the boundary
∂D := S1 is already big enough. We get spaces H := H∪ ∂H, and D := D∪ ∂D;
these come with natural topologies.

These are “boundaries at infinity”. They can be defined intrinsically as the
space of oriented geodesics, modulo the equivalence relation that two geodesics
are equivalent if they become arbitrarily close in the forward direction. That is
we think of the boundary as “endpoints” of the (infinitely long) geodesics.

2.5 Hyperbolic circles

The circle S(x, r) is defined as all the points at distance r (measured in hyper-
bolic metric) from x.
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The circle S(0, r) in D is clearly just a Euclidean circle (of some possibly dif-
ferent radius), since the metric is radially symmetric. By applying an isometry,
we can move any point to x. Isometries preserve Euclidean circles/lines, so the
image must also be a Euclidean circle. But centers are not preserved.

2.6 Equidistant curves to geodesics

Instead of thinking of the locus of points equidistant to some point x, we can
replace x by a geodesic γ and define

E(γ, r) := {z ∈ H : d(γ, z) = r}.

To understand what this looks like, it is easiest to work in the upper-half space
model and take γ to be a vertical line, say through 0. We claim then that E(γ, r)
is a Euclidean straight line L through 0. In fact, both γ and L are preserved
by any isometry z 7→ λz, λ ∈ R. Since this acts transitively on each, the curves
must be equidistant.

By applying isometries (eg composition of inversions), we see that in gen-
eral, in either disc or half-space model, an equidistant curve to a geodesic is a
Euclidean arc (or line) meeting the boundary at two points.

We can also use this to see why it is plausible that the metric should have the
form that it does given that we want the isometry group to contain the examples
we’ve seen. The length ` of the circular arcs between γ and L meeting them
perpendicularly should all have the same hyperbolic length, and this should
only depend on the angle α at which γ meets L. In the limit as α → 0, it
should be an approximately linear function of α, and we can take d`/dα = 1.
Now to find the length of a tangent vector v at some point, we can assume that
it is a horizontal pointing vector in the upper-half space model, and then we
approximate it by a circular arc between such a γ, L meeting at angle α. For
v, small the Euclidean length of v is approximately y sinα ≈ yα. Since α is
approximately the hyperbolic distance, we see where the factor of 1/y comes
from in the expression for the hyperbolic metric.

2.7 Inversion in higher dimensions

The definition of inversion generalizes naturally to any dimension. Given a
sphere S = Sn−1 in Euclidean space Rn, with center p and radius r, the inversion
iS about S is the map that takes a point z 6= p to z′ on the same line through
0 such that |pz| · |pz′| = r2. The point p is thought of as mapping to ∞. (So we
are thinking of Rn ∪ {∞} as Sn.)

Any sphere R orthogonal to S is preserved as a set by iS . Using this, one
can show (as in dimension 2) that inversions are conformal.

2.8 Stereographic projection

Given a sphere S = Sn−1 in Rn centered at p and an (n−1) plane P tangent to
S, we define a stereographic projection map φ : S − N → P , where N (“north
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pole”) is antipodal to the point of tangency. For z ∈ S − N , we draw the line
connecting z and N , and define φ(z) to be the intersection of this line with P .

We claim that φ is equal to the inversion iS̃ , where S̃ is the sphere centered
at N with twice the radius of S. To see this, we use that line throughs the
center N are fixed setwise by iS̃ , and a sphere through N and tangent to S′ is
taken to a plane tangent to S′ at the same point (so S maps to P ).

Since inversions are conformal, so is stereographic projection. And cir-
cles/lines are preserved (since higher inversions preserve spheres/planes).

We can also perform stereographic projection from S − N to any plane P ′

parallel to P (other than the plane through N). By identifying P with P ′ via
vertical translation, we can think of this map as stereographic projection to P
composed with a dilation. Hence these more general stereographic projections
are also conformal and preserve spheres/planes

Upper hemisphere model: project equatorial plane from south pole.

2.9 Upper hemisphere and Klein models

If we think of S a sphere, P a horizontal equatorial plane, and N the south
pole, then there is an inverse stereographic projection taking the P to S. We
think of the Poincaré disc D embedded as the equatorial disc, and then the map
restricts to a map f : D → U , where U is the open upper hemisphere of S. By
transferring the metric on D via this map f , we get a hyperbolic model with
space U ; this is the upper hemisphere model.

Since we get from D to U by restricting inverse stereographic projection
(which is conformal and preserves circles/line), the geodesics in U are arcs per-
pendicular to the equator. These are exactly the intersections of vertical planes
with the upper hemisphere U .

We get the Klein model K (also known Beltrami-Klein model, or projective
model) by taking the orthogonal projection from U to the equatorial disc. By
the above description of geodesics in U , we see easily that the geodesics in the
Klein model are just straight line segments connecting boundary points. So
geodesics in K are simple to understand; this is useful for certain problems
involving incidence. However the Klein model has a serious drawback: it is not
conformal, i.e. the Euclidean angles in general differ from the hyperbolic angles
(since orthogonal projection is not conformal).

2.10 Higher dimensional models.

We take Hn := {(x1, . . . , xn) : xn > 0} ⊂ Rn, with the metric

ds2 :=
1

x2
n

(dx2
1 + · · ·+ dx2

n).

Through any two points w, z ∈ Hn, there is a 2-plane through w, z that meets
the boundary space {xn = 0} orthogonally (meaning that the normal vector to
the boundary is in the direction of the 2-plane). The induced geometry on this
plane Pw,z behaves exactly like 2-dimensional hyperbolic geometry. If a geodesic
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arc through w, z did not lie on Pw,z, then we could project it orthogonally to
Pw,z to get a strictly shorter path, contradiction.

We also have a ball model Bn := {x : ‖x‖ < 1} ⊂ Rn, where ‖ ·‖ is the usual
Euclidean norm, and

ds2 :=
1

(1− ‖x‖2)2
(dx2

1 + · · ·+ dx2
n).

3 Hyperboloid model

Review of some spherical geometry properties. The round sphere metric
Sn is most naturally defined by embedding Sn into Rn+1 in the standard way
(as locus where x2

1 +· · ·+x2
n+1 = 1), and taking the induced Riemannian metric.

(Note that this does not give the same distance function on pairs of points as the
restriction of the distance function from Rn+1 to Sn; the distances in the former
are generally larger, since one cannot short-cut through the ball.) Isometries
of Sn are exactly the restrictions of isometries of Rn+1 that fix the origin, i.e.
orthogonal transformations. The geodesics in Sn are intersections of Sn with
planes in Rn+1 passing through the origin. This can be seen by using that for
each such plane, there is a reflection isometry of Rn+1 fixing that plane, together
with Proposition 3.2 below.

We want an analogous way of thinking about Hn as embedded in some nice
space, such that geodesics and isometries are easy to see in terms of the ambient
space. The ambient space will be homeomorphic to Rn+1, as for the sphere, but
we will endow it with the Minkowski metric.

3.1 Geometry of special relativity

Postulates:

1. Any “inertial frames” (coordinate systems moving at constant relative
velocity to one another) is just as good as any other for doing physics.
This postulate holds in the classical physics of Galileo and Newton.

2. The speed of light c (which in math we take to be 1) is independent of
frame, i.e. light looks like it’s going the same speed no matter where it’s
emitted from. This is an empirical fact.

Einstein’s train thought experiment: Suppose you are standing on a plat-
form, and a train is moving at a (fast) constant speed relative to you. Someone
on board the train has a clock. How does this clock appear to you? To ana-
lyze this we should imagine that the clock is actually just two parallel mirrors,
with light bouncing back and forth between the mirrors; time is measured by
recording the number of bounces. By postulate 1, this clock behaves like any
other clock, say a mechanical clock, from the perspective of person on the train;
otherwise the person could distinguish her reference frame from another.
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Now from the perspective of the platform, the light takes a longer path, since
it must move in the direction of the train as well. By postulate 2, the speed of
light is still 1. Thus the observer on the platform and the person on the train
will not agree on time intervals.

Minkowski metric. We model n-dimensional space, together with one di-
mension worth of time as spacetime Rn,1 = {(x0, . . . , xn) : xi ∈ R}, but with
quadratic form

Q(x) = ‖x‖2n,1 := −x2
0 + x2

1 + · · ·+ x2
n.

An event happens at a particular point in spacetime, i.e. it has both spacial
coordinates and time coordinate (x0) with respect to the intertial frame defining
the coordinate system.

We can think of our physical universe as R3,1, at least locally.
Notice that Q above is indefinite: a non-zero vector can have positive, zero,

or negative value of Q. This means that Q does not give us a distance in the
way we usually think of it (always non-negative). Nevertheless Q has physi-
cal/geometric significance.

A vector x (which we think of as a difference between two events, one hap-
pening at x and the other at 0, the origin of our coordinate system) falls into
one of the three categories:

1. Time-like when Q(x) < 0. These correspond to directions in spacetime
that are achievable by some frame F moving at less than the speed of light.
In this case, we can interpret

√
−Q(x) as the elapsed time measured by

the observer moving in frame F .

2. Light-like when Q(x) = 0. These correspond to directions in spacetime
along which light travels.

3. Space-like when Q(x) > 0. These events are too far apart in space relative
to their separation in time for an observer to move from one to another.
However, in this case, one can find a moving frame F in which the two
events occur simultaneously. We interpret

√
Q(x) as the space distance

between these two events measured in frame F .

One can show that the spacetime interval Q(w− z) between two events w, z
is invariant under any change of coordinates coming from a change of inertial
reference frame (which are called Lorentz transformations). Thus it is a natural
invariant “distance” in the geometry of special relativity.

3.2 Hyperboloid model in Minkowski space

The hyperboloid model will be a component of the space

H := {x ∈ Rn,1 : Q(x) = −1},

with the induced metric from Q on Rn,1.
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Proposition 3.1. The induced metric on H is positive definite, aka Rieman-
nian (in contrast to Q on Rn,1 itself).

Proof. To see this, first we need to understand the tangent space TxH to H at
some x ∈ H. Since H is cut out by a smooth function Q, this can be thought of
as the kernel of the derivative DQx (provided this derivative map is surjective
to R, which will follow from the next calculation). We compute

DQx = (−2x0, 2x1, . . . , 2xn).

Hence
TxH = {y : 〈x, y〉 = 0},

where 〈, 〉 is the inner product associated to Q i.e.

〈(w0, . . . , wn), (v0, . . . , vn)〉 = −w0v0 + w1v1 + · · ·+ wnvn.

So TxH is the orthogonal complement of y with respect to this inner product.
Now we want to show that Q restricted to TxH is positive definite. The

idea is that x already “uses up a dimension of negative length vectors”, so the
directions in the complement must be positive, since Q has signature (n, 1).
More formally, suppose there exists some y 6= 0 with 〈y, x〉 = 0 and 〈y, y〉 ≤ 0.
Then every vector in span{x, y} has non-positive Q-norm, since both x, y have
this property, and 〈x, y〉 = 0. Since 〈x, x〉 = −1 6= 0, x and y cannot be linearly
dependent, hence span{x, y} has dimension 2. On the other hand, we can find
a subspace P ⊂ Rn,1 of dimension n on which the restriction of 〈, 〉 is positive
definite (spanned by e.g. (0, 1, 0, . . . , 0), (0, 0, 1, 0, . . . , 0), . . .). So by dimension
count, span{x, y} and P must intersect non-trivially; a non-zero vector w in
their intersection satisfies Q(w) ≤ 0 and Q(w) > 0, contradiction. �

Hyperboloid model. We observe that H is a hyperboloid; in particular it
has two sheets (corresponding to x0 positive or negative). Each is topologically
an open disc. The hyperboloid model of hyperbolic geometry is one sheet of this,
say

H+ := {x = (x0, . . . , xn) ∈ Rn,1 : Q(x) = −1, x0 > 0},

with the Riemannian metric defined as above. (We can also define the model
as the projectivization of H.)

We would like to show that this space is isometric to our previous models of
hyperbolic space, but first we will explore isometries and geodesics.

Isometries. Any bijection of Rn,1 preserving 〈, 〉 restricts to an isometry of H.
Such maps must be linear, and so they form a matrix group, denoted O(n, 1).
The index two subgroup of O(n, 1) preserving H+ is denoted O+(n, 1) and is
known as the Lorentz group; it is exactly the isometry group of H+. The orien-
tation preserving isometry group of H+ is the subgroup of O+(n, 1) of matrices
of determinant 1, i.e. SO+(n, 1). To prove these facts, use that isometries
are characterized by action on a frame (as in HW01), and that O+(n, 1) acts
transitively on points in H+ (possible future HW exercise).
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Geodesics.

Proposition 3.2. Let M be a Riemannian manifold, and φ : M → M an
isometry. Then the fixed point set of S is a totally geodesic submanifold (i.e.
any geodesic in S with respect to the induced metric is also a geodesic in M).

Proof. (We will take it for granted that S is a smooth submanifold.) Let p ∈ S,
v ∈ TpS, and γ the unique geodesic, wrt the induced metric on S, that is tangent
to v at p (we use the fact that there exists exactly one such geodesic). It suffices
to show that γ is also a geodesic wrt the M metric. Let γ′ be the M -geodesic
tangent to v. Note that φ(γ′) = γ′, since φ(γ′) is an M -geodesic tangent to
Dφ(v) = v (since φ is the identity on S). We then also easily see that φ is the
identity on γ′. But this means γ′ ⊂ S. An M -geodesic that lies in S is also an
S-geodesic. Thus γ = γ′ since they’re both S-geodesics tangent to v.

�

Proposition 3.3. Geodesics of H+ are intersections of 2-planes S through the
origin in Rn,1 with H+ (assuming that the plane intersects H+).

Proof. Observe that any such S intersects H+ in a 1-dimensional curve, let p
be some point on it, and let v be the tangent vector to the curve at p. Note
that S is spanned by p and v. Now suppose that p is the point (1, 0, . . . , 0). The
tangent plane TpH

+ is the horizontal plane, and v lies in this. We can find a
reflection isometry φ ∈ O+(n, 1) about the plane S (by using a block diagonal
matrix with a 1 in the upper left, and O(n) matrix in lower right); the fixed
point set is exactly S. Since φ is an isometry of H+, by Proposition 3.2, S∩H+

is a geodesic.
For general p, we reduce to the above using transitivity of O(n, 1), applying

an isometry taking p to (1, 0, . . . , 0) (see Homework 2).
For any point p ∈ H+ and v ∈ TpH+, we can produce a plane S through p

and 0 tangent to v. The resulting geodesic is tangent to v at p. Since geodesics
are uniquely determined by first order behavior at a point, we have produced
all the geodesics. �

3.3 Map from hyperboloid to disc

There is a nice map p : H+ → K from the hyperboloid model to Klein model.
We can think of this concretely as projection of H+ to the disc {x0 = 1, x2

1 +
· · · + x2

n = 1}, from the origin. We can also think of this in terms of the
projectivization map Rn+1 → RPn.

Proposition 3.4. The projection p from hyperboloid model to Klein model is
an isometry.

Proof. We see immediately from the description of geodesics in the two models
that p takes geodesics to geodesics. The hyperbolic metric can be recovered,
up to scale, just from knowledge of the geodesics (this is not obvious and a
bit subtle; also one needs to assume that the metric is complete). Since the
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pushforward of the metric on H+ by the map p has the same geodesics as the
metric from the Klein model on the disc, the two metrics agree up to scale, and
it turns out the scale factor is actually 1.

�

Composing the map p with the map K → D, the Poincaré disc, discussed
in Section 2.9, we get an isometry H+ → D.

4 Computation of hyperbolic area

4.1 Hyperbolic triangles

We begin by computing the area of an ideal triangle in H, i.e. all the vertices
are on the boundary ∂H. We will use that all such triangles are congruent (HW
exercise). So it suffices to work with the triangle T in the upper-half space with
vertices at ∞,−1, 1. Then we compute

area(T ) =

∫ 1

−1

∫ ∞
√

1−x2

1

y2
dxdy =

∫ 1

−1

−y−1
∣∣∣∞√

1−x2
dx

=

∫ 1

−1

1√
1− x2

dx =

∫ π/2

−π/2

1√
1− sin2 θ

cos θdθ

=

∫ π/2

−π/2
dθ = π.

Theorem 4.1. The area of a hyperbolic triangle ABC with angles θ1, θ2, θ3 is

π − (θ1 + θ2 + θ3).

Proof. All hyperbolic triangles with angles θ, 0, 0 are congruent (HW exercise);
let A(θ) be the area of such a triangle. First we show that S(θ) := π − A(θ)
is additive, i.e. S(θ1 + θ2) = S(θ1) + S(θ2). Let ABC,ACD be two triangles,
with angles ∠BAC = θ1 and ∠CAD = θ2, and all other angles 0. Then ABC ∪
ACD = BCD ∪ ABD, and the two triangles on each side of the equality are
disjoint from one another. Hence A(θ1) +A(θ2) = π +A(θ1 + θ2). This implies
the desired additivity property of S.

Note that S is also continuous; together with additivity, this implies linearity.
We can show directly that S(π) = π (limiting argument), and so we find that
S(θ) = θ for all θ, and hence A(θ) = π − θ.

To deal with an arbitrary triangle ABC, we consider the hyperbolic rays−−→
AB,

−−→
BC,

−→
CA, which meet the ideal boundary at A′, B′, C ′, respectively. Then

A′B′C ′ = ABC ∪ A′BB′ ∪ B′CC ′ ∪ C ′AA′. The triangles on the right are
disjoint, so, using the above, we get

π = area(A′B′C ′) = area(ABC) + θ2 + θ3 + θ1

This implies the desired result. �

11



As a consequence of the above, the angle sum of a hyperbolic triangle is
always strictly less than π (it can be proved in neutral geometry, i.e. geometry
without the parallel postulate, that the angle sum of a triangle is always at most
π).

Small triangles with respect to any Riemannian metric (in particular, hy-
perbolic metric) are nearly Euclidean. This is consistent with the above, since
the angle sum of such triangles is close to π.

Proposition 4.2. Similar hyperbolic triangles are congruent.

Proof. Let the two similar triangles be ABC and A′B′C ′. Since the case of
triangles with three or two ideal vertices is handled in the homework, we can
assume that A,B ∈ H. Since isometries act transitively on tangent directions,
we can assume that A = A′, and that B,B′ lie on the same ray through A, as
do C,C ′. If B = B′ and C = C ′, then the two triangles are clearly congruent.
So suppose, for contradiction, that WLOG B′ is farther from A than B.

Now the geodesics BC and B′C ′ cannot meet in H; if they intersected at
some D, then BB′D would be a triangle with angle sum at least π, contradicting
Theorem 4.1. This implies that triangle ABC is contained within AB′C ′, and
in fact the complement of the former in the latter has positive area. But this
contradicts Theorem 4.1, since similar triangles have the same (finite) area. �

4.2 Discs and circles

Recall that the hyperbolic trig functions sinh, cosh parametrize points on the
hyperbola x2 − y2 = 1, i.e. cosh2 x − sinh2 x = 1. One can also think of them
as solving the system of differential equations f ′ = g, g′ = f . Explicitly

coshx =
ex + e−x

2
,

sinhx =
ex − e−x

2
.

We start with a basic computation.

Proposition 4.3. In the disc model D, the hyperbolic distance between 0 and z
satisfies

dD(0, z) = 2 tanh−1 |z|.

Proof. By applying an isometry, we can assume that z = R is on the positive
real line. Then using the expression for the hyperbolic metric we get:

dD(0, R) =

∫ R

0

2

1− x2
dx = 2 tanh−1R.

�

Proposition 4.4. The circumference of the hyperbolic circe S(x, r) equals 2π sinh r.
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Proof. We can work in the disc D, and since all circles of radius r are congruent,
we can assume that x = 0. By Proposition 4.3, this hyperbolic circle is just the
Euclidean circle of Euclidean radius R = tanh(r/2). The Euclidean circumfer-
ence of this is 2π tanh(r/2). The hyperbolic metric along this circle is just the
Euclidean metric rescaled by the factor 2/(1−R2) = 2/(1− tanh2(r/2)). Hence
the hyperbolic length is

2π tanh(r/2) · 2

1− tanh2(r/2)
= 4π sinh(r/2) cosh(r/2) = 2π sinh r.

�

Proposition 4.5. The area of the hyperbolic ball B(x, r) satisfies

area(B(x, r)) = 4π sinh2(r/2).

Proof. By applying an isometry, we can assume that the ball is centered at
0 in the disc model. By Proposition 4.3, we know that this ball corresponds
to {z : |z| < R} ⊂ D, where R = tanh(r/2). Using the expression for the
metric in D, and integrating with polar coordinates with the change of variables
u = 1− r2, we get

area(B(0, r)) =

∫
|z|<R

4

(1− |z|2)2
dxdy =

∫ 2π

0

∫ R

0

4

(1− r2)2
rdrdθ

=

∫ 2π

0

∫ 1−R2

1

−2u−2dudθ =

∫ 2π

0

2

(
1

1−R2
− 1

)
dθ

= 4π
R2

1−R2
= 4π

tanh2(r/2)

1− tanh2(r/2)
= 4π sinh2(r/2).

�

Note that the area and circumference of the balls grows exponentially as a
function of the radius.

5 Classification of hyperbolic isometries

5.1 Algebraic approach in dimension 2

We begin with the conjugacy problem for SL2(R), which is closely connected
to isometries of H2.

Theorem 5.1. Every A ∈ SL2(R) is conjugate (in SL2(R)) to exactly one of

(i)

(
λ 0
0 1/λ

)
for some λ ∈ R with |λ| > 1, if | trA| > 2.

(ii) ±
(

1 1
0 1

)
,±
(

1 −1
0 1

)
, or ±

(
1 0
0 1

)
, if | trA| = 2.

13



(iii)

(
cos θ sin θ
− sin θ cos θ

)
, for some θ ∈ (−π, 0) ∪ (0, π), if | trA| < 2.

Proof. We begin by considering the Jordan canonical form of A, which (also use
determinant 1 condition) must be one of(

λ 1
0 1/λ

)
,±
(

1 1
0 1

)
,

for some λ ∈ C∗. That is, A is conjugate in GL2(C) to some B in the above
list.

If B is of the second type, or one of the first type with λ ∈ R, then since such
B has real entries, we can conclude that A is conjugate to this B in GL2(R)
(since if real matrices are conjugate over C, they are in fact conjugate over R;
this follows from rational canonical form).

Now suppose B is of the first type with λ 6∈ R. Such matrices are determined
by their eigenvalues. The matrices of type (iii) are also conjugate to matrices
of the same type, and these matrices run over all possible pairs of non-real
eigenvalues. Thus B is conjugate to a matrix of type (iii). As in the previous
case, we can take the conjugating matrix to be in GL2(R).

Thus we have found a matrix QAQ−1 of the desired form from the theo-
rem statement, with Q ∈ GL2(R), but detQ is not guaranteed to be 1. By
multiplying Q by a real scalar, we can arrange that detQ = ±1.

For type (i), if detQ = −1, we can replace Q by Q

(
0 1
1 0

)
, which does have

determinant 1. (And then we can further conjugate by

(
0 1
−1 0

)
if necessary

to switch the diagonal entries).

For type (ii), if detQ = −1, we can replace Q by Q

(
−1 0
0 1

)
, which has

determinant 1. This potentially introduces a negative sign in the upper-right
hand corner, which is unavoidable.

For type (iii), if detQ = −1, we again replace Q by Q

(
0 1
1 0

)
. The matrix

we get out is

(
cos θ − sin θ
sin θ cos θ

)
=

(
cos(−θ) sin(−θ)
− sin(−θ) cos(−θ)

)
, so it is still of the

desired form.
�
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Corollary 5.2. Every A ∈ PSL2(R) is conjugate (in PSL2(R)) to exactly one
of the classes represented by

(i)

(
cos θ sin θ
− sin θ cos θ

)
, for some θ ∈ (0, π), if | trA| < 2.

(ii)

(
1 1
0 1

)
,

(
1 −1
0 1

)
, or

(
1 0
0 1

)
, if | trA| = 2.

(iii)

(
λ 0
0 1/λ

)
for some λ ∈ R with λ > 1, if | trA| > 2.

(Note that | trA| is well-defined for elements of PSL2(R).)

The first two types above can be understood well in the upper-half space
model. Type (iii) (“hyperbolic”) corresponds to z 7→ λ2z, while Type (ii) cor-
responds to the identity map, or z 7→ z ± 1 (“parabolic”). Type (i) (“elliptic”),
which as an isometry of the upper-half space fixes i, is best understood by mov-
ing to the Poincaré disc model; there it corresponds to rotation about the origin
(when i is mapped to 0).

5.2 Geometric approach

Proposition 5.3. Let φ ∈ Isom(Hn). Then either

(i) φ has at least one fixed point in Hn (“elliptic”)

(ii) φ has no fixed points in Hn, and exactly one fixed point in ∂Hn (“parabolic”),

(iii) φ has no fixed points in Hn, and exactly two fixed points in ∂Hn (“loxo-
dromic”).

Proof. Since Hn is homeomorphic to a closed ball, and φ is continuous, φ has
at least one fixed point in Hn by the Brouwer fixed point theorem. So to prove
the proposition, it suffices to show that if φ has three or more fixed points in
∂Hn, then it has a fixed point in Hn. Consider the geodesic γ joining two of the
fixed points, and let α be the geodesic perpendicular to γ and limiting to the
other fixed point. We see the intersection point of α, γ is fixed by φ, but this
lies inside Hn, contradiction. �

Horocycles and horospheres. Given a point p ∈ ∂Hn, we can consider all
the geodesics that end at p. A horosphere centered at p is a hypersurface that is
perpendicular to all these geodesics. In the Poincaré ball Bn, these are spheres
tangent to the boundary sphere ∂Bn at p. In the upper-half space model,
horospheres centered at ∞ are horizontal planes. From this description, we see
that the intrinsic geometry of each horosphere is Euclidean. The horospheres
are not totally geodesic.

Note that if φ is an isometry with p a fixed point, then φ maps a horocycle
centered at p to another horocycle centered at p.
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Proposition 5.4. Let φ ∈ Isom(Hn). Then

(i) If φ is elliptic, then, in Bn with 0 a fixed point, we have φ(v) = Av for
some A ∈ O(n).

(ii) If φ is parabolic, then in the upper-half space Hn with ∞ as the fixed point,
φ(x, xn) = (Ax + b, xn), for A ∈ O(n − 1) and b ∈ Rn−1 (here (x, xn) is
short-hand for (x1, . . . , xn)).

(iii) If φ is loxodromic, then in the upper-half space model Hn with 0,∞ as fixed
points, φ(x, xn) = λ(Ax, xn), for some A ∈ O(n − 1), and λ positive real
with λ 6= 1.

Proof. For (i), we can find such an A that gives an isometry that agrees with φ
in its action on an orthonormal frame at 0. Since an isometry is determined by
this data, φ(x) = Ax.

For (ii), begin by noting that since φ takes each geodesic through ∞ to
another geodesic through ∞, it also takes each horosphere centered at ∞ to
a horosphere centered at ∞. Horospheres can be parametrized by height (xn
coordinate in upper-half space). So φ induces a map on R+.

We claim that this map is the identity, i.e. each horosphere centered at ∞
maps to itself under φ. Otherwise, we assume that there is some horosphere
St that maps to St′ with t′ < t (otherwise, replace φ by φ−1. Now the map
f : St′ → St given by (x1, . . . , xn−1, t

′) 7→ (x1, . . . , xn−1, t) is a strict contraction.
Since φ is an isometry, the map g := f ◦φ|St : St → St is also a strict contraction.
The Banach fixed point theorem then implies that g has a fixed point. This
means that φ takes some point p ∈ Hn to a point on the same geodesic γ
through∞. Then γ must fix the other endpoint of γ on the boundary, but then
it cannot be parabolic.

Now on each such horosphere St, φ must act as a Euclidean isometry, i.e
(x, t) 7→ (Ax+b, t), where A ∈ O(n). We see that A, b do not depend on t, since
vertical geodesics must be mapped to vertical geodesics.

For (iii), note first that the vertical geodesic γ connecting the two fixed
points 0,∞ must be preserved by φ, and φ acts by a translation on γ. Let λ
be such that (0, . . . , 0, 1) 7→ (0, . . . , 0, λ. As in the parabolic case, φ takes each
horizontal horosphere to a horizontal horosphere. If we compose φ with the
map v 7→ λ−1v, we get a map that preserves each horizontal horosphere, and is
the identity on the line through 0,∞. It follows that the composition must be
given by (x, xn) 7→ (Ax, xn). Then we get that φ has the desired form.

�

Isometries of H3. A loxodromic isometry of H3 has a “translation” compo-
nent (given by λ), as well as a rotation component (given by A ∈ O(2)).

There is an alternate description of Isom+(H3).

Proposition 5.5. We have Isom+(H3) ∼= PSL2(C).

16



Proof. This is seen using the Poincaré ball model. The group of isometries (in-
cluding orientation reversing) is generated by hyperbolic reflections, i.e. inver-
sions through spheres orthogonal to the boundary sphere S2. Such an inversion
restricts to an inversion on S2, which we think of as the Riemann sphere. And
conversely, any inversion on the Riemann sphere extends to a hyperbolic reflec-
tion of the ball. It follows that Isom(H3) is the group generated by Mobius
transformations together with a single inversion. And taking the subgroups of
orientation-preserving transformations gives the desired result. �

6 Hyperbolic manifolds

Definition 6.1. A hyperbolic n-manifold M is a Riemannian manifold that is
locally isometric to Hn, i.e. any x ∈ M has a neighborhood U such that U is
isometric to an open subset of Hn.

Bolza surface. In HW02, a regular hyperbolic octagon with all angles π/4
was constructed. By “gluing” together the opposite sides using loxodromic
isometries, we define a Riemannian metric on the quotient of the octagon by
identification of opposing sides. The resulting X is a hyperbolic surface of genus
2, called the Bolza surface. The construction can be varied by e.g. changing
some side lengths.

Hyperbolic annulus. Fix λ ∈ R>0. Then the quotient Aλ = H/〈z 7→ λz〉 is
an annulus, which inherits a hyperbolic structure.

6.1 Covering spaces

Reference for this material: Hatcher “Algebraic Topology” Ch. 1.3.

Definition 6.2. If X̃,X are topological spaces, a continuous map f : X̃ → X
is a covering map if every x ∈ X has a neighborhood N that’s evenly cov-
ered, i.e. f−1(N) =

∏
αMα, where Mα are open, and f |Mα

: Mα → N is a
homeomorphism.

Example: For an integer n, the map S1 → S1 (thought of as unit circle in
C) given by z 7→ zn is a covering map.

Theorem 6.3. Every connected manifold X (or more generally, space that is
path-connected, locally path-connected, and semi-locally simply connected) has a
universal cover, i.e. a covering f : X̂ → X with X̂ simply connected.

Proof sketch. We define X̂ to be the space of paths in X starting at some fixed
basepoint x0, up to homotopy relative to the endpoints. �

Example: R→ S1 given by x 7→ eix is a universal covering.
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A continuous map f : (X ′, x′0) → (X,x0) of pointed topological spaces
(which means f(x′0) = x0) induces a homomorphism of fundamental groups
f∗ : π1(X ′, x′0)→ π1(X,x0).

If f1 : X̃1 → X, f2 : X̃2 → X are covering maps, an isomorphism between
them is a homeomorphism h : X̃1 → X̃2 such that f2 ◦ h = f1. These are also
called deck transformations. There is a similar notion of base-point preserving
isomorphism.

Theorem 6.4. Given (X,x0), there is a bijection between basepoint-preserving
isomorphism classes of covering spaces of X and subgroups of π1(X,x0). It is
given by taking p : (X̃, x̃0)→ (X,x0) to p∗(π1(X,x0)).

6.2 Universal cover of hyperbolic manifold

Given a hyperbolic manifold M , we can form the topological universal cover M̂ .
This space inherits a hyperbolic manifold structure: locally lift the metric from
M . The below tells us what this M̂ has to be.

Proposition 6.5. Every simply connected, complete hyperbolic n-manifold M
is isometric to Hn.

Proof. Choose some x ∈ M , and an open neighborhood U of x with map f :
U → Hn that’s an isometry to its image. We will extend f to a map f̃ : M → Hn,
called a developing map. Given some point y ∈M , choose a path γ connecting
x to y. Each point along γ has a neighborhood that is isometric to a round
disc in Hn. By compactness, we can cover γ with finitely many such discs.
Using Lemma 6.6 below, we can arrange that the maps for the discs agree on
consecutive overlaps. One can also see that replacing γ by a homotopic arc γ′

results in the same value of f̃(y). Thus we get a map f̃ : M → Hn, and from
the way it was constructed we see that it is a local isometry.

Now we use that if f : M → N is a local isometry, and M complete, then
f is a covering map. Thus our f̃ is a covering, and since the only covering
between simply connected spaces is isomorphic to the identity map (follows
from Theorem 6.3), we get that f̃ is a homeomorphism. A homeomorphism
that is locally an isometry is globally an isometry, so we’re done. �

Lemma 6.6. If U, V are connected open subsets of Hn, and f : U → V an
isometry, then f extends uniquely to an isometry Hn → Hn.

Proof. Pick an orthonormal frame at some x ∈ U . The map f is determined
by its action on this frame (since for any other y, can find a concatenation of
finitely many geodesic arcs connecting x to y; the action on the frame tells us
what the image of this geodesic is, and since f is an isometry, we know how far
along the next endpoint will be, and then we can continue for each segment).
But there is also an isometry φ : Hn → Hn that acts the same way on the frame.
This φ must agree with f on U , since both are given by the same description in
terms of images of geodesics. Hence φ is the desired extension. �
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6.3 Quotients of hyperbolic space

An arbitrary quotient of a space by a continuous group action need not be very
nice. For instance R/R∗ is not Hausdorff or even T1: it consists of two points,
[0], [1], but every neighborhood of [0] contains [1].

Definition 6.7. A continuous group action G on X is said to be properly
discontinuous if for any K ⊂ X compact, the set

{g : gK ∩K 6= ∅}

is finite. The action is free if for all g 6= 1, the fixed point set {x ∈ X : g(x) = x}
is empty.

Examples:

• Action of a single loxodromic on H is free and properly discontinuous.

• Action by an elliptic is not free, and if it is infinite order, the action is not
properly discontinuous. If the elliptic has order k, we get a properly dis-
continuous action by Z/kZ (since every action by a finite group is trivially
properly discontinuous).

• Action on R2 − {0} by (x, y) 7→ (2x, y/2) is not properly discontinuous,
though it is wandering : every point has a neighborhood that intersects
only finitely many of its translates under the group action. The quotient
by the action is not Hausdorff, because a sufficiently high forward iterate
of any neighborhood of (0, 1) intersect a sufficiently high backward iterate
of any neighborhood of (1, 0).

Proposition 6.8. Let G act on a Hausdorff, connected space X. The following
are equivalent:

(i) The action is free and properly discontinuous.

(ii) The quotient X/G is Hausdorff, and X → X/G is a covering map.

Corollary 6.9. Every “nice space” (path-connected, locally path-connected, semi-
locally simply connected, and Hausdorff) X is the quotient X̂/G, where X̂ is
the universal cover, and G is a group acting properly discontinuously (the deck
group).

Corollary 6.10. Any complete hyperbolic n-manifold M is a quotient of Hn by
group of isometries acting freely and properly discontinuously.

Proof. By Proposition 6.5, the universal cover M̂ is isometric to Hn. The deck
group of the universal cover acts by isometries for the pull-back metric on M .
The map M̂ → M satisfies Proposition 6.8 (ii), hence it satisfies (i), i.e. it is
free and properly discontinuous. �
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For actions of subgroups of Isom on Hn, proper discontinuity is equivalent to
discreteness (as a subset of Isom(Hn), with its natural topology). The obstruc-
tion to freeness for actions by subgroups of Isom on Hn is exactly the presence of
elliptic elements. (An example of a large discrete subgroup is PSL2(Z), though
this contains elliptics, such as z 7→ −1/z.)

Hence we get a correspondence:

{complete hyperbolic manifolds, up to isometry} ↔
{discrete subgroups of Isom(Hn) without elliptics, up to conjugation}.

The “up to conjugation” equivalence is present since we have a choice of
isometry between M̂ and Hn; different choices lead to conjugate subgroups.

Definition 6.11. A tessellation of Hn is a locally finite set of polyhedra that
cover Hn and intersect only in common faces.

Definition 6.12. A fundamental domain for the action of Γ ⊂ Hn is a polyhe-
dron in Hn whose translates are distinct and form a tessellation of Hn.

Examples of hyperbolic manifolds:

• H/〈z 7→ z + 1〉

• Bolza surface. For each pair of opposite sides, there is a loxodromic isom-
etry mapping one to the other (the axis is the common perpendicular
bisector to the two sides). Let Γ be the group generated by these. Then
the Bolza surface is H/Γ. The octagon is a fundamental domain for the
action of Γ.

• Seifert-Weber dodecahedral space: identify opposite faces of a dodecahe-
dron via a 3/10 twist. Edges are glued in 6 groups of 5. The dihedral
angle between faces of Euclidean regular dodecahedron is approximately
117 degrees. An ideal hyperbolic regular dodecahedron has 60 degree di-
hedral angles. By the intermediate value theorem, there is a hyperbolic
regular dodecahedron with angles 72 degrees. Doing the gluing with this
geometric realization givs the Seifert-Weber hyperbolic 3-manifold, which
is compact. This is one of the simplest examples of a closed hyperbolic
3-manifold.

6.4 Hyperbolic orbifolds

A natural discrete subgroup of PSL2(R) is PSL2(Z). However, this contains
elliptic elements, such as the Mobius transformation z 7→ −1/z. So it does not
actually correspond to a hyperbolic surface. However, the quotient H/PSL2(Z)
is still a fairly nice object. It is a hyperbolic orbifold : every point has a neighbor-
hood modeled on a quotient of Hn by a finite group of isometries (if the group at
every point is the trivial group, then we get an actual hyperbolic surface). The
action of PSL2(Z) on H has a nice fundamental domain, the region bounded by
the unit circle and the lines Re(z) = ±1/2. The points e2π/6, e2π/3, i are orbifold
points. The quotient H/PSL2(Z) is non-compact, but has finite volume.
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Congruence subgroups. Now consider the group homomorphism

φm : PSL2(Z)→ PSL2(Z/mZ),

given by reducing all entries modulo m. The kernel of φm, denoted Γ(m), is
subgroup of PSL2(Z), hence also discrete, and is finite-index and normal. They
are known as principal congruence subgroups. For m ≥ 4, we claim that Γ(m)
contains no elliptics. In fact, the diagonal entries a, d of a representative of
such an element would need to satisfy a + d ≡ ±2 mod m in order to be in
Γ(m), while on the other hand to be elliptic, a+ d = 1, 0,−1; there are no such
matrices.

We thus see that for m ≥ 4, Γ(m) is a discrete subgroup without elliptics,
and hence corresponds to a hyperbolic surface. It is a finite degree cover of
H/PSL2(Z).

In the above, we passed to a cover to get rid of all the elliptics; in general
one can always do this:

Theorem 6.13 (Selberg). Every finitely generated discrete subgroup Γ ⊂ Isom(Hn)
has a finite index subgroup that acts freely on Hn.

Bianchi groups. There are (many) three-dimensional versions of the above.
We start by thinking of Isom+(H3) as PSL2(C). For the simplest example, take
Γ := PSL2(Z[i]). This is a subgroup, since Z[i] is a ring, and it is easy to see
that this is discrete, so the quotient is a hyperbolic orbifold. We can replace
the Gaussian integers Z[i] by the ring of integers Od in any imaginary quadratic
number field Q[

√
−d], where d is a positive square-free integer. (Recall that Od

is Z[
√
−d] if d ≡ 1, 2 mod 4, and Z[(−1 +

√
−d)/2] otherwise.)

The groups PSL2(Od) are known as Bianchi groups, and their quotients
Bianchi orbifolds. They are all finite volume. Their geometric properties (num-
ber of cusps, volumes, etc) are related to the number theory of Q[

√
−d] (class

group, Dedekind zeta function, etc).

6.5 Rigidity in higher dimensions

Theorem 6.14 (Mostow rigidity). If M1,M2 are complete, closed hyperbolic
n-manifolds with n ≥ 3 and π1(M1) ∼= π1(M2), then M1 and M2 are isometric.

This is a very strong form of rigidity! It was also extended by Prasad to
the case where M1,M2 are not assumed to be compact, but rather just finite
volume. One often applies it in the case where one was the stronger information
that M1,M2 are homeomorphic.

A consequence of Mostow Rigidity is that geometric invariants of these hy-
perbolic manifolds are in fact topological invariants. This is useful in knot
theory: hyperbolic invariants of a knot complement, such as volume or length
of shortest closed geodesic, are actually topological invariants (they do not de-
pend on the way the knot is presented). Although not all knot complements are
hyperbolic, in practice most are, and the above leads to practically useful ways
of distinguishing knots (see SnapPea/SnapPy software).
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6.6 Closed hyperbolic surfaces

Unlike in dimension n ≥ 3, when n = 2, there is a great deal of flexibility. We
start by recalling the topological classification.

Theorem 6.15 (Classification of surfaces). Let S be a closed, orientable surface.
Then S is homeomorphic to either

(i) the sphere (genus g = 0),

(ii) the torus, (g = 1), or

(iii) a genus g surface, for g an integer with g ≥ 2.

We group them into the above three categories for geometric reasons that
will become apparent. The Euler characteristic χ(S) equals 2 − 2g. The cases
correspond to positive, zero, and negative Euler characteristics, respectively.

Theorem 6.16 (Gauss-Bonnet). For X a closed, orientable surface with a
Riemannian metric,

2π · χ(X) =

∫
X

KdA,

where K is the Gaussian curvature function.

Proof for K ≡ −1. Consider a triangulation of the surface by geodesic segments;
let v, e, f be number of vertices, edges, faces, respectively. By Theorem 4.1, the
area of each triangle T equals the angle defect AT = π − α + β + γ. We can
compute the area by summing over these triangles, giving∫

X

KdA = − area(X) = −
∑
T

AT = −πf +
∑

αi,

where the last sum is over all angles, and hence equals 2πv. Since we have a
triangulation, 3f = 2e, hence χ(X) = v − e+ f = v − f/2. So continuing with
the above we get∫

X

KdA = −πf + 2πv = π(2v − f) = 2π · χ(X),

as desired. �

The round metric on the unit sphere S2 has constant curvature 1, the flat
metric on R2 constant curvature 0, and the hyperbolic metric on H2 has con-
stant curvature −1. We can prove Gauss-Bonnet for surfaces modeled on these
geometries in a similar way to the above.

It follows from Gauss-Bonnet, that for topological surfaces, at most one of
the three geometries is possible.

Towards putting hyperbolic metrics on higher genus surfaces, we now develop
some building blocks.
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Theorem 6.17. Given `1, `2, `3 ∈ R3
>0, there exists a unique right-angled hy-

perbolic hexagon AcBaCb (with all sides geodesic segments) and |a| = `1, |b| =
`2, |c| = `3.

For a soft proof, see Thurston-Levy Figure 4.15.
One can in fact extend the above by allowing some or all cuff lengths to be

zero. These will give cusped hyperbolic surfaces when suitably glued.

Pairs of pants. If we have two isometric right-angled hyperbolic hexagons
AcBaCb,A′c′B′a′C ′b′, we can glue A to A′, B to B′ and C to C ′. This gives
a surface with boundary called a pair of pants P . Because we are gluing along
geodesic arcs of the same length, the interior of P inherits a hyperbolic metric.
There are three boundary components (e.g., one is the union of a and a′), and
since two right angles come together where e.g. a, a′ meet, each boundary is a
closed geodesic.

Conversely, given a hyperbolic pair of pants P with geodesic boundary, we
can cut into two hexagons as follows. For each pair of boundary components,
consider the geodesic arc γi of shortest length connecting the two components.
These seams must be perpendicular to each boundary; otherwise there would be
a shorter path. Cutting along the three seams gives two right-angled hyperbolic
hexagons AcBaCb,A′c′B′a′C ′b′, where the lower-case letter sides came from
cutting along the seams, and thus e.g. |a| = |a′|. It follows from the uniqueness
part of the above theorem that the two hexagons are isometric.

From the above two paragraphs, we see that the data of a single right-
angled hyperbolic hexagon is equivalent to the data of a hyperbolic pair of
pants with geodesic boundary. And it also follows that for any choice of positive
cuff lengths, there’s a unique right-angled hyperbolic hexagon with those cuff
lengths.

Gluing together pants. To form a closed hyperbolic surface X, we can glue
together pairs of pants along cuffs. A pair of cuffs that are glued together
should have the same length. There is a choice of twist when two cuffs are glued
together.

The Euler characteristic of a pair of pants is −1. By additivity of Euler
characteristic, since χ(X) = 2− 2g, there are 2g− 2 pants in any pants decom-
position of X (additivity is over disjoint unions, but we can still use it in our
setting, since each boundary circle has Euler characteristic zero).

Given a topological pants decomposition, to specify the hyperbolic structure
we need: (2g − 2) · (3/2) = 3g − 3 length parameters, and an equal number
of twist parameters. Thus the “space of hyperbolic structures” on a genus g
surface has (real) dimension 6g − 6. The cuff lengths and twist parameters
give Fenchel-Nielsen coordinates on the space of hyperbolic structures, which is
thus homeomorphic R6g−6

>0 × R3g−3. However, these are coordinates on marked
hyperbolic structures. This is called the Teichmüller space Tg, and it is not the
same as the moduli space Mg, which is the set of hyperbolic structures up to
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isometry. A marked hyperbolic surface is a hyperbolic surface X equipped with
a map S → X, defined up to homotopy, where S is a fixed topological surface.

There are (infinitely) many different pants decompositions of a surface (even
if we consider the cuff curves up to homotopy). But there are only finitely many
up to homeomorphism. The isometry type of a surface appears infinitely many
times in a Fenchel-Nielsen chart.

Existence of geometric pants decompositions. A missing piece in the
above is: how do we know that any hyperbolic surface has a decomposition into
hyperbolic pairs of pants with geodesic boundary? We start by finding closed
geodesics.

The intuition for the below is that the shortest element of a homotopy class
should be a geodesic.

Proposition 6.18. In any non-trivial homotopy class of loops on a closed hy-
perbolic surface X, there exists a unique closed geodesic.

Proof. Let γ be a representative of the homotopy class, and pick a basepoint
p ∈ X. So we can also think of γ as an element of π1(X, p). Now pick a universal
covering π : (H, p̃) → (X, p). Consider the lift γ̃ of γ to H, going through p̃.
Now γ̃ is periodic under the action of γ on H. This isometry is loxodromic
by Proposition 6.19, hence has an axis α. Consider the straight-line homotopy
from γ̃ to α. This is equivariant for the action of γ, and hence the homotopy
descends to a homotopy from γ to π(α), which is a closed geodesic.

For uniqueness, use that lifts are a bounded distance apart, hence have the
same endpoints, and there’s only one choice of axis with these endpoints. �

Recall that if we fix a universal covering H → X, then every element of
π1(X) acts by an isometry on H, and X is isometric to H/π1(X).

Proposition 6.19. Every non-trivial element φ of π1(X) ⊂ Isom+(H) is a
loxodromic isometry.

Proof. Note that φ cannot be elliptic, since then its action on H would not be
free. It remains to show that φ cannot be parabolic; suppose the contrary. The
translation length of a parabolic (i.e. the infimum of the distance between a
point and its image) is zero. So for each ε > 0, we can find x ∈ H and an arc α
connecting x, φ(x) of length < ε. Projecting this arc to X gives a closed curve
on X of length < ε. This curve represents an element in the conjugacy class of
φ (thought of as an element of π1(X)), and hence is not null-homotopic. But
on a compact surface there is a lower bound on the lengths of curves in any
non-trivial homotopy class, contradiction.

�

6.7 Other perspectives

Fix a g ≥ 2. There are equivalences of categories between:
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• (Closed hyperbolic surfaces of genus g, isometries),

• (Compact Riemann surfaces of genus g, biholomorphic maps),

• (Smooth algebraic curves of genus g, biregular morphisms).

To see the equivalences require some deep theorems. For instance, to show
that a Riemann surface admits a hyperbolic metric consistent with the confor-
mal structure requires the Uniformization Theorem. And to embed a Riemann
surface as an algebraic subset of projective space, one uses Kodaira vanishing.

There is also a version for g = 1, where “hyperbolic” is replaced by “flat
structures of area 1.”
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