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1 Constructions of Riemann surfaces

Definition 1.1. A Riemann surface is a topological surface with an atlas of
charts to C, for which the transition functions are holomorphic.

Constructions.

1. Multi-valued analytic functions: e.g.
√
x(x− 1)(x− 2) corresponds to a

single-valued function (x, y) 7→ y on the Riemann surface (algebraic curve)
cut out by the equation y2 = x(x − 1)(x − 2) in C2 (should projectively
complete).

2. General algebraic curves

3. Riemannian metrics, in particular hyperbolic metrics.

4. Polygons, e.g. regular octagon, with opposite sides glued together. Care
must be taken to define charts around the point on the surface coming
from the vertices of the octagon; in this case one uses the map z 7→ z1/3,
which is holomorphic away from 0.

5. Quotients of simply connected surfaces by properly discontinuous actions
by biholomorphisms:

• C/Λ, where Λ ∼= Z2 is a lattice.

• H/Γ, where Γ is discrete, torsion-free subgroup of PSL2(R).

1.1 Uniformization.

Theorem 1.2 (Uniformization). Every simply connected Riemann surface is
biholomorphic to one of:

(i) Ĉ, the Riemann sphere

(ii) C

(iii) H, the upper half plane (which is biholomorphic to the open unit disk).

Every Riemann surface has a universal cover as a topological surface, and
the Riemann surface structure lifts upstairs to the universal cover. Hence every
Riemann surface is a quotient of one the three above. The only quotient of Ĉ
is Ĉ itself. The compact quotients of C are exactly the tori (the non-compact
quotients are C and the punctured plane C∗). All other Riemann surfaces are
quotients of H.
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1.2 Automorphism groups.

Lemma 1.3 (Schwarz). Let f : D→ D be a holomorphic with f(0) = 0. Then
|f ′(0)| ≤ 1 and |f(z)| ≤ z for all z ∈ D. If |f ′(0)| = 1, then f is a rotation
about 0; otherwise |f(z)| < z for all z ∈ D.

Proof. Consider the function g : D→ C given by g(z) = f(z)/z; the value g(0)
is just f ′(0). This g is also holomorphic. By the Maximum Modulus Principle,

sup |g| ≤ sup |f |
1

≤ 1,

hence |g(0)| = |f ′(0)| ≤ 1, and |f(z)| ≤ z for all z ∈ D. Equality in the above is
attained only if g is a constant function, which corresponds to f a rotation. �

Theorem 1.4. The groups of biholomorphic automorphisms of each of the sim-
ply connected Riemann surfaces:

(i) Aut(Ĉ) = PSL2(C), acting by Mobius transformations z 7→ az+b
cz+d .

(ii) Aut(C) = {z 7→ az + b : a, b ∈ C, a 6= 0}

(iii) Aut(H) = PSL2(R), acting by Mobius transformations.

Every automorphism of Ĉ has a fixed point, so we don’t get any surface
quotients. For C, the quotient Riemann surfaces are the annulus C/Z and
complex tori.

Proof of (iii). It is easy to check that every element of PSL2(R) gives an au-
tomorphism. This group acts transitively on H (the affine maps az + b already
do). By moving to D and applying the Schwarz lemma, we see the only maps
fixing a particular point are “rotations”. The group PSL2(R) contains such
rotations (consider the map f(z) = cos θz+sin θ

(− sin θ)z+cos θ , which fixes i), and hence this

is the full automorphism group. �

In the above proof, we showed that Aut(H) acts transitively on tangent
vectors. It follows that there is a unique Riemannian metric on H invariant
under all biholomorphic automorphisms. This turns out to be the hyperbolic
metric

ds2 =
dx2 + dy2

y2

in the coordinates x + iy. And Isom+(H) = Aut(H) = PSL2(R). It follows
that any Riemann surface that is a quotient of H inherits a hyperbolic metric
from it.
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2 Classification of annuli

Examples of annuli:

1. C∗ := C− {0}

2. D∗

3. Ar,R := {z ∈ C : r < z < R}, where 0 < r < R <∞.

Note that if r/R = r′/R′, then Ar,R, Ar′,R′ are biholomorphic, via a scaling
map; we will also use the notation Ar/R.

Hyperbolic annuli. The surface A′λ := H/〈z 7→ λz〉, for any finite λ > 0,
λ 6= 1, is also a topological annulus. Note that A′λ is the same as A′1/λ.

Proposition 2.1. If 1 > λ1 > λ2 > 0, then A′λ1
, A′λ2

are not biholomorphically
equivalent.

Proof. If they were, the map would lift to a biholomorphic automorphism of
universal covers H → H. Since Isom+(H) = Aut(H), this map is an isometry,
and it descends to an isometry A′λ1

→ A′λ2
. But the core geodesic of A′λ has

hyperbolic length | log λ|, so the surfaces cannot be isometric, contradiction. �

Proposition 2.2. H/〈z 7→ λz〉 ∼= Aexp(−2π2/ log λ).

Proof. We first straighten out the semicircles with the map f(z) = log z. The
conjugate of z 7→ λz by f is z 7→ z + log λ. We then apply the map g(z) =
exp( 2πi

log λz). �

Proposition 2.3. We have

D∗ ∼= H/〈z 7→ z + 1〉,
C∗ ∼= C/〈z 7→ z + 1〉.

Proof. The (inverses of the) maps are both give by z 7→ exp(2πiz). �

Since the universal covers H ∼= D and C are not biholomorphic (by Liouville’s
theorem), D∗ and C∗ are not biholomorphic. And C∗ is not biholomorphic to
any Ar for the same reason. To see that D∗ is not biholomorphic to any Ar we
consider the hyperbolic geometry of D∗ ∼= H/〈z 7→ z+ 1〉; the core curve can be
represented by an arbitrarily short hyperbolic curve.

Theorem 2.4. Every Riemann surface that is homeomorphic to an annulus is
biholomorphic to precisely one of C∗,D∗, or Ar, for some 0 < r < 1.

Proof. The “at most one” part of the theorem was proved in the paragraph
above.

By the uniformization theorem, the universal cover is one of Ĉ,C,H. But the
universal cover of an annulus is homeomorphic to the plane, which eliminates
Ĉ.
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An annulus covered by C is of the form C/〈γ〉, where γ is an automorphism
of C without fixed points, i.e. a translation z 7→ z+a. Any two such translations
are conjugate by a scaling map, so these Riemann surfaces are all biholomorphic
to C/〈z 7→ z + 1〉 ∼= C∗.

An annulus covered by H is of the form H/〈γ〉, where γ is an automorphism of
H without fixed points. Up to conjugation, there are two types of automorphism
without fixed points, depending on whether the map fixes one or two points on
the circle boundary of H (see Proposition 2.5 below.) The hyperbolic isometries
are those conjugate to z 7→ λz, for some λ > 0. The parabolic isometries are
those conjugate to z 7→ z ± 1. We get annuli biholomorphic to H/〈z 7→ λz〉 ∼=
Aexp(−2π2/ log λ), or H/〈z 7→ z + 1〉 ∼= D∗, respectively. �

2.1 Classification of isometries of H
Proposition 2.5. Every element of Isom+(H) is conjugate to precisely one of

(i) z 7→ z ± 1,

(ii) z 7→ λz, for some λ > 0,

(iii) f(z) = cos θz+sin θ
(− sin θ)z+cos θ , for some θ ∈ [0, π).

Proof. Part of the “at most one” part is seen by looking at the fixed points in
H̄ (first one should note that all isometries extend to H̄). The number of fixed
points is 1 (on the boundary), 2 (on the boundary), 1 (in the interior, assuming
f is not the identity).

The other part can be proved using Jordan canonical form (with some care,
since we are meant to conjugate by real matrices). �

The trace (up to ±1 factor) is often a helpful way of thinking about the
classification: the cases correspond to |tr| = 2, |tr| > 2, |tr| < 2.

3 Teichmüller space and moduli space

Definition 3.1 (Moduli space). Given a surface S, the moduli space M(S) is
the set of all Riemann surfaces homeomorphic to S, up to biholomorphism.

A major goal in this course will be to understand this set, and the various
structures it admits. If we want to talk about notions uniformly across different
surfaces (such as a homotopy class of curves), we should use a more restrictive
equivalence notion than biholomorphism.

Definition 3.2 (Teichmüller space). Given an oriented topological surface S,
the Teichmüller space is the set

T (S) := {(X,φ) : X a Riemann surface, and φ : S → X orient preserving homeo}/ ∼,

where (X,φ) ∼ (X ′, φ′) if there is a biholomorphic map f : X → X ′ with f ◦ φ
homotopic to φ′.
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For S = Sg, the closed surface of genus g, we denote by Mg the set M(S);
similarly for T .

Example 3.3. For S = A an annulus,

M(A) = {D∗} ∪ {Ar : 0 < r < 1} ∪ {C∗},

T (A) = {(D∗, id)} ∪ {(D∗, f)} ∪ {Ar : 0 < r < 1} ∪ {C∗},

where f is the unique (homotopy class of) homeomorphism of an annulus that
is not homotopic to the identity id. On an annulus Aλ,1/λ for some 0 < λ < 1,
such an f can be represented by the map z 7→ 1/z. For the annuli other than
D∗, the markings by f and id are equivalent points in Teichmüller space, since
f can be realized holomorphically on any such annulus; hence all markings for
these are equivalent. For D∗, the map f is not homotopic to a holomorphic
automorphism (one can reduce the classification of Aut(D∗) to that of Aut(D)
using the Riemann removable singularity theorem).

Remark: Because of the subtleties discussed above, people don’t usually
bother too much with the Teichmüller space of the annulus.

Geometric structures on compact orientable Riemann surfaces.

1. The sphere. Such a Riemann surface is already simply connected, so
by Uniformization Theorem, it must be Ĉ. The natural homogeneous
geometry here is spherical. Both M0 and T0 are a single point. For the
latter, use the fact that any orientation-preserving self homeomorphism of
the sphere is homotopic to the identity.

2. Torus. By Uniformization Theorem, the universal cover X̂ is biholomor-
phic to either Ĉ,C or H. But we know the universal cover is homeomorphic
to the plane, which rules out Ĉ. If universal cover were H, X would admit
a hyperbolic metric, but Gauss-Bonnet rules this out (χ(T ) = 0). Thus
X̃ ∼= C, and X = C/Γ, where Γ ⊂ Aut(C) = {z 7→ az+b : a, b ∈ C, a 6= 0}.
Not all elements of Aut(C) preserve the flat metric. But elements of Γ
must be fixed-point free i.e. of the form z 7→ z + b, and these do preserve
the metric. So X admits a flat metric.

3. Sg, g ≥ 2. As in previous case, X̃ must be C or H. By same reasoning as

above, if X̃ ∼= C, then X admits a flat metric, but this is impossible by
Gauss-Bonnet since χ(Sg) = 2 − 2g < 0. Thus X̃ ∼= H, and X admits a
hyperbolic metric.

3.1 Teichmüller space of the torus

Definition 3.4. A lattice in C is a discrete subgroup of C isomorphic to Z2. A
marked positive lattice is a lattice with a distinguished ordered pair of generators
(γ1, γ2) that are positively oriented in C, i.e. γ2/γ1 ∈ H.
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We define an equivalence relation ∼ on the space of marked positive lattices
by (γ1, γ2) ∼ (λγ1, λγ2) for any λ ∈ C∗.

Proposition 3.5. There is a bijection

{marked positive lattices}/ ∼ → T1

given by [(γ1, γ2)] 7→ C/〈γ1, γ2〉, with the marking determined by the map on
π(S) ∼= Z2 given by (1, 0) 7→ γ1 and (0, 1) 7→ γ2.

Proof. To define the inverse of the map, we start with X a marked Riemann
surface structure on the torus and take some universal cover, which must be
biholomorphic to C. The deck group elements corresponding to (1, 0), (0, 1) ∈
Z2 ∼= π1(S) act by translations γ1, γ2 on C. Because the marking map is ori-
entation preserving in the definition of Teichmüller space, we have that (γ1, γ2)
is positively oriented. However, this description is not unique, since the pic-
ture can be conjugated by any holomorphic automorphism of C. This can be
taken to be z 7→ λz, λ ∈ C∗, since translations commute with the deck group.
Doing this gives the marked lattice (λγ1, λγ2). Thus this gives a well-defined
marked lattice up to rotation/scaling, and the resulting map is the inverse of
the original. �

Proposition 3.6. There is a bijection

H→ {marked positive lattices}/ ∼

given by τ 7→ [(1, τ)].

Proof. The inverse is given by [(γ1, γ2)] 7→ γ2/γ1. �

By combining the two bijections above, we get

Proposition 3.7. There is a bijection

H→ T1

given by τ 7→ C/〈1, τ〉, with the marking determined by the map on π(X) ∼= Z2

given by (1, 0) 7→ 1 and (0, 1) 7→ τ .

The topology on T1 is defined so that this bijection is a homeomorphism.
The moduli spaceM1 is equal to the set of lattices modulo complex scaling.

This can be understood as above, and then forgetting the marking, which means
taking the quotient by SL2(Z). We get thatM1 is in bijection with H/SL2(Z),
acting by Mobius transformations, which is the same as H/PSL2(Z).

3.2 Mapping class group

Definition 3.8. Given a closed surface S, we define the mapping class group
as

Mod(S) := π0(Homeo+(S)),

i.e. isotopy classes of homeomorphisms.
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Fact 3.9. Let α, β be two simple closed curves on closed surface S. Then α, β
are isotopic iff they are homotopic.

Fact 3.10. Let S be a closed surface, and f, g ∈ Homeo(S). Then f, g are
homotopic iff they are isotopic.

By the fact above, Mod(S) is equal to Homeo+(S) modulo homotopy.
In dimension two (and three), any homeomorphism is isotopic to a diffeo-

morphism. Hence we also have

π0(Homeo+(S)) = π0(Diffeo+(S)).

Definition 3.11 (Dehn twist). The Dehn twist of the annulus (which for con-
creteness we take to be A1,2 is the map given in polar coordinates by

(r, θ) 7→ (r, θ + 2π(r − 1)).

Note that the Dehn twist extends to a map that is the identity on both boundary
components.

On any surface Sg with a simple closed curve γ, we define the Dehn twist
Tγ by taking a small annular neighborhood of γ and applying the above map
on that region. On the rest of the surface Tγ is defined to be the identity.

For the torus S1, we consider the action on the fundamental group

Mod(S1)→ Aut(π1(Z)) = Aut(Z2) ∼= GL2(Z).

On general spaces/surfaces, one has to worry about base points, but since π(S1)
is abelian, this is not an issue. We do always get an action on first homology
H1(S;Z), and for the torus this actually coincides with the above, since in this
case π1 and H1 are the same.

Since the maps are orientation preserving, induced maps on curves preserve
algebraic intersection number, and so the image of the above lies in SL2(Z).

Proposition 3.12. For the torus S1, the map

Mod(S1)→ SL2(Z)

is an isomorphism of groups.

Proof. For surjectivity, we consider linear automorphisms of the torus (by think-
ing of T as R2/Z2).

For injectivity, we use K(π, 1) theory (i.e. Eilenberg-MacLane spaces): there
is a bijection between endomorphisms of π1(S) and homotopy classes of maps
S → S. �
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3.3 Action of mapping class group on Teichmüller space

For a marked surface (X,φ), we can pre-compose the marking with any home-
omorphism f : S → S to get a new marked surface (X,φ ◦ f). Because of the
equivalence relation in terms of homotopy, the resulting point in Teichmüller
space is well-defined, and depends only on the mapping class of f . Since we are
precomposing, to get an action of Mod on Teichmüller space, we should take
for any f ∈Mod(S),

[(X,φ)] 7→ [(X,φ ◦ f−1)].

The action is by changing markings; it follows that the quotient “forgets”
the marking, hence

M(S) = T (S)/Mod(S).

Proposition 3.13. With T (S1) identified with the torus, the action of Mod(S) ∼=
SL2(Z) is given by

τ 7→ aτ − b
−cτ + d

(It differs from the standard projective linear action on H because of (i) the
inverse in the definition of the action, and (ii) the choice to normalize the image
of (1, 0), rather than (0, 1), to be the resulting point in H).

Note that the action is not faithful: the matrix −I acts trivially. This fact is
equivalent to the fact that every complex automorphism admits a holomorphic
automorphism in the mapping class of the hyperelliptic involution in Mod(S1)
(the map corresponding to the −I matrix).

3.4 Fundamental domain for M1

Proposition 3.14. A fundamental domain for the action of SL2(Z) on H is
given by the region

{z ∈ H : −1/2 ≤ Re(z) ≤ 1/2, |z| ≥ 1}.

Proof. Given τ , we begin by assuming it has maximal imaginary part among
all elements in its SL2(Z) orbit (the maximum is attained, which can be seen

using the formula Im
(
az+b
cz+d

)
= Im(z)
|cz+d|2 , found by multiplying denominator by

it’s conjugate).
Now the group is generated by the matrices corresponding to z 7→ z+ 1 and

z 7→ −1/z (as can be seen by doing the Euclidean algorithm in the first column,
to make the lower-left entry zero). By applying the first, we can bring τ to the
strip {−1/2 ≤ Re(z) ≤ 1/2}. If |τ | ≤ 1, then by applying z 7→ −1/z, we get
a point with larger imaginary part than the original, contradiction. Hence we
can move any point in H into the domain.

By examining what z 7→ z + 1 and z 7→ −1/z do, we see that our set is in
fact a fundamental domain. �
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We should also study the identifications on the boundary. The left and right
vertical sides get glued together, while the left and right halfs of the bottom arc
are glued. The resulting complex orbifold is known as the modular curve. (As
a topological orbifold, it is the (2, 3,∞) orbifold).

Fixed points of action: not free, but properly discontinuous.

Proposition 3.15. The action of PSL2(Z) on H is properly discontinuous:
for each K ⊂ H compact, the set

{g ∈ PSL2(Z) : gK ∩K 6= ∅}

is finite.

Proof. This can be proved using the fundamental domain for the action con-
structed above. �

We will see that in higher genus, though there is no such explicit fundamental
domain, the action of the mapping class group on Teichmüller space will still
be properly discontinuous.

Fixed points. By looking at the definition of Teichmüller space and the action
of the mapping class group, we find that a fixed point of some f ∈ Mod(Sg)
corresponds to a Riemann surface with a biholomorphism in the homotopy class
of (conjugate) of f .

The fixed points i, e2πi/3 in H correspond to special tori. The point i cor-
responds to the square torus. This admits an automorphism corresponding to
rotation by π/2.

The point e2πi/3 corresponds to hexagonal torus (a regular hexagon with
opposite sides glued together; this can be cut up into the parallelogram given
by 1, e2πi/3). The lattice is easily seen to have π/3 rotational symmetry, and
this symmetry is also evident from the hexagon description.

3.5 Fenchel-Nielsen coordinates

A pair of pants is just a sphere with 3 boundary components, the cuffs.

Proposition 3.16. Every surface of genus g ≥ 2 can be cut into 2g − 2 pairs
of pants.

Proof. Pick a simple closed curve on the surface that is not homotopic to a
point. In the complement find another such curve, and continue doing this,
until one cannot proceed. The complementary regions will all be pairs of pants.
The Euler characteristic of a pair of pants is −1, so by additivity of Euler
characteristic, there must χ(Sg)/− 1 = 2g − 2 of them. �

Proposition 3.17. Given `1, `2, `3 ∈ R>0, there is a unique hyperbolic structure
on a pair of pants such that the cuffs are geodesics with lengths `1, `2, `3.

10



Proof. For each pair of cuffs, we find the shortest arc from one to the other,
the seams of the pants. This will be a geodesic arc meeting each of the cuffs
at right angles (otherwise, there would be a shortcut). This decomposes the
pants into two right-angled hyperbolic hexagons. By considering the seams,
which are each a side of both hexagons, the proposition below implies the two
hexagons are isometric. Hence each of the cuffs of the original pants is bisected
by the seams. And applying the proposition below again, we see that there is
exactly one choice for the hexagon, since alternating sides must have lengths
`1/2, `2/2, `3/2. �

Proposition 3.18. Given `1, `2, `3 ∈ R>0, there is a unique hyperbolic right-
angled hexagon (all sides geodesic) such that alternating sides have lengths
`1, `2, `3.

For a soft proof, see Thurston-Levy book Fig 4.15; it can also be proved
using hyperbolic trigonometry.

Length functions. Give a closed curve γ on our reference surface Sg, we get
a length function

`γ : Tg → R≥0

that takes X to the hyperbolic length on X of (the geodesic representative) of
γ on X. If γ is an essential curve (not homotopic to a point), then the length
is positive.

Defining the coordinates. We will define a map

FN : Tg → R3g−3
>0 × R3g−3.

Fix a pants decomposition P on our reference surface Sg. Let c1, . . . , c3g−3 be
the cuff curves. The first three components of the map are the length parameters,
given by `c1(X), . . . , `c3g−3

(X).
The rest of the components of the map are twisting parameters. Intuitively,

τi measures the amount of twisting that is done when gluing the pairs of pants
on either side of ci to one another. Because we are working with Teichmüller
space, a full turn results in a different marked surface, and so it turns out we will
get a well-defined real number (rather than say an angle) as the twist parameter.

To define the twist formally, for each pair of pants in P, we take disjoint
(oriented) arcs connecting each pair of cuffs. We then join choose some pairing
of arcs coming into each cuff from the pants on each either side. This gives
a collection T = {t1, . . . , tk} of (oriented) simple closed curves on the surface.
This allows us to define the twist parameter τi as the twisting of T around
γi relative to the seams of the pants on X; this is a real number, and it is
normalized such that the full Dehn twist about γi will increase the τi by `γi(X).
(Given an isotopy class of arc on a pants with endpoints on cuffs, the twist of
the arc around each cuff relative to each seam is well-defined up to isotopy of
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the arc fixing the basepoints. To define the twist about a cuff in the above, we
find the two arcs that form curves in T , and measure their twists around the
cuff relative to the corresponding seam, and then take the difference between
these two numbers).

Dimension counts. The real dimension 6g− 6 of Teichmüller space can also
be informally derived in other ways. For instance, for g = 2, we can make a
surface by gluing together opposite sides of a regular octagon with all 45 degree
angles. So:

+16 dimension worth of choices for the vertices of the octagon.

−3 dimensions of isometry group of H

−4 conditions on opposite sides having equal length

−1 condition on angle at vertex of glued surface being 360.

−2 dimensions worth of choice of the point that becomes vertex of octagon.

This gives 16− 3− 4− 1− 2 = 6, which agrees with 6(2)− 6.

3.6 Character variety

Fundamental group of surfaces. Sg can be realized as a 4g-gon with sides
glued according to the pattern

α1β1α
−1
1 β−1

1 · · ·αgβgα−1
g β−1

g .

This leads to the following presentation of the fundamental group:

π1(Sg) = 〈α1, β1, . . . , αg, βg | α1β1α
−1
1 β−1

1 · · ·αgβgα−1
g β−1

g 〉.

One should think of it as somewhere between a free abelian group on 2g gener-
ators, and a free group on 2g generators. In the torus case g = 1, it coincides
with the free abelian group.

LetDF (π1(Sg), PSL2(R)) denote the set of faithful homomorphisms π1(Sg)→
PSL2(R) with discrete image. These are exactly the “covering space actions”
of π1(Sg) on H by isometries, i.e. those corresponding to compact hyperbolic
surfaces.

Proposition 3.19. There is a bijection between Tg and the character variety

DF (π1(Sg), PSL2(R))/PGL2(R),

where the quotient denotes the action by conjugation.

Proof. Starting with a point in Teichmüller space, choose a universal cover. The
fundamental group of X acts by isometries on this, giving the representation.
It is discrete and faithful.

For the other direction, take quotient. (To get actual marking, need to use
that any (outer) automorphism of π1(Sg) is induced by a homotopy equivalence
S → S, which in turn is induced by a homeomorphism). �
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Algebraic topology on Tg. As a space of continuous functions, Hom(π1(Sg), PSL2(R))
(we give π1(Sg) the discrete topology) has a compact-open topology. As a
quotient of a subset of this, the character variety also inherits a topology.
We can also see this concretely, by embedding Hom(π1(Sg), PSL2(R)) into
(PSL2(R))2g via images of generators (and then taking quotient of subspace).

Dimension count. We can also get a guess for dim Tg using this perspective:

+(3)(2g) dimension choices of images of the 2g generators in PSL2R.

−3 condition that product of commutators is I

−3 dimensions for conjugating by PGL2(C).

This gives 6g − 6, agreeing with what we get from Fenchel-Nielsen coordinates.

3.7 9g − 9 theorem

Proposition 3.20. There is a set of 9g− 9 simple closed curves α1, . . . , α9g−9

whose lengths determine a point in Teichmüller space.

Proof idea. To choose the curves, begin with the 3g − 3 cuff curves of a pants
decomposition. For each such cuff α, add some γ that crosses α at least once
and does not cross any other cuffs. Also add each γ = Tα(γ).

The length Fenchel-Nielsen coordinates with respect to this pants decompo-
sition can then be immediately recovered. We claim the twist about α can be
recovered from the lengths of γ, γ. It is a fact that if we fix all the cuff lengths,
then the lengths `t(γ), `t(γ

′) is a strictly convex function of the twist t about
α. An individual convex function need not be injective. However the lengths of
γ and γ′ are just shifts of each other by `(α), since they are related by a full
Dehn twist. The graph of a convex function cannot have two horizontal chords
of equal length, hence t 7→ (`t(γ), `t(γ

′)) is injective.
�

Proposition 3.21. Any Fenchel-Nielsen coordinate map

FN : Tg → R3g−3
>0 × R3g−3

is a homeomorphism with respect to algebraic topology on domain and standard
Euclidean topology on target.

Proof. Since we’ve already shown the map is a bijection, by invariance of domain
it suffices to show that it’s continuous. The length parameters are continuous
functions, since the length of a closed curve is a continuous function of the
squared trace of the image of an element of π1. Any twist can be expressed as
continuous functions of other lengths, as in proof of 9g−9 theorem, so the twist
parameters are also continuous. �
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Aside: genus two Riemann surfaces are hyperelliptic. A hyperelliptic
involution of a surface is a mapping class represented by an order two homeo-
morphism with 2g+2 fixed points (so the quotient map is a degree two cover to
the sphere branched over 2g + 2 points, by Riemann-Hurwitz formula). It can
be represented by linearly arranging the surface, “skewering”, and rotating by
180 degrees. In genus two, this map fixes every isotopy class of simple closed
curve (though it changes orientation of some curves). By the 9g − 9 theorem,
this implies that this mapping class acts trivially on Teichmüller space. So the
mapping class group action in genus two is not faithful.

4 Teichmüller existence and uniqueness theo-
rems

4.1 Quasiconformal maps

Our goal in this section is to define a notion of distance between Riemann
surfaces. There are several sensible ways of doing this. From the perspective of
complex analysis, the most natural way leads to study of quasi-conformal maps
and the Teichmüller metric.

Complex derivatives and dilatation. Given a smooth map f : U → R2,
where U ⊂ R2 is an open set containing 0, we wish to measure the failure to

be conformal at 0. We write f(x, y) =

(
u(x, y)
v(x, y)

)
, and Df =

(
ux uy
vx vy

)
. The

matrix is conformal iff it is a composition of rotation and scaling iff ux = vy and
vx = −uy. In terms of differentials, and identifying R2 with C we can write

df = (ux + ivx)dx+ (uy + ivy)dy = fxdx+ fydy.

Instead of the 1-forms dx, dy, we wish to express in terms of dz = dx+ idy and
dz̄ = dx − idy. Solving for dx, dy in terms of these and substituting in above
gives

df =
1

2
(fx − ify)dz +

1

2
(fx + ify)dz̄.

Motivated by this, we set fz = 1
2 (fx − ify), fz̄ = 1

2 (fx + ify). The Cauchy-
Riemann equations are equivalent to fz̄ = 0.

We define the complex dilatation of f (at some point p) to be

µf (p) :=
fz̄
fz
.

(This is better than using just fz̄, which isn’t invariant under scaling).
By relating the determinant of Df to fz, fz̄, one can check that f is orien-

tation preserving at 0 iff µf < 1.
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We will generally work with a related quantity that is more closely connected
to ratios of lengths. For an orientation preserving homeomorphism f : U → V
between domains in the plane, we define the dilatation at a point p

Kf (p) :=
1 + |µf (p)|
1− |µf (p)|

.

Geometric interpretation. At a point, (the derivative) of such a smooth
map takes a circle centered at 0 in the tangent space to an ellipse. The dilatation
is the ratio of the major to minor axes of this ellipse. (In other words, it is the
ratio of singular values of the matrix).

Dilatation of a smooth map. We define

Kf := sup
p∈U
|Kf (p)|.

The following are easy to verify:

• Kf◦g ≤ KfKg (f, g defined on suitable domains)

• Kf−1 = Kf .

• Kf◦g = Kf = Kg◦f if g is conformal.

The last property means thatKf is invariant under conformal change of variable.
We say f is K-quasiconformal if Kf ≤ K. We say f is quasiconformal if it

is K-quasiconformal for some K.

Quasiconformal maps of Riemann surfaces. We can extend all these
notions to a map f : X → Y between Riemann surfaces. One should not insist
that quasiconformal maps are smooth everywhere. We will use the condition
that the map is smooth except at finitely many points (and then Kf is defined
as a sup of Kf (p) over only the smooth points). The actual general definition
of quasiconformal maps insists on much less regularity, but that would take us
into lots of analysis.

Proposition 4.1. Such an f : X → Y is conformal iff it is 1-qc.

Proof. We see that the map is conformal away from the points where f is not
smooth. Then since f is a homeomorphism, by removable singularity theorem,
the map is actually conformal at these points as well. �

Goal. Given such an f , find the map in its homotopy class that minimizes the
dilatation.
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Teichmüller metric. We let

dTeich(X,Y ) = log inf
f
Kh,

where the infimum is over all f in the homotopy class of homeomorphisms
X → Y coming from the markings of X,Y . We can see already that f is a
pseudometric, but it is not yet clear that distances between different points are
always positive.

4.2 Grotzsch inequality

We investigate the goal above first in a situation without topology. This is the
key result that will allow us to understand optimal conformal maps.

Theorem 4.2 (Grotzsch). Let F : [0, a]× [0, 1]→ [0,Ka]× [0, 1], K ≥ 1, be an
orientation preserving homeomorphism, smooth away from finitely many points,
and that takes horizontal (resp vertical) sides to horizontal (resp vertical) sides.
Then

KF ≥ K,

with equality iff K is affine.

Proof. The idea is that F must stretch in the horizontal direction, but if it also
stretched a lot in the vertical direction, then it would expand area too much.
Thus we can bound the ratio of maximal to minimal stretch from below.

From the Fundamental Theorem of Calculus, we get that, for each fixed y,

Ka ≤
∫ a

0

‖Fx(x, y)‖dx.

Integrating this over y yields

Ka =

∫ y

0

Ka ≤
∫
‖Fx(x, y)‖dA.

Now Fx(x, y) is the image of a unit tangent vector under the derivative mapping,
so it’s magnitude is less than the maximum stretch M of F at (x, y). If the
minimum stretch is m, note that KF (x, y) = M/m, while the Jacobian JF (x, y)
equals mM . Hence ‖Fx(x, y)‖ ≤M =

√
KF (x, y)JF (x, y). Using this and then

Cauchy-Schwarz yields

Ka ≤
∫ √

KF (x, y)JF (x, y)dA

≤
(∫

KF (x, y)dA

∫
JF (x, y)dA

)1/2

≤ (a(KF )(Ka))
1/2

,

whence KF ≥ K.
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If equality holds here, it must hold in all the inequalities above. The first im-
plies the map takes horizontal lines to horizontal lines. Equality in the inequality
for M implies the direction of maximal stretch is the horizontal direction. Equal-
ity in Cauchy-Schwarz implies KF (x, y)/JF (x, y) = 1/m2 is constant, while the
last inequality implies KF (x, y) is constant, hence M is constant. Since direction
of minimal stretch is orthogonal to max stretch direction, it must be vertical.
Hence the derivative of F is constant, i.e. it is affine. �

4.3 Quadratic differentials

We would like to use Grotzsch’s theorem locally on a Riemann surface to under-
stand quasiconformal maps, and in particular the foliations along which they
stretch maximally (or minimally). However, such foliations (and their tangent
line fields) must have singularities; this is related to the Poincare-Hopf formula
for vector fields: χ(M) =

∑
v index(v).

A quadratic differential is a section of the square of the holomorphic cotan-
gent bundle of the Riemann surface. Concretely it is a tensor that locally has
the form q(z) = f(z)dz2, where f is a holomorphic function. That is, under a
coordinate change z = φ(w), we have

q = f(φ(w))d(φ(w))2 = f(φ(w))φ′(w)2dw2.

Construction of quadratic differentials: Start with a (collection of) poly-
gon in the plane, each side of which has a partner side that is parallel and of
equal length. Glue together partner sides by translation, or translation com-
posed with 180 degree rotation. These preserve the form dz2 on C, so descend
to give quadratic differentials on the surface. The term half-translation surface
is often used to describe this geometric structure (the “half” is meant to suggest
rotation by 180 degrees).

To find Riemann surface charts for the quotient surface, one uses Euclidean
translation maps, away from the corners of the polygons. At the corners, one
uses maps of the form z 7→ zk/2.

Examples: regular octagon with opposite sides identified, swiss cross. The
square pillowcase corresponds to a meromorphic quadratic differential (at some
points it looks like (1/z)dz2).

Zeros and cone points. A quadratic differential on a higher genus Riemann
surface must have zeros; the sum of the zeros with multiplicities is 4g − 4. The
analogous fact about half-translation surfaces is that the sum of the excess cone
angle (angle at a point minus 2π) equals π(4g − 4). One sees that pulling back
the form dz2 to the coordinate charts gives a quadratic differential with a zero
at the point coming from the cone point. For instance, for a 3π cone angle point

[d(z3/2)]2 = [(3/2)z1/2dz]2 = (9/4)zdz2,

which has a zero (of order 1).
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Measured foliations. A quadratic differential gives a foliation of the surface
in every direction (in particular, in horizontal and vertical directions), except
that it can have singularities at the zeros of the differential.

From the polygon perspective, the foliations come from e.g. the horizontal
foliation of the Euclidean plane; it descends to a (singular) foliation of the
surface since translations and 180 degree rotation preserve the foliation.

From the complex analytic perspective, the horizontal foliation is the one
tangent to the vectors which are assigned a positive real value by q (one can
think of a quadratic differential as giving a C-valued function to very tangent
space to the surface, which is the square a of a linear function, and which varies
holomorphically over the base point).

In fact, each foliation comes with a tranverse measure, i.e. a measure µ on
arcs transverse α to the foliation, which is invariant under homotopies preserving
the leaves. For the horizontal foliation, this is given by

µ(α) =

∫
α

| Im(
√
q)|.

Note that the expression
√
q does not make sense globally, but locally (away

from zeros of the differential), one can choose a branch of the square root to
get a 1-form. For dz2, the transverse measure for the horizontal foliation is just
vertical Euclidean distance (the form integrated is just |dy|).

Coordinate charts from quadratic differential. The additional informa-
tion of the quadratic differential q determines some particularly nice “natural
coordinates” charts for the Riemann surface X. Fix some point p ∈ X. In a
small neighborhood of p, we define a function

g(z) =

∫ z

p

√
q,

choosing some branch of the square root. This is a holomorphic function (since
all operations involved are “holomorphic”), and its derivative at p is non-zero,
so it gives a local homeomorphism near p.

We claim that the pullback of dz2 under g is q. Indeed, by the fundamental
theorem of calculus

g∗(dz2) = d(g(z))2 = (
√
q)2 = q.

So these are the coordinates in which the differential “looks like” dz2, i.e. looks
like the Euclidean plane.

Dimension of quadratic differentials.

Proposition 4.3. Let QD(X) be the complex vector space of holomorphic
quadratic differentials on X. Then

dimCQD(X) = 3g − 3.
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This follows from the Riemann-Roch Theorem.
Since there is a canonically defined vector space associated to each point in

Teichmüller space, we get a rank 3g − 3 vector bundle over Teichmüller space.
One can also compute the dimension of the total space by counting independent
parameters in the polygon construction.

4.4 Teichmüller uniqueness theorem

Teichmüller maps

Definition 4.4. Given X Riemann surface, q a quadratic differential, and K ≥
1, we define a new Riemann surface Y equipped with natural charts obtained
from those for (X, q) by composing with the map f(x + iy) =

√
Kx + i 1√

K
y;

these give rise to a quadratic differential q′ on X ′. Furthermore, we get a map
h : (X, q)→ (Y, q′) called the Teichmüller map associated to (X, q,K).

Example: We can take a polygon representation and apply the map f to it.

Theorem 4.5 (Teichmüller uniqueness). Let h : X → Y be a Teichmüller
map with data (X, q,K). Then h is the unique map in its homotopy class with
minimal dilatation.

That is, any other quasiconformal map f : X → Y homotopic to f satisfies
Kf > K.

This is an analog of Grotzsch’s theorem, with a rectangle replaced by a
Riemann surface. We will need a few preliminary lemmas before the proof. We
measure norms of derivatives with respect to the flat coordinates induced by q
on X and q′ on Y .

Lemma 4.6. We have ∫
X

‖fx‖dAq ≥
√
K Area(q).

Proof. Define δ : X × R≥0 → R≥0 by

δ(p, L) =

∫
αp,L

‖fx‖dx,

where αp,L is the horizontal arc of length 2L centered at p. We have

δ(p, L) = `q′(f(αp,L)).

Note that δ(p, L) is not defined for large L when p is on a critical trajectory
(one heading to a cone point). However this is a measure 0 set, so will not affect
the following.

Integrating over p and using Fubini gives∫
X

δ(p, L)dA = 2L

∫
X

‖fx‖dA.
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On the other hand, by the Lemma below (applied with map f ◦ h−1 and arc
h(α), which has length 2L

√
K):∫

X

δ(p, L)dA =

∫
X

`q′(f(αp,L))dA

≥
∫
X

(2L
√
K − C)dA

= (2L
√
K − C) Area(q).

Combining with the previous equality gives∫
X

‖fx‖dA ≥ (
√
K − C

2L
) Area(q),

and then taking L→∞ yields the desired result.
�

Lemma 4.7. Let (X, q) be a Riemann surface with quadratic differential. Let
f : X → X be a homeomorphism that’s isotopic to the identity. There exists
some constant C such that for any arc γ : [0, 1] → X in a leaf of a horizontal
foliation

`q(f(α)) ≥ `q(α)− C.

Proof. The homotopy moves the endpoints of arcs by a bounded amount; take C
to be twice this amount. Then the result follows from triangle inequality, since
α achieves the minimum length in its homotopy class rel endpoints (this would
fail if q had simple poles, and homotopies were considered on the unpunctured
surface; for instance cylinders on a rectangular pillowcase are null-homotopic).

�

Proof of Theorem 4.5 (Teichmüller uniqueness). With the lemmas we’ve devel-
oped, we can now follow the proof of Grotzsch’s inequality.

By Lemma 4.6,

√
K Area(q) ≤

∫
X

‖fx‖dAq

Now fx(x, y) is the image of a unit tangent vector under the derivative
mapping, so its magnitude is less than the maximum stretch M of f at (x, y).
If the minimum stretch is m, note that Kf (x, y) = M/m, while the Jacobian

Jf (x, y) equals mM . Hence ‖fx(x, y)‖ ≤ M =
√
Kf (x, y)Jf (x, y). Using this
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and then Cauchy-Schwarz yields

√
K Area(q) ≤

∫
X

√
Kf (x, y)Jf (x, y)dAq

≤
(∫

X

Kf (x, y)dAq

∫
X

Jf (x, y)dAq

)1/2

≤ ((Area(q) ·Kf ) · (Area(q′)))
1/2

≤ ((Area(q) ·Kf ) · (Area(q)))
1/2

,

whence Kf ≥ K.
The analysis of the equality case is exactly the same as in Grotzsch’s in-

equality. �

4.5 Teichmüller existence theorem

Theorem 4.8 (Teichmüller existence). Let X,Y ∈ Tg. There exists a Te-
ichmüller map h : X → Y .

Proof. The area ‖q‖ of q is given by
∫
X
|q|. We let QD(X)1 denote the space of

quadratic differentials of area less than 1. We define a map Φ : QD(X)1 → Tg
that takes q to the image of the Teichmüller map with data (X, q, 1+‖q‖

1−‖q‖ ). To

prove the theorem, it suffices to show that Φ is surjective. To do this, we will
use invariance of domain, below.

Continuity of Φ is reasonable, since if the polygon picture associated to q
changes slightly, the one associated to q′ only changes slightly. (This can also
be justified using the Measurable Riemann Mapping Theorem and Beltrami
differentials, ideas that lead to the Bers embedding.)

Injectivity of Φ follows from Teichmüller uniqueness theorem: if Φ(q1) =
Φ(q2) = Y , then q1, q2 give two different homotopic Teichmüller maps, which
minimize dilatation, but there is a unique map in the homotopy class minimizing
dilatation.

To see properness of Φ, suppose K ⊂ Tg is compact. Note that Y ′ 7→
dTeich(X,Y ′) is a continuous function of Y ′, fixing X (though recall that we
don’t know that dTeich(X,Y ′) is a metric yet). This is because if Y ′, Y ′′ are
close, we can represent them with close by hyperbolic fundamental domains, and
in particular there is a smooth map from one to the other with derivative close to
the identity, and hence dilatation close to 1. It follows that Y ′ 7→ dTeich(X,Y ′)
is bounded, say by R, on K. If Φ−1(K) were not compact, there would exist
q1, q2, . . . with ‖qi‖ → 1 and dTeich(X,Φ(qi)) ≤ R. But by definition there is a

Teichmüller map from X to Φ(qi) with dilatation 1+‖qi‖
1−‖qi‖ . By the Teichmüller

uniqueness theorem, this is the map of minimal dilatation in its homotopy class,

so dTeich(X,Φ(qi)) ≥ 1+‖qi‖
1−‖qi‖ →∞ as i→∞ contradiction.

Finally, we know that both QD1(X) and Tg are homeomorphic to R6g−6

(Proposition 4.3 and Proposition 3.21, respectively). Since Φ is continuous,
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injective, and proper between these, invariance of domain implies it is a home-
omorphism, and in particular surjective. �

Theorem 4.9 (Invariance of domain). A continuous, proper, injective map
Rn → Rn is a homeomorphism.

4.6 Teichmüller metric

Proposition 4.10. The function dTeich(X,Y ) defines a complete metric on
Teichmüller space.

Proof. Symmetry and triangle inequality follow from basic properties of qua-
siconformal maps. Positive definiteness follows from Teichmüller’s existence
theorem: if X 6= Y , there is a Teichmüller map h : X → Y with dilatation
K > 1, and by Teichmüller’s uniqueness theorem, this minimizes dilatation in
the homotopy class, so dTeich(X,Y ) = logK > 0.

For completeness, it suffices to show that any closed metric ball B(X,R) is
compact. The Teichmüller existence and uniqueness theorems imply that the
map Φ : QD1(X) → Tg restricts, for each 0 < s < 1 to a homeomorphism
QDs(X) → B(X, log 1+s

1−s ). Note that QDs(X) is compact since it is the norm

ball in a finite dimensional normed vector space. Thus B(X, log 1+s
1−s ) also is

compact, and by varying s we get all balls. �

A geodesic in a metric space is an isometric embedding of R into the space.
(When we work with spaces with more interesting topology, we will often take a
geodesic to be a local isometric embedding). A geodesic segment is an isometric
embedding of some interval [a, b].

Proposition 4.11. Every geodesic segment in (Tg, dTeich) is contained in a
Teichmüller geodesic. Furthermore, between any two points X,Y ∈ Tg, there is
a unique geodesic segment.

5 Nielsen-Thurston classification

5.1 Genus 1

Recall that the mapping class group of the torus is identified with SL2(Z), which
acts on the upper-half plane H via Mobius transformations. We’ve already
classified elements of Isom+(H) up to conjugacy into three classes. We’ll think
about this classification, restricted to those isometries coming from f ∈ SL2(Z),
in terms extension of the action of Mod to the boundary ∂H.

1. Elliptic elements are those that fix a point in H, and are thus rotation.
Since SL2(Z) is discrete, the rotation is finite order. The order must be
2, 3, 4, 6.
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2. Parabolic elements are those that fix exactly one point in ∂H. This means
that there is a unique real eigenvector. Since eigenvalues come in conju-
gate pairs, the other eigenvalue is also real. Since their product is 1, the
eigenvalue has to be ±1, and it occurs with multiplicity 2. The eigenvec-
tor is a solution to a linear system with integer coefficients, hence it can
be taken to be rational. This means that f fixes an (unoriented) simple
closed curve; we call f reducible. Any such f is either a power of a Dehn
twist, or the hyperelliptic involution composed with a power of a Dehn
twist.

3. Hyperbolic elements are those that fix a pair of points in ∂H. Each corre-
sponding real eigenvector gives a pair of invariant foliations on the torus.
The eigenvalues are λ, 1/λ. We can apply a real matrix A that takes the
pair of eigenvectors to the standard basis vectors. This conjugates f to
diag(λ, 1/λ). This map is a Teichmüller mapping on the torus T ′ with
lattice generated by columns of A. The initial quadratic differential just
comes from dz2. The image surface is T ′, but with its marking composed
with the mapping class.

Definition 5.1. An Anosov homeomorphism f of the torus to itself is one for
which there exists a pair of (nonsingular) measured foliations (Fs, µs), (Fu, µu)
such that

1. Fs,Fu are transverse

2. f(Fu, µu) = (Fu, λµu) and f(Fs, µs) = (Fs, λ−1µs).

A mapping class is called Anosov if it has an Anosov representative. The
number λ is called the stretch factor.

In the classification above, for a hyperbolic element, pulling back the vertical
and horizontal foliations from T ′ to T gives such an Anosov package. Hence the
above can be summarized as:

Proposition 5.2. Every non-trivial mapping class on the torus is either peri-
odic, reducible (fixes an isotopy class of simple closed curve), or Anosov.

Translation length. Instead of thinking of the action on the boundary, we
can instead look at the translation length:

τ(f) := inf
z∈H

dH(z, f(z)).

We then have

1. Elliptic corresponds to τ(f) = 0, and infimum is realized

2. Parabolic corresponds to τ(f) = 0, and infimum not realized.

3. Hyperbolic corresponds to τ(f) > 0 (and realized).

Our proof in the higher genus case will make use of translation distance
rather than a boundary for Teichmüller space.
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5.2 Higher genus

Finite order. Examples of finite order mapping classes, can be obtained by
realizing the surface in three-dimensional space, and rotating. Or realize the
surface as regular 4g-gon and rotate by 2π

4g .

Reducible. A mapping class is said to be reducible if it fixes, set-wise up
to homotopy, a multicurve, i.e. a disjoint union of simple closed curves. A
reducible mapping class could be finite order. A Dehn twist is reducible and
infinite order. In general, one can start with two surfaces, each with a sin-
gle boundary component, and find a complicated mapping class on each that
fixes the boundary (eg pseudo-Anosov). Then glue together ot get a reducible
mapping class of a closed surface.

Pseudo-Anosov. A pseudo-Anosov homeomorphism of a surface is defined
in exactly the same way as an Anosov homeomorphism of the torus, except that
the foliation can have singularities (of the prong-type exhibited by quadratic
differentials).

One construction of pseudo-Anosovs is via branched covers of tori with
Anosov homeomorphisms. E.g. for a square-tiled surface, any hyperbolic ma-
trix in SL2(Z) has a power that induces a pseudo-Anosov homeomorphism of
the surface.

Theorem 5.3 (Nielsen-Thurston classification). Every mapping class f ∈Mod(Sg)
is either periodic, reducible, or pseudo-Anosov.

5.3 Tools for proof

Note that Mg is non-compact: we can construct a sequence of surfaces with
injectivity radius going to 0 (and injectivity radius is a continuous, positive
function on Mg). The result below means that this is the only source of non-
compactness.

Let `(X) denote the length of the shortest closed geodesic on X.

Proposition 5.4 (Mumford compactness criterion). Let

Mg(ε) := {X ∈Mg : `(X) ≥ ε}.

Then Mg(ε) is compact.

Proof. Note first that Mg(ε) is closed, since ` is a continuous function on Mg.
It thus suffices to show that Mg(ε) is contained in a compact set. We

will show that this can be taken to be a finite union of compact sets which
each correspond to a different topological type of Bers pants decomposition (see
Proposition below). Note first that there are only finitely many different types
of topological pants decomposition P on a fixed surface. For the first cuff curve
the choices correspond to topological types of the complementary surface (g
choices). Similarly, there are finitely many choices for the second curve, etc.
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Now for each P, we get a map R3g−3
>0 ×R3g−3 →Mg from the Fenchel-Nielsen

coordinates wrt P (the map is π ◦ FN−1, where π : Tg → Mg is the natural
forgetful map, and FN is the Fenchel-Nielsen coordinate map we defined). Let
SP ⊂Mg be the image under this map of the set

{(`1, . . . , `3g−3, τ1, . . . , τ3g−3 : ε ≤ `i ≤ Bg, 0 ≤ τi ≤ `i for i = 1, . . . , 3g − 3}.

By the Bers constant proposition, Mg(ε) is contained in
⋃
P SP . Each SP is

compact, since it is the image of a compact set under a continuous map.
�

Proposition 5.5 (Bers constant). For each g ≥ 2, there exists a constant Bg
such that any X ∈ Mg has a pants decomposition with all cuff curves having
length ≤ Bg.

Proof. Recall that by Gauss-Bonnet, the area of X is π(4g − 4). If we pick any
point p on X, and grow a ball centered at p, for some radius R it must eventually
be non-embedded, since otherwise the area of the ball would eventually exceed
the area of X. This R can be made to depend only on g. From two radii of this
ball, we can form a essential closed curve of length ≤ 2R. We can take some
piece of this and tighten to get a simple closed curve of length at most 2R.

We then continue in a similar manner in the complement of the surface
(this is actually a bit subtle, since the new surface we’re working with has
boundary). �

Lemma 5.6 (Collar). Let γ be a simple closed curve on a closed hyperbolic
surface X. The set

C(γ) := {x ∈ X : d(x, γ) ≤ R}

is an embedded annulus, where R = sinh−1
(

1
sinh(`(γ)/2)

)
.

Note that R is roughly log(1/`).

Proof. We will prove the weaker/softer result that there is a collar of width
going to infinity as `(γ)→ 0.

It suffices to show that for a right-angled hexagon with a short side a, the
neighboring sides B and C are long. We can assume that the corner Ba is at
the point i in upper half space, and side B points down from i. Since a is short,
each of the geodesics containing B,C must have an endpoint near 0. Now side A
must be ultraparallel to both B,C (since there exists an orthogeodesic to each).
It follows that that the endpoints of geodesic A must be sandwiched between
the two points near 0 described above. But then both B must be long, since
otherwise c would not intersect A. By the same argument, C is also long. �

Corollary 5.7. There is a constant δ > 0 such that any two simple closed
geodesics of length less than δ on a hyperbolic surface are disjoint.
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Corollary 5.8. There is a contant δ such that on any X ∈ Tg, there are at
most 3g − 3 simple closed geodesics of length less than δ.

Lemma 5.9 (Discreteness of length spectrum). Let X be a closed hyperbolic
surface. Given L > 0, there are finitely many closed geodesics on X of length
less than L.

Proof. Consider a (compact) fundamental domain D for the action of π(X) on
H, and pick a point p ∈ D. By proper discontinuity of the action, only finitely
many images of D under π(X) intersect B(p, L). These correspond to the only
closed geodesics that can have length at most L. �

Proposition 5.10 (Proper discontinuity). The action of Mod(Sg) on Tg is
properly discontinuous: for each K ⊂ Tg compact, the set

{g ∈Mod(Sg) : gK ∩K 6= ∅}.

is finite.

It follows that Mg = Tg/Mod(Sg) is an orbifold.

Proof. The first fact that we will use is: given a compact set K ⊂ Tg and
constant L, there are only finitely many isotopy classes of curves that have
length less than L on some X ∈ K. This follows from Discreteness of length
spectrum, together with the fact that all lengths of curves change by a bounded
amount in a Teichmüller ball (Wolpert’s lemma).

The second fact is: we can find a collection of closed curves S on Sg, such
that a mapping class f is determined, up to finite ambiguity, by the action of f
on S.

Now we put these two facts together. Suppose the proposition were false.
Then we can find a compact K and distinct g1, g2, . . . with giK ∩K 3 Xi, for
some Xi. By the second fact, there must be infinitely many sets among the
gi(S). Now by continuity we can find a C such that any element of S has length
at most C on all surfaces in K, and in particular on every Xi. Since the action
of the mapping class group just remarks curves, all the curves in gi(S) must
have length at most C on Xi. This contracts the first fact, since ∪igi(S) is
infinite. �

Proposition 5.11 (Finiteness of isometry group). The orientation preserving
isometry group Isom+(X) of any hyperbolic surface is finite.

Once we know it’s finite we get that the quotient X/Isom(X) is compact
hyperbolic orbifold. One can classify these, and use this to show the uniform
bound |Isom(X)| ≤ 84(g − 1).

Proof. First we show that Isom+(X) is a compact topological group. This
follows from an Arzela-Ascoli argument (using only that we have a compact
Riemannian manifold).
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Next, we show that Isom+(X) is discrete. It suffices to show that any two
isotopic isometries are equal; since we are working in a group, we can assume
that one of the isometries is the identity. Lifting the other isometry to the
universal cover H, we see that it moves points a bounded amount. But then, by
the classification of hyperbolic isometries, it must be the identity.

Since a compact, discrete space is finite, we are done. �

5.4 Proof of Nielsen-Thurston classification

Proof of Theorem 5.3. We will break up into cases based on translation length
τ .

Case 1: τ = 0 and achieved.

If X ∈ Tg is fixed by f , then f must act by an isometry. By Finitness of
isometry group, f must be periodic.

Case 2: τ is not achieved.

Let Xi be a sequence with d(Xi, fXi)→ τ(f). We first claim that π(Xi)→
∞, where π : Tg →Mg is the natural projection. Suppose the contrary. Then
we can find hi mapping classes, Xi ∈ Tg, and Y ∈ Tg such that hiXi → Y
(after passing to a subsequence). By invariance of the Teichmüller metric under
mapping class group action, we have

d(hiXi, hifh
−1
i (hiXi)) = d(hiXi, hifXi) = d(Xi, fXi)→ τ(f).

It then follows from the triangle inequality that

d(Y, hifh
−1
i Y ) ≤ d(Y, hiXi) + d(hiXi, hifh

−1
i hiXi) + d(hifh

−1
i hiXi, hifh

−1
i Y ).

The first and last terms are equal, and go to zero, and the middle term’s limiting
behavior was found above, so we get d(Y, hifh

−1
i Y )→ τ(f).

Now by Proper discontinuity, hifhi must equal some fixed map g along a
subsequence. But then d(Y, gY ) = τ(f), contradiction.

It follows from the Mumford compactness criterion that for any ε > 0, for
large enough i, all Xi have an ε-short simple geodesic. By Wolpert’s lemma,
the length of such a short geodesic on fXi is at most exp(2τf)ε. Now, for ε
sufficiently small, there are most 3g−3 simple closed geodesics of length at most
ε (Corollary 5.8). Making ε very small, we get that f must act on a fixed finite
set of disjoint simple closed curves, i.e. f is reducible.

Case 3: τ > 0 and achieved.

Let X ∈ Tg achieve the translation distance, i.e. d(X, fX) = τ . Let γ be
the (unique) Teichmüller geodesic joining X, fX. We first show that f(γ) = γ.
Suppose Y ∈ γ is (strictly) between X and fX. We wish to show fY ∈ γ.
By definition of translation length, d(Y, fY ) ≥ τ . On the other hand, there
is a path α from Y to fY by first going along γ from Y to fX, and then
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following the (unique) geodesic segment connecting fX, fY , which has length
d(fX, fY ) = d(X,Y ). Thus

|α| = d(Y, fX) + d(fX, fY ) = d(Y, fX) + d(X,Y ) = d(X, fX) = τ,

i.e. α is an optimal path from Y to fY . By Teichmüller’s uniqueness theorem,
α must be a Teichmüller geodesic. Since the first part of α is along γ, it follows
that α itself must be a subsegment of γ. In particular, fY is on γ. By applying
this argument repeatedly on longer and longer subsegments of γ, we get that
f(γ) = γ.

We then get that the terminal quadratic differential associated to the Te-
ichmüller map from X to fX along γ equals the initial differential for the Te-
ichmüller map from fX to f2X along γ. It follows that f is pseudo-Anosov. �

6 Deligne-Mumford compactification

Goal: compactify Mg in a “natural” way.

Augmented Teichmüller space. A sequence of Riemann surfaces Xε with
systoles of length ε going to 0 (e.g. by fixing a pants decomposition, and sending
one Fenchel-Nielsen length coordinate ` to zero, while keeping all other param-
eters fixed) escapes every compact set of Mg. We can think of the limiting
object as a Riemann surface where ` = 0; there is no longer a twist parameter.

Attaching all such limits, gives the augmented Teichmüller space Tg. This
is a somewhat nasty space: it is not even locally compact, since neighborhoods
of boundary points contain surfaces with arbitrarily large twist parameters.
However, the mapping class group acts on Tg, and the quotientMg, the Deligne-
Mumford compactification, is a compact, smooth orbifold. (In fact, it also has
a nice algebraic/analytic structure; it is a projective variety).

Model for the singularity. The objects we are adding are nodal algebraic
curves. Near the node, the curves look like the locus wz = ε in C2.

Ends of moduli space. A topological space Y is said to have one end if
for every compact set K ⊂ Y , we have that Y −K has one component whose
closure is non-compact.

Theorem 6.1. Moduli space Mg has one end.

Proof. Suppose the contrary for some K. The complement certainly has at least
one component whose closure is non-compact. Using the below proposition we
can find an open set U ⊂Mg such that

• U is disjoint from K,

• U ⊃ ∂Mg,
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• U −Mg is connected (using that Mg is a smooth complex orbifold).

By the compactness ofMg, we have thatMg−U =Mg−U is compact. Hence
any components of Mg −K with non-compact closure intersect U . But since
U is connected and disjoint from K, there can only be one such component.

�

Proposition 6.2. The boundary ∂Mg :=Mg −Mg is connected.

Proof. Let γ be a simple closed curve on Sg; there are only finitely many choices
up to action of the mapping class group. Let Vγ be the locus where γ has been
pinched, and no other curves.

First note that ∂Mg is the union of Vγ over the finitely many choices of γ.
Secondly, Vγ is itself a product of moduli spaces of Riemann surfaces with

marked points, and is hence connected; thus so is Vγ .
Thirdly, Vγ and Vγ′ intersect for any γ, γ′: this is because we can find repre-

sentatives of the mapping class group orbits of the curves that are disjoint from
one another, which means that Vγ and Vγ′ admit a common degeneration.

These three facts together imply ∂Mg is connected. �

7 Weil-Petersson metric

There is a Hermitian form on the tangent bundle T ∗Tg ∼= QD(X), given by

〈q1, q2〉 :=

∫
X

q1q2ds
−2,

where ds is the hyperbolic metric on X. This induces a dual metric on the
tangent space, called the Weil-Petersson form on Teichmüller space. It descends
to a form on moduli space. It is a Kähler form, which means that it induces
both a Riemannian metric and a symplectic form.

Theorem 7.1 (Wolpert). The Weil-Petersson symplectic form ωWP is equal
to ∑

i

d`i ∧ dτi,

where the sum ranges over the Fenchel-Nielsen coordinates with respect to any
pants decomposition.

One interesting consequence of the formula is that the expression above is
independent of the choice of pants decomposition.

Theorem 7.2. Mg is an incomplete metric space with respect to the Weil-
Petersson Riemannian metric. Its metric completion is homeomorphic to the
Deligne-Mumford compactification Mg.
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