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Abstract

We consider subvarieties N of Mg,n, the moduli space of genus g
Riemann surfaces with n marked points, that are totally geodesic with
respect to the Teichmüller metric. The Deligne-Mumford boundary of
Mg,n decomposes into strata, each of which is essentially a product
of lower complexity moduli spaces – in such spaces there is a natural
notion of totally geodesic. We show that the boundary locus of N
in any such stratum is itself totally geodesic. Furthermore, we prove
that each such boundary locus decomposes into prime pieces, and for
each such piece the projection to each factor is locally isometric in an
appropriate sense.

1 Introduction

In this paper we study the boundary of a totally geodesic subvariety of
moduli space in the Deligne-Mumford compactification. We prove that the
boundary is itself totally geodesic, in a strong sense. These results may
be useful in classifying totally geodesic subvarieties. And they may aid in
the study of geometric and dynamical properties of these subvarieties (in
particular, counting closed geodesics on them, our original motivation).

In our proofs, we use perspectives related to classical Teichmüller the-
ory (e.g. Beltrami differentials and plumbing coordinates). There is a
GL+(2,R)-invariant subvariety in the space of quadratic differentials asso-
ciated to the totally geodesic subvariety. Boundaries of spaces of quadratic
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differentials play an important role, and for these we use results of Chen-
Wright and Benirschke.

1.1 Main results

Let Tg,n be the Teichmüller space of closed Riemann surfaces of genus g with
n (labeled) marked points, and let Mg,n be the corresponding moduli space
(i.e. Tg,n is the orbifold universal cover ofMg,n). Let T := Tg1,n1×· · ·×Tgk,nk

be a product of Teichmüller spaces.
We will work with the Deligne-Mumford compactificationMg,n = Mg,n⊔

∂Mg,n. The boundary ∂Mg,n admits a stratification ∂Mg,n =
⊔

Γ∆Γ, where
∆Γ, a boundary stratum, parametrizes stable curves with dual graph Γ. Each
∆Γ is product of lower complexity moduli spaces Mg1,n1 × · · · × Mgk,nk

,
quotiented by a finite group 1. We will refer to any such quotient of such
a product as a multi-component moduli space, and denote it M. The cor-
responding product space Mg1,n1 × · · · × Mgk,nk

will be referred to as the
product cover of M.

Definition 1.1. We say that γ : R → T is a (Teichmüller) geodesic if
γ = (γ1, . . . , γk), where each γi : R → Tgi,ni is an isometric embedding,
with respect to the standard metric on R, and a rescaling of the Teichmüller
metric on Tgi,ni by some factor ci > 0. We define a geodesic in M to be the
projection to M of a geodesic in T .

Because of the potentially different scaling factors ci, these geodesics are
“multi-speed”: they can move at different speeds in the different factors of
T .

Remark 1.2. GivenX,Y ∈ T , there is a unique geodesic in T (up to scaling
and isometry reparametrization of R) with X,Y in the image. This follows
immediately from Teichmüller’s existence and uniqueness theorems applied
to each factor Tgi,ni . △

Definition 1.3. We say that N ′ ⊂ T is totally geodesic if for any distinct
X,Y ∈ N ′, there exists a geodesic that has X,Y in its image and lies com-
pletely in N ′. We say that an algebraic subvariety N ⊂ M is totally geodesic
if any lift N under the natural projection T → M is totally geodesic (a lift
is an analytic irreducible component of the pre-image).

1The group is the automorphism group of the graph Γ, decorated with marked points
and genera of components. This group acts on the product by a composition of permuta-
tions of factors and of labelings of marked points.
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In the case where T or M has a single factor, the above recovers the
usual definition of (Teichmüller) totally geodesic. Note that a singleton set
is totally geodesic, since the condition of the definition is vacuously satisfied.

Our main theorem below gives that the boundary of a totally geodesic
subvariety is totally geodesic, as well as additional information about the
structure of the boundary. Similar results were obtained independently, and
at the same time, in joint work of Arana-Herrera and Wright [AW24]. Their
techniques are very different – in particular, study of cylinders is central to
their approach. They also situate totally geodesic subvarieties in the world
of hierarchically hyperbolic spaces, a vibrant sub-area of geometric group
theory.

Theorem 1.4. Let N be a totally geodesic (complex algebraic) subvariety of
Mg,n. Let ∂̊N be an irreducible component of ∂N ∩∆Γ, where ∆Γ is some

boundary stratum of ∂Mg,n. Then ∂̊N is a totally geodesic subvariety of ∆Γ.

Remark 1.5. Even if N is itself a smooth submanifold, we are not able to
rule out that ∂̊N is rather singular. △

Example 1.6. We present an example of a totally geodesic submanifold in
M3, defined in terms of a covering construction, to illustrate some of the
boundary phenomena that can occur.

Let X be a genus 2 surface, and X̂ a regular, double cover of X. See
Figure 1. The deck group of X̂ → X transposes the two points in each fiber.
Consider the locus N ⊂ M3 consisting of such X̂, where X ranges over M2.
2 This N is a totally geodesic subvariety of M3 (it is locally isometric to
M2).

For a separating curve γ on X, there is a degeneration to the boundary
of N obtained by simultaneously pinching the two curves γ̂ ∈ X̂ in the
preimage of γ. Let ∆Γ be the boundary stratum of M3 coming from these
degenerations; the product cover of ∆Γ is parametrized by M1,2 ×M1,1 ×
M1,1. We consider ∂̊N := ∂N ∩ ∆Γ. We claim that the product cover

of ∂̊N is a product N1 × N2, where N1 ⊂ M1,2 is the locus where the
difference of the marked points is 2-torsion (a dimension 1 totally geodesic
manifold), and N2 ⊂ M1,1 ×M1,1 is the image of the diagonal embedding
M1,1 → M1,1 ×M1,1.

2To formally define this locus, we fix a covering Ŝ → S of topological surfaces. This
induces a map on Teichmüller spaces T2 → T3, which is an isometric embedding. Now let
G be the finite index subgroup of the mapping class group of S consisting of those maps
that to this cover. One then gets a map T2/G → M3, and N is the image of this map.
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Figure 1: Boundary of totally geodesic variety coming from covering

To see this, we begin by observing that any element of ∂̊N is obtained
by the degeneration described above. Indeed, elements of ∂̊N are connected,
admissible covers of nodal Riemann surfaces X with two genus 1 irreducible
components. In other words, these are nodal covers arising as limits of
smooth curves, where source and target degenerate simultaneously. The
construction and properness of the Hurwitz space of connected admissible
covers is discussed in [HM82, Section 4]. The deck group action at the
boundary permutes the two M1,1 factors (i.e. the left and right Riemann
surfaces in Figure 1), while it acts by an involution on the M1,2 factor (the
middle surface in the figure) given by translation by a 2-torsion vector. The
claimed description of ∂̊N then follows (the deck involution must act by
a translation of order 2, which permutes the marked points, hence there
difference must be 2-torsion.)

Observe that since N1, N2 are each totally geodesic, so is ∂̊N . Our The-
orem 1.4 gives the same conclusion for any totally geodesic subvariety of
Mg,n.

△

1.2 Structure of prime factors of the boundary

Our method of proof yields more structural information beyond the bound-
ary being totally geodesic. The boundary stratum in Example 1.6 decom-
poses as a product of N1 and N2, each of which is a totally geodesic subva-
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riety, of a single moduli space, that is diagonally embedded in some product
of moduli spaces. We show that this sort of phenomenon holds in general.

For any subset N ⊂ Mg1,n1 × · · · × Mgk,nk
, we say it is prime unless,

possibly after reordering components, there is some s such that N can be
written as a product N ′ × N ′′, where N ′ ⊂ Mg1,n1 × · · · × Mgs,ns and
N ′′ ⊂ Mgs+1,ns+1 × · · · × Mgk,nk

. It follows easily from the definition of
totally geodesic that if N is totally geodesic, then any such factors N ′, N ′′

must both also be totally geodesic.
For any subset N ⊂ M (recall M denotes a multi-component moduli

space), we say it is prime if there exists a of N to the product cover of M
which is prime in the above sense.

By progressively decomposing, any totally geodesic subvariety of M ad-
mits a decomposition into a product of prime totally geodesic subvarieties.

A version of the following was also proved independently, and at the same
time, in joint work of Arana-Herrera and Wright [AW24]:

Theorem 1.7. Let ∂̊N be as in Theorem 1.4. Then the product cover of ∂̊N
decomposes as a product of prime factors Nj ⊂ Mj (where Mj is a product
of moduli spaces), each of which has the following property. For each moduli
space Mg,n that is a factor of Mj, the projection map Φ : Nj → Mg,n is
locally injective, in the orbifold sense.

By Φ “locally injective, in the orbifold sense” we mean that for any lift
Ñj to the universal cover of Mj such that the projection Φ̃ : Ñj → Tg,n is
locally injective. This is a somewhat weaker notion than locally injective for
points in the orbifold locus of moduli space.

We will also prove in Proposition 9.2 that the projection Φ in the above
theorem is a local isometry, again in an appropriate orbifold sense. To make
sense of such a statement, we must have a notion of metric on the multi-
component moduli space M, rather than just a notion of geodesics (which
is all we need for the rest of the paper). It turns that our local isometry
statement will hold for many of the different notions of Teichmüller metric on
a multi-componenet moduli space (these metrics are discussed in Section 3).

1.3 Context

In the moduli space of Riemann surfaces equipped with the Teichmüller
metric there is a tension between behavior shared with homogeneous spaces
and behavior that is very inhomogeneous. A particular instance of this is
the character of totally geodesic submanifolds: Teichmüller space contains
many of complex dimension 1 (Teichmüller disks), while containing rather
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few of higher dimension. On the level of moduli space, the dimension 1
totally geodesic subvarieties, known as Teichmüller curves, have been studied
extensively; many interesting examples are known, and some classification
results have been proved, but the story is still incomplete. Only in the
last decade have interesting higher dimensional totally geodesic subvarieties
been constructed [MMW17, EMMW20]. See [Gou21] for a survey of recent
results.

The study of totally geodesic subvarieties overlaps with the studyGL+(2,R)-
orbit closures in spaces of quadratic and Abelian differentials on Riemann
surfaces. The former is in a sense a special case of the latter. Various differ-
ent boundaries of strata (see Section 5) have been fruitfully used to attack the
classification problem for GL+(2,R)-orbit closures. Metric and analytic per-
spectives are potentially helpful in the case of totally geodesic subvarieties.
There have been several recent results towards classifying higher dimensional
totally geodesic subvarieties [Ben24, Wri20], but a full picture still seems far
off. Our structural results on the boundary may allow inductive approaches
to this problem.

1.4 Idea of the proof of Theorem 1.4

We need to produce many geodesics that lie in ∂̊N . We construct a set Q of
quadratic differentials lying above ∂̊N that is (i) GL+(2,R)-invariant, and
(ii) a variety of large dimension. This is done by taking families of tan-
gent vectors to N converging to tangent vectors to ∂̊N , and then analyzing
the quadratic differentials generating Teichmüller geodesics tangent to the
vectors. To get GL+(2,R)-invariance, we use the real multi-scale compact-
ification of quadratic differentials, and the continuous extension action of
the GL+(2,R) action to it. From the GL+(2,R)-invariance, we get that the
elements of Q generate Teichmüller geodesics tangent to ∂̊N . And from the
large dimension property, the supply of these geodesics is large enough to
give that ∂̊N is totally geodesic. These steps are first carried out in the
case when Q is prime, where we can use a result due to Chen-Wright on
constancy of ratios of areas of components. Finally we deduce the general
case by decomposing into prime factors.

1.5 Outline of the paper

• In Section 2, we recall some classical facts about Teichmüller geometry,
Beltrami differentials, and quadratic differentials, and generalize to the
setting of products of Teichmüller spaces.
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• In Section 3, we define several other notions of totally geodesic, and
prove that most of these turn out to be equivalent. In particular, we
prove that “infinitesimally totally geodesic” implies totally geodesic in
the sense defined above; this will be used in the proof of the main
theorem.

• In Section 4 we recall notions to do with multi-component differentials,
in particular the result that ratio of areas on prime invariant subvari-
eties in strata of multi-component translation surfaces are constant.

• In Section 5, we recall several compactifications of spaces of differen-
tials and their properties, generalizing several results from Abelian to
quadratic differentials.

• In Section 6 we consider sequences of tangent vectors converging to
a tangent vector to the boundary, and study the associated quadratic
differentials.

• In Section 7 we show, using results of the previous two sections, that
there is a large dimension set of quadratic differentials generating Te-
ichmüller geodesics lying in our ∂̊N ; this property is called GL+(2,R)-
geodesic.

• In Section 8 we prove Theorem 1.4. We use the results of Section 7
and Section 4 to show that ∂̊N is infinitesimally totally geodesic, and
then we apply the result from Section 3 to get totally geodesic.

• In Section 9, we prove Theorem 1.7 on the structure of prime factors
of the boundary of a totally geodesic subvariety.

1.6 Acknowledgements

We are grateful to Curtis McMullen for helpful comments on an earlier draft
of this paper.

2 Teichmüller geometry and differentials

2.1 Beltrami and quadratic differentials

We recall, in the setting of a single Teichmüller space, the relation between
Beltrami differentials, quadratic differentials, the tangent and contangent
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spaces of Teichmüller space, and the Teichmüller metric. See [McM20, Sec-
tion 4.6] for more detail.

Given X ∈ Tg,n, letM(X) be the space of bounded, measurable Beltrami
differentials on X, i.e. tensors that locally have the form f(z)dz̄dz , where f
is a bounded, measurable complex-valued function (defined up to sets of
measure 0). The quantity ess supz∈X |f(z)| is well-defined and gives a norm,
denoted ∥ · ∥, on M(X); we denote by M≤1(X) the unit ball for this norm.

Let QX denote the space of quadratic differentials q on X that are holo-
morphic away from the marked points, and have at worst simple poles at the
marked points. This is a Banach space with the area norm (or L1-norm):

∥q∥ :=

∫
X
|q|.

There is a natural pairing between QX and M(X):

(q, µ) :=

∫
X
qµ.

Now there is an analytic map M≤1(X) → Tg,n that takes a Beltrami
differential µ to the image of the quasiconformal map out of X whose di-
latation is given by µ (the existence and uniqueness of this map follows from
the Measurable Riemann Mapping Theorem). Taking the derivative induces
a surjective linear map on tangent spaces TXM≤1(X) ∼= M(X) → TXTg,n.
One can prove that the kernel of this map is precisely the set

Q⊥
X = {µ : (q, µ) = 0 for all q ∈ QX},

known as infinitesimally trivial Beltrami differentials, and which is a closed
subspace. Thus TXTg,n ∼= M(X)/Q⊥

X . We also see from this that QX is
naturally identified with the cotangent space T ∗

XTg,n.

Teichmüller norm. The norm ∥ · ∥ we’ve described on M(X) descends
to a norm, also denoted ∥ · ∥, on TXTg,n, the Teichmüller norm; concretely
we think of a tangent vector v as an equivalence of Beltrami differentials [µ],
and ∥v∥ is the infimum of the ∥ · ∥-norm over the equivalence class. By the
duality between L1 and L∞, we also have:

∥[µ]∥ = sup
{q:∥q∥=1}

∫
X
qµ. (1)

This description of the norm is often useful, since the optimization is over
the finite-dimensional space of unit norm differentials in QX .

Taking the infimum of ∥ · ∥-length integrals along paths in Tg,n gives rise
to the Teichmüller distance function.
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2.2 Bundle of quadratic differentials and GL+(2,R)-action

Given a Teichmüller space Tg,n, let QTg,n be the bundle over Tg,n whose
fiber over X consists of meromorphic quadratic differentials on X that are
holomorphic away from the marked points, and have at worst simple poles
at marked points (these differentials have finite area). We let QMg,n be the
analogous bundle over moduli space.

There is an action of GL+(2,R) on QMg,n−{0} that plays a central role
in the study of Teichmüller geodesics. By cutting along saddle connections,
we can represent every quadratic differential as a set of polygons in the plane,
such that every side is paired up with a parallel side of equal length. Since
GL2(R) acts on such polygons in the plane, it acts on these surfaces. Two
subgroups will play a role in this paper:{

gt =

(
e−t 0
0 et

)
: t ∈ R

}
,

{
rθ =

(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ S1

}
.

Multi-component quadratic differentials. Given a multi-component
Teichmüller space T =

∏
i Ti, define QT :=

∏
iQTi. We define the (L1)

norm of q = (q1, . . . , qk) ∈ QT by

∥q∥1 :=
∑
i

∥qi∥.

We define QM and its norm similarly.

2.3 The map ϕ from quadratic differentials to tangent vectors

Although quadratic differentials are naturally identified with the cotangent
space, there is also an important map from quadratic differentials to the
tangent space.

For each X ∈ T , we denote by QXT the subset of QT that lies over X.
We define a map

ϕX : QXT → TXT ,

ϕX(q) =

(
∥q1∥ q̄

1

|q1|
, . . . , ∥qk∥ q̄

k

|qk|

)
.

Note that q̄i

|qi| is a Beltrami differential representing the unit tangent vector to

the geodesic generated by qi. From the Teichmüller existence and uniqueness
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theorems, it follows that ϕX is a bijection. We also define a map ϕ : QT →
TT such that the restriction of ϕ to each fiber QXT agrees with ϕX .

Each map ϕX is more than just a bijection:

Lemma 2.1. For each X ∈ T , the map ϕX : QXT → TXT is a homeomor-
phism.

Complex geodesics. To prove Lemma 2.1, we will use some continuity
properties of geodesics; it is fruitful to work with complex geodesics.

Let ∆ := {z ∈ C : |z| < 1} be the unit disk.

Definition 2.2. If q ∈ QTg,n is unit norm, we define the complex geodesic

GC(X, q) : ∆ → Tg,n, GC(X, q)(z) = Xϕ(zq),

where Xϕ(zq) is obtained by solving the Beltrami equation for ϕ(zq).

The map GC is connected to ϕX , since the tangent vector at z = 0 is

GC(X, q)
′(0) =

q

|q|
.

The next lemma states that complex geodesics depend continuously (in
the topology of local uniform convergence) on the initial data.

Lemma 2.3. Suppose (Xn, qn) ∈ Q1Tg,n is a sequence of unit norm quadratic
differentials converging to (X, q) ∈ Q1Tg,n. Then the complex geodesics
GC(X, qn) converge locally uniformly to GC(X, q).

Proof. Recall that the solutions of the Beltrami equation depend continu-
ously on the parameters (in fact, analytically, see [AB60]). Using this and
the convergence of qn, we get point-wise convergence

lim
n→∞

GC(Xn, qn)(z) = GC(X, q)(z)

for all z ∈ ∆. The functions GC(Xn, qn) are locally uniformly bounded,
since each complex geodesic is an isometry for the Teichmüller metric. By
Montel’s theorem, GC(Xn, qn) converges locally uniformly to GC(X, q).

■

Proof of Lemma 2.1. It suffices to deal with the case of a single factor T =
Tg,n. Note that in this case ϕX is norm-preserving, and hence maps the unit
sphere in QXT to the unit sphere in TXT . Since

ϕX(λq) = |λ|ϕ(q), λ ∈ C∗,
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it is enough to show that ϕX restricts to a homeomorphism between unit
spheres. The area norm and the Teichmüller norm on QT and TT , re-
spectively, are C1, thus the unit spheres are C1-submanifolds of the same
dimension. So by invariance of domain, it suffices to show that ϕX restricted
to the unit sphere is continuous.

To see this, suppose we have a sequence of unit area quadratic differen-
tials with

lim
n→∞

(Xn, qn) = (X, q).

The complex geodesics GC(Xn, qn) converge locally uniformly to GC(X, q),
by Lemma 2.3. Thus

ϕX(q) = GC(X, q)
′(0) = lim

n→∞
GC(Xn, qn)

′(0) = lim
n→∞

ϕ(Xn, qn).

■

Alternate characterization of ϕ. For later use in Section 6, we show
the following.

Lemma 2.4. Let Tg,n be a Teichmüller space. Let v ∈ TXTg,n non-zero and

define q :=
ϕ−1
X (v)

∥ϕ−1
X (v)∥ . Then q is uniquely characterized among elements of

QTg,n by the properties: ∫
X
qv = ∥v∥, ∥q∥ = 1.

Proof. By (1), we have

∥v∥ = sup
{q0:∥q0∥≤1}

∫
X
q0v. (2)

Now by [Gar87, Section 9.3, Lemma 3], the Teichmüller norm is strictly
convex. So by the supporting hyperplane theorem, there is a unique q0
achieving the supremum above, which gives the uniqueness of differential
with the required two properties.

Now let q′ = ϕ−1
X (v), so q = q′

∥q′∥ . By the definition of ϕX , we have

v = ϕX(q′) = ∥q′∥ · q̄′/q′. Then

∫
X
qv =

∫
X

q′

∥q′∥
∥q′∥ q̄

′

|q′|
=

∫
X
|q′| = ∥q′∥ = ∥v∥,

where for the last equality we have used that ϕX is norm-preserving (for this
we need that Tg,n is a single Teichmüller space rather than a product). This
means that q has the required properties, completing the proof. ■
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2.4 Exponential map

Let Ti := Tgi,ni be a single Teichmüller space. Given w ∈ TTi, let γw : R →
Ti be the unique geodesic with γ′i(0) = w. We define Ei : TTi → T by
Ei(w) := γw(1), and

E : TT → T ,
E(v) = E((v1, . . . , vk)) := (E1(v1), . . . , Ek(vk))

(we use the letter E since this is an analogue of the exponential map for a
Riemannian manifold).

Given X ∈ T , we denote by EX the restriction E|TXT .

Lemma 2.5. For each X = (X1, . . . , Xk) ∈ T , the map EX : TXT → T is
a homeomorphism.

Proof. By definition, EX = (E1|TX1
T1 , . . . , E

k|TXk
Tk). It suffices to show

that each EXi := Ei|TXi
Ti : TXiTi → Ti is a homeomorphism. This map is a

bijection, by the Teichmüller uniqueness and existence theorems.
To show continuity of EXi , we factor into a composition of two maps.

We can first map TXiTi to the space of quadratic differentials on Xi. This is
done via ϕ−1|TXi

, which by Lemma 2.1 is a homeomorphism TXiTi → QTi|Xi

(recall that ϕ takes q to ∥q∥1 q̄
|q|). We then apply the map F : QTi|Xi →

Ti defined so that F (q) is given by solving the Beltrami equation for the
Beltrami differential λ q̄

|q| , where

λ =
e2∥q∥1 − 1

e2∥q∥1 + 1
.

Since the solutions of the Beltrami equation depend continuously on the
data, this map F is continuous.

The λ above was chosen so that EXi equals the composition F ◦ϕ−1|TXi
.

Since both of these maps are continuous, so is EXi . So we have a continuous,
injective map between manifolds of the same dimension; by invariance of
domain it is open, and hence its inverse is also continuous.

■

3 Notions of totally geodesic in multi-component
moduli spaces

From the perspective of Teichmüller geometry, there are several different
notions of a totally geodesic subset of a product of Teichmüller or moduli
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spaces. We discuss the definitons, and prove relations among them; most of
these turn out to be equivalent.

Definition 3.1 (Lp-totally geodesic). For p with 1 ≤ p ≤ ∞, we endow
T = Tg1,n1 × · · · × Tgk,nk

with the Lp-Teichmüller norm. That is, for v =
(v1, . . . , vk) ∈ TT , we define

∥v∥p :=

{
k−1/p

(
∥v1∥p + · · ·+ ∥vk∥p

)1/p
if p <∞

maxi ∥vi∥ if p = ∞,

where ∥ · ∥ denotes the Teichmüller norm on each Tgi,ni . (The reason we
include the k−1/p factor is so that for a v with all components of the same
norm c, we will have ∥v∥p = c.) For each p, this gives T the structure of
a Finsler manifold. Then we say that N ⊂ T is Lp-totally geodesic if for
any distinct X,Y ∈ N , any Lp-geodesic connecting X to Y lies in N . We
say that N ⊂ M is Lp-totally geodesic if any lift of N to T is Lp-totally
geodesic. By integrating the norm ∥v∥p along paths, we get a path metric
denoted dp on T .

Definition 3.2 (Infinitesimally totally geodesic). Let N ⊂ M be an irre-
ducible subvariety. We say that N is infinitesimally totally geodesic if there
exists a dense, Zariski open subset N ′ of N such that for any tangent vector
v ∈ TN ′, the geodesic tangent to v lies entirely in N .

Proposition 3.3. Let N ⊂ M be a algebraic subvariety. For any p with
1 < p <∞, the following conditions are equivalent:

(1) N is totally geodesic (in the sense of Definition 1.3).

(2) N is infinitesimally totally geodesic.

(3) N is Lp-totally geodesic

Proof. We break into three parts:

• (2) =⇒ (1). This is Proposition 3.5.

• (1) =⇒ (2). This is Proposition 3.6.

• (1) ⇐⇒ (3). Note that the geodesics in T in Definition 1.1 are also
Lp-geodesics. On the other hand, a convexity argument, using that the
Teichmüller metric on each Tgi,ni is uniquely geodesic, shows that T
is uniquely Lp-geodesic (this is done in the context of general geodesic
metric spaces in [KK15]). Thus the two classes of geodesics in T co-
incide. It follows that the notions of totally geodesic and Lp-totally
geodesic for subsets of T or M coincide.
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■

Remark 3.4. For p = 1,∞, the geodesics of Definition 1.1 are Lp-geodesics.
However L1 and L∞ do not give uniquely geodesic spaces, and thus a non-
trivial totally geodesic N will typically fail to be L1 or L∞-totally geodesic.
The L∞ metric coincides with the intrinsic Kobayashi distance on T coming
from its complex structure. This is because the Teichmüller and Kobayashi
metrics on Tg,n coincide (by results of Royden), and the Kobayashi metric
on a finite product of complex spaces is the supremum of the metrics on the
factors (see [Kob98, Theorem 3.1.9]). △

Proposition 3.5. Let N ⊂ M be a subvariety that is infinitesimally totally
geodesic. Then N is totally geodesic.

Proof. We need to show that any lift Ñ of N to T is totally geodesic. Let
N ′ be the dense, Zariski open subset of N ′ in the definition of infinitesimally
totally geodesic. We denote by Ñ ′ the subset of Ñ that maps to the locus
N ′. We first show that any X,Y ∈ Ñ ′ can be connected by a geodesic in Ñ ′.

We will use the map EX : TXT → T , which by Lemma 2.5 is a homeo-
morphism.

From the assumption that N is infinitesimally totally geodesic, we get
that restricting EX gives a map

f := EX |TXÑ : TXÑ → Ñ .

Let S := f−1(Ñ ′). Note that since N ′ is open in N , we have that Ñ ′ is open
in Ñ . Since f is continuous, it follows that S is an open subset of TXÑ , and
hence a manifold of the same dimension. Now f |S : S → Ñ ′ is a continuous
and injective (by uniqueness of geodesics) map between manifolds of the
same dimension, so by invariance of domain it is open.

In particular f(S) is open in Ñ ′. On the other hand, f(S) = EX(TXÑ)∩
Ñ ′ is closed in Ñ ′, since EX(TXÑ) is closed in T (note that TXÑ is closed
in TXT , and EX is homeomorphism).

Above we have shown that f(S) is both open and closed in Ñ ′. Since
Ñ is irreducible, Ñ ′ is connected. We conclude that f(S) = Ñ ′, and in
particular Y is in the image, so it can be connected to X by a geodesic.

It remains to deal with points in Ñ − Ñ ′. We first suppose that X is in
Ñ ′, and Y any point in Ñ . Since N ′ is dense in N , we can find Yn ∈ Ñ ′

with Yn → Y . Since EX is a homeomorphism, we have E−1
X Yn → E−1

X Y .
By the above, for each n, we have E−1

X Yn ∈ TXÑ . Since TXÑ is closed in
TXT , we get that E−1

X Y is also in TXÑ . Applying the infinitesimal totally
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geodesic property that we are assuming with E−1
X Y then implies that the

geodesic connecting X to Y lies in Ñ . A similar argument takes care of the
case when X,Y are allowed to be any points in Ñ . ■

Proposition 3.6. Suppose N is a totally geodesic subvariety of M. Then
N is infinitesimally totally geodesic.

Proof. Let X ∈ N reg, the regular (non-singular) locus, which is a dense,
Zariski open subset of N . Consider any lift Ñ of N to T , and let Ñ reg ⊂ Ñ
be the subset of elements that map to N reg under the projection T → M.
Let X̃ ∈ Ñ be a point projecting to X. Recall that EX̃ : TX̃T → T is a

homeomorphism. It suffices to prove that E−1
X̃

(Ñ) = TX̃Ñ .

Towards this end, note that E−1
X̃

(Ñ) consists of all vectors v so that the
endpoint of the time 1 geodesic segment that starts tangent to v lies in N
(recall that our definition of geodesic allows some rescaling of the Teichmüller
metric on the target, so this geodesic need not be unit speed). Since Ñ is
totally geodesic (since N is), for any such segment, the whole geodesic along
it lies in Ñ . This implies

(i) E−1
X̃

(Ñ) is homogeneous with respect to R scaling, and

(ii) the vector v is also a tangent vector to Ñ . Thus E−1
X̃

(Ñ) ⊂ TX̃Ñ .

Now consider the subset E−1
X̃

(Ñ reg) ⊂ E−1
X̃

(Ñ), which by (ii) above is a

subset of TX̃Ñ , so we get a restriction map

E−1
X̃

|Ñreg : Ñ reg → TX̃Ñ .

This is injective (since it’s a restriction of the homeomorphism E−1
X̃

), and
as an injective map between manifolds of the same dimension, invariance of
domain implies it is open. Thus E−1

X̃
(Ñ reg) is an open set in TX̃Ñ , and it

also clearly contains 0.
Combining this with (i) above, we have that E−1

X̃
(Ñ) is homogeneous

with respect to R scaling, and contains an open set in TX̃Ñ around 0. So

E−1
X̃

(Ñ) = TX̃Ñ , as desired. ■

4 Ratios of areas in invariant subvarieties

In this section, we discuss strata of multi-component surfaces and prove
Proposition 4.3, which generalizes a result of Chen-Wright to the setting of
quadratic differentials. This will be a key tool in our proof of Theorem 1.4.
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4.1 Strata of multi-component differentials

Strata over Mg,n. We begin by introducing notation for strata of dif-
ferentials over Mg,n that deals correctly with the marked points and can
handle the case of identically zero differentials. The reader may want to first
consider the case of Mg rather than Mg,n; in this case (ii) and conditions
(3),(4) below can be ignored. The data specifying such a stratum will be
called a divisor multi-set κ. This κ either has the value ∞, or it is a multi-set
where each element has one of two types:

(i) a single non-zero integer a (these will account for zeros/poles of the
differential not at marked points),

(ii) a pair (a,m), where a is an integer, and m is a positive integer (these
will account for marked points).

Given such a κ, we now define the stratum Q(κ) → Mg,n. For (X, p1, . . . , pn, q)
with (X, p1, . . . , pn, q) ∈ Mg,n and q a meromorphic quadratic differential
on X, it lies in Q(µ) iff all the following conditions hold:

1. if κ = ∞, then q is identically zero (the notation is meant to suggest
that the differential vanishes to infinite order),

2. if a ̸= 0 appears ℓ times in κ, then there are exactly ℓ points in X −
{p1, . . . , pn} where q has order a.

3. if κ ̸= ∞, then for each m ∈ {1, . . . , n}, there is exactly one pair of the
form (a,m) in κ.

4. for each pair (a,m) ∈ κ, q has order a at the marked point pm,

We note that QMg,n, defined in Section 2.2, decomposes as a a finite
union of strata Q(κ).

Multi-component strata. Given a multi-component moduli space M,
we define the notion of a multi-component stratum over M, denoted Q(µ) →
M. This is most straightforward when M is a product – given a tuple of
divisor multi-sets µ = (κ1, ..., κk) consistent with M,3 we take Q(µ) :=
Q(κ1) × · · · × Q(κk). In general, we consider the product cover M′, from
which M is obtained as the quotient by a finite group G (recall Footnote 1).

3in the sense that if M = Mg1,n1 × · · ·Mgk,nk , then Q(κi) is a stratum over Mgi,ni

for each i
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This G also naturally acts on any multi-component stratum Q(µ) → M′,
and we take the quotient to obtain Q(µ) → M.

When the list µ excludes any κi = ∞, the corresponding quotient will be
called a stratum of multi-component translation surfaces (these correspond
to the µ giving flat-geometric objects).

4.2 Holonomy double covers

We will need to generalize some known results concerning Abelian differen-
tials to quadratic differentials. For this we use the holonomy double cover;
we begin by recalling some well-known facts about it.

For a quadratic differential q on a Riemann surface X, there exists a
canonical double cover X̂ and an Abelian differential ω on X̂ so that the
pullback of q to X̂ is ω2. The set of regular points includes the even zeroes
of q, but the cover has ramification at the odd zeroes and poles. An even
zero of q of order ni corresponds to two zeroes of ω of orders ni/2, and an
odd zero of q of order ni corresponds to a zero of order ni + 1. The deck
group of X̂ is generated by an involution τ – a conformal automorphism of
X̂ such that τ∗(ω) = −ω.

Level structures. For a topological surface S and finite set Σ on S, let
Mod(S,Σ) be the mapping class group relative to Σ, i.e., a quotient of the
group of orientation-preserving diffeomorphisms fixing Σ pointwise. For a
stratum Q(κ) there is a finite set Σ corresponding to zeroes and simple
poles of quadratic differentials so that Q(κ) is obtained as a quotient of its
universal cover, by the group Mod(S,Σ). The same construction makes sense
for H(κ). For γ ∈ Mod(S,Σ) and H1(S;Z/nZ) the first homology of S with
Z/nZ coefficients, there is an induced endomorphism γ∗ : H1(S;Z/nZ) 7→
H1(S;Z/nZ). By a result of Serre on the construction of level-n structures,

Mod(S,Σ)[n] := {γ ∈ Mod(S,Σ) : γ∗ = id}

is torsion-free and finite index in Mod(S,Σ) for n ≥ 3. Thus, replacing
Mod(S,Σ) by Mod(S,Σ)[3], we obtain finite manifold covers of Q(κ) and
H(κ), that still admit GL+(2,R)-actions. On these finite covers, the dif-
ferentials admit no non-trivial automorphisms. By taking holonomy double
covers, we have the following proposition due to Kontsevich-Zorich, upon
replacing the orbifolds Q(κ) and H(κ) by finite covers that are manifolds

(e.g. level 3-structures). We will denote these covers by Q̂(κ) and Ĥ(κ),
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respectively. For products of strata Q(µ) and H(µ′), denote by P the map
obtained by taking the holonomy double cover map on each factor.

Proposition 4.1. [KZ03, Lemma 1] The canonical map induced on mani-
folds obtained from taking holonomy double covers

P̃ : Q̂(κ) 7→ Ĥ(κ′)

is an algebraic map, and an injective immersion. The data in κ′ is obtained
from κ = (n1, ..., nr,m1, ...,ms) by associating to κ′ two zeroes of order ni/2
for each even ni that appears in κ, one zero of order ni + 1 to each odd ni
that appears in κ, and nothing to simple poles.

4.3 Ratio of areas in prime subvarieties

Recall that M denotes a multi-component moduli space. We can define
the notion of prime for subsets of QM – it is completely analogous to the
notion of prime for subsets of M given in Section 1.2. We wish to show
that prime GL+(2,R)-invariant subvarieties of (unit-area loci) of strata of
multi-component translation surfaces have the following property: the ratios
of areas of any two factors remains constant in the subvariety.

When we refer to a constant-area locus, of area c, of a subvariety of multi-
component surfaces, we mean that the sum of the areas of the components
is c. In the context of Abelian differentials, the following is due to Chen-
Wright.

Proposition 4.2. [CW21, Corollary 7.4] The ratios of areas of factors
of the unit-area locus of any irreducible component of a prime GL+(2,R)-
invariant subvariety Q of a stratum of multi-component translation surfaces
are constant.

We now give the easy generalization of the above to the setting of quadratic
differentials, using Proposition 4.1.

Proposition 4.3. The ratios of areas of factors of the constant-area c locus
of any irreducible component of a prime GL+(2,R)-invariant subvariety Q
of a stratum of multi-component translation surfaces are constant.

Proof. We assume we have lifted the constant-area c locus of an irreducible
component Q so that Q ⊂ Q(κ1) × · · · × Q(κp). We claim P (Q) is the
constant-area 2c locus of an irreducible component of a prime invariant
subvariety of H(κ′1) × · · · × H(κ′p). Assume, for the sake of contradiction
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that P (Q) is not prime. Applying Proposition 4.1, we have by Cheval-

ley’s theorem, and the fact that the finite covering maps Q̂(κi) 7→ Q(κi) are
closed, that P (Q) is a GL+(2,R)-invariant subvariety of H(κ′1)×· · ·×H(κ′p),
where P = P1 × · · · × Pp and each Pi is a holonomy double cover map
on a factor. Note that P (Q) is a non-trivial product of prime GL+(2,R)-
invariant subvarieties, each of which is contained in a product of a sub-
set of the factors of H(κ′1) × · · · × H(κ′p). Since P is injective, we have

Q = P−1
1

(M1)×· · ·×P−1
r (Mr), where each Pi is the product over the subset

of Pi that makes the pre-image of Mi well-defined. We observe that every
P−1
i

(Mi) must be prime, since otherwise by it can be written as a non-trivial
product, and Mi itself cannot be prime. This contradicts the primality of
Q.

By the fact that strata of multi-component surfaces were defined to have
finite total area and by Proposition 4.2, the rescalings of elements of H(κ′1)×
· · ·×H(κ′p) by c/2 are such that the ratios of areas of the factors are constant
over P (Q). Rescaling again by 2, we see the ratios of areas of factors of Q
are also constant. ■

5 Compactifications of spaces of differentials

We recall several different spaces giving compactifications of spaces of dif-
ferentials. These are used in several different places for various purposes
later in the proof. See [Doz24] for an overview of several of these spaces and
relationships between them, including flat geometric examples.

5.1 Quadratic Hodge bundle over Mg,n

Denote by Mg,n the Deligne-Mumford compactification of the moduli space
of genus g Riemann surfaces with n (labeled) marked points Mg,n.

We will describe the quadratic Hodge bundle QMg,n, extending the bun-
dle QMg,n → Mg,n discussed in Section 2.2. It will be a rank 3g − 3 + n
(orbifold) vector bundle over Mg,n, and its elements are known as stable
quadratic differentials. The projectivization of the closure of a stratum of
quadratic differentials inQMg,n is known as theHodge bundle compactification.
We provide a brief overview of these notions, and refer the reader to [HM98]
for a thorough treatment of stable curves, the Deligne-Mumford compacti-
fication, and the construction of the Hodge bundle as a vector bundle over
the universal curve.

There exists a family p : Cg,n → Mg,n of Riemann surfaces, called the
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universal curve over Mg,n, which is a map of complex orbifolds. Further,
there is a sheaf ωC on Cg,n, the universal curve over the Deligne-Mumford
compactification Mg,n, so that the pushforward p∗ωC to Mg,n, has the fol-
lowing description: p∗ωC is a rank g vector bundle, whose fibers over a
stable curve (X, p1, ..., pn) is the space of global sections H0(X,ωπ) where
ωπ is the relative dualizing sheaf of X. The vector bundle p∗ωC is commonly
referred to as the Hodge bundle and denoted ΩMg,n. We are interested in
the quadratic Hodge bundle p∗

(
ω⊗2
C

)
which we denote by QMg,n. This is of

rank 3g − 3 + n; a proof can be found in Section 4 [HK14].
An element in QMg,n is an at-worst nodal curve X with a special choice

of marked points (p1, ..., pn), and a quadratic differential on each irreducible
component of X. These quadratic differentials can have poles of at most
order 2 at the nodes, and may have simple poles at the marked points. Poles
of order 2 have a local invariant, the “2-residue”, and these residues must
match at a node with a double pole, where two points on different irreducible
components are identified. Away from nodes and marked points, they are
holomorphic. For more on this, and the generalization of this construction
to ω⊗k for k > 2, see [BCG+19a].

5.2 Multi-scale compactification

In [CMZ22], the authors construct a compactification of projectivized strata
of k-differentials, the moduli space of projectivized multi-scale k-differentials.
This compactification was introduced in [BCG+19b] in the Abelian case.
We will work with the case k = 2 – compactifications of strata of quadratic
differentials Q(κ). We use the notation ΞQ(κ) for the (unprojectivized)
space of multi-scale quadratic differentials and PΞQ(κ) for the projectivized
space. Similarly, we denote the respective Abelian strata by ΞH(κ) and
PΞH(κ).

The boundary ∂PΞQ(κ) = PΞQ(κ) − Q(κ) parametrizes multi-scale
quadratic differentials. These are stable curves, together with a collection
of meromorphic quadratic differentials on the irreducible components, con-
strained by certain conditions. The boundary decomposes into a union of
open boundary strata, indexed by an enhancement Γ of the dual graph Γ of
a stable curve. The content of the enhancement is a stratification of the irre-
ducible components of a stable curve by levels (corresponding to the speed of
vanishing of differentials on different components), together with prescribed
vanishing orders at the nodes.

In [CMS23, Section 7, Lemma 7.1], the closure of a stratum of k-differentials
in the projectivized stratum of multi-scale k-differentials is described via
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cyclic coverings of Abelian differentials. In particular, as the boundary strata
of a projectivized multi-scale compactification of a stratum of Abelian differ-
entials are indexed by enhanced graphs, the boundary strata of multi-scale
k-differentials may be described by cyclic k-covers of the corresponding en-
hanced graphs. We will use this description to sketch how to adapt the
following theorem to our setting of interest.

Theorem 5.1. [Ben23, Theorem 1.2] Let M ⊂ H(κ) be a C-linear sub-
variety. Then, the intersection of the closure M ⊆ ΞH(κ) with any bound-
ary stratum DΓ of the moduli space ΞH(κ) of multi-scale differentials is a
level-wise linear subvariety, for the natural linear structure on the boundary
stratum DΓ ⊂ ∂ΞH(κ).

Theorem 5.2. Let Q ⊂ Q(κ) be a C-linear subvariety. Then, the intersec-
tion of the closure Q ⊆ ΞQ(κ) with any boundary stratum DΓ of the moduli
space ΞQ(κ) of multi-scale quadratic differentials is a level-wise linear subva-
riety, for the natural linear structure on the boundary stratum DΓ ⊂ ∂ΞQ(κ).

Proof. (sketch) Let Q ⊂ Q(κ) be a C-linear subvariety, and consider P̃ (Q̂),
the image under P̃ of Proposition 4.1 of the lift of Q to a finite manifold

cover Q̂(κ). By Proposition 4.1, the projection of P̃ (Q̂) to H(κ′) is a C-
linear subvariety of H(κ′). Denote it by M . By Theorem 5.1, M ∩ D

Γ
′ is

a level-wise linear subvariety of the boundary stratum D
Γ
′ . Apply the map

dπ in [CMS23, Lemma 7.2] to see that M ∩D
Γ
′ is mapped by dπ to a level-

wise linear subvariety of a boundary stratum DΓ in ∂ΞQ(κ). Furthermore,
dπ
(
M ∩D

Γ
′
)
= Q ∩DΓ. ■

5.3 Real multi-scale space

Finally, in [BCG+19b], a real, oriented blowup of ΞH(κ) is constructed,
which we denote by Ξ̂H(κ). This has the advantage that the GL+(2,R)-
action extends continuously from H(κ) to Ξ̂H(κ) [BCG+19b, Theorem 15.1].
In a similar way, a real blowup of ΞQ(κ), denoted by Ξ̂Q(κ) may be con-
structed that admits a continuous GL+(2,R)-action.

There are natural forgetful maps between the various spaces we have
introduced:

Ξ̂Q(κ) → ΞQ(κ) → QMg,n → Mg,n.

Note that the underlying Riemann surface of an element of ΞQ(κ) may have
some extra P1 components relative QMg,n. This is because these surfaces
have marked points at all the zeros of the quadratic differential. Yet there
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is still a natural map ΞQ(κ) → QMg,n, since there is a canonical way to
contract these extra P1 components (which become unstable when the zeros
of the differential are forgotten).

6 Tangent vectors and quadratic differentials

The goal of this section is to use a family of tangent vectors in TMg,n

converging to a vector in T∂Mg,n to produce converging quadratic differ-
entials. This is Proposition 6.4, which needs several technical assumptions.
Lemma 6.8 gives the existence of families of tangent vectors satisfying these
assumptions and that are tangent to any fixed subvariety of Mg,n.

6.1 Preliminaries

Coordinates for Mg,n at the boundary. We recall the description of
Mg,n at the boundary in terms of complex-analytic plumbing coordinates.
The set-up we require below can be found, in more detail, in Section 3 of
[Wol13].

LetX be the normalization of a point in a boundary stratum ∆Γ ofMg,n;
we will think of this as a multi-component Riemann surface with pairwise
identified points {ai, bi}i=1,...,M . We choose local coordinate maps wi, ζi near
these points – we can assume that wi(ai) = 0, ζi(bi) = 0, and that the unit
disc is contained in the image of both maps.

Since the boundary stratum ∆Γ is itself a multi-component moduli space,
its tangent space at X is product of tangent spaces to individual moduli
spaces. Hence, by the discussion in Section 2.1, we can choose Beltrami
differential νj , i = 1, . . . , N , giving a basis for TXMg,n. The νi can be chosen
so that their supports are small open sets disjoint from the domains of the
coordinates wk, ζk. For s ∈ CN small enough, let Xs be the deformation of
X obtained by solving the Beltrami equations for ν(s) =

∑
i siνi in the open

set where it is supported. Then let Xs,t be the Riemann surface obtained
by plumbing Xs with parameters t = (t1, . . . , tM ). That is, for each i with
ti ̸= 0, we remove the open balls w−1

i ({z : |z| < ti}) and ζ−1
i ({z : |z| < ti})

from Xs, and then glue together all pairs of points for which wiζi = ti.
Let U = S ×∆M be the resulting coordinate chart. The vector fields

(∂s1 , . . . , ∂sN , ∂t1 , . . . , ∂tM )

form a frame for the tangent bundle TMg,n|U .
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Formula for ∂ti. Away from the boundary, a Beltrami differential rep-
resenting the infinitesimal variation ∂ti was calculated explicitly in [Mas76,
Formula 2.2] to be

1

2ti log |ti|
wi

w̄i

dw̄i

dwi

in a neighborhood of the node corresponding to ti, and identically zero ev-
erywhere else. In particular, away from the boundary

∥∂ti∥ ≤ 1

−2ti log |ti|
. (3)

Remark 6.1. Here is a sketch of the proof of the bound (3). We will
find quasiconformal maps between the surfaces corresponding to plumbing
parameters t and t′, compute their Beltrami differentials, and then compute
the derivative of this with respect to t′ at t′ = t.

Instead of directly finding the maps between surfaces, it’s convenient
to conformally map the plumbing annulus (of outer radius 1, inner radius
t) to a Euclidean cylinder of circumference 2π, via the map w 7→ logw.
Between these cylinders, there are nice affine quasiconformal maps, given by
stretching. The map going from the cylinder of height h to h′ has Beltrami
form of norm approximately (h − h′)/(h + h′). Hence the derivative with
respect to h′ at h′ = h is around −1/(2h). We now move back to the
plumbing annuli (taking the map between surfaces to be constant outside
of plumbing regions). Using the Chain Rule, we get that the Beltrami form
here has norm

≈ 1

−2t log t
.

△

Quadratic differentials of bounded area. A potential issue later on
is that there are converging families of quadratic differentials in the Hodge
bundle with cylinders of very quickly growing moduli that lie on a part
of the surface that is converging to a zero component of the limit q. The
contribution to area from this cylinder can be arbitrarily large. However,
the content of the next lemma is that this phenomenon does not occur for
quadratic differentials lying over holomorphic families of Riemann surfaces.

Lemma 6.2. Let f : ∆ → Mg,n be a holomorphic family, with f(0) ∈ ∂Mg,n

and f(z) ∈ Mg,n for z ̸= 0. Let q ∈ QMg,n be a finite area quadratic
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differential on f(0), let zk ∈ ∆ satisfy limk→∞ zk = 0, and let qk ∈ QMg,n

lie over f(zk) such that limk→∞ qk = q. Then the areas satisfy

lim
k→∞

∥qk∥ = ∥q∥1.

Proof. We choose a plumbing neighborhood U of f(0) in Mg,n. Since the
desired statement is about limits as z → 0, we can assume that f(∆) ⊂ U .
There are plumbing parameters t′i : U → C that specify how the nodes of
f(0) are smoothed. A point z ∈ U is in the boundary ∂Mg,n iff t′i(z) = 0 for
all i. Each t′i is a holomorphic function on U , and hence t′i ◦ f : ∆ → C is
also holomorphic. By considering the power series at 0 of this composition,
and using that t′i ◦ f(z) = 0 iff z = 0 (by the hypothesis on where the values
of f lie), we see that all the t′i are polynomially bounded above and below
in terms of z. That is, for each i there is a positive integer di and Ci > 0
such that for all z ∈ ∆,

1

Ci
|z|di ≤ |t′i ◦ f(z)| ≤ Ci|z|di .

Now it suffices to show the desired convergence along a subsequence of
the qk. By passing to such a subsequence, we can assume the qk all lie in a
fixed stratum Q(κ), and that they converge to a limit qMS in the multi-scale
space ΞQ(κ) 4 introduced in Section 5.2 All qk for k sufficiently large lie in
a perturbed period coordinate neighborhood V of qMS . The top part of qMS

agrees with the top part of q, and in particular, it also has area ∥q∥1.
We recall some additional basic facts about the multi-scale space, and its

perturbed period coordinates. The space is defined in [BCG+19b], examples
from the flat perspective are presented in [Doz24], and some of the flat
geometric implications are discussed in [Doz23]. The boundary point qMS

is specified by a multi-scale differential, which consists of a meromorphic
quadratic differential η on each component of the underlying stable Riemann
surface (together with combinatorial data: a level structure on the dual
graph, and prong-matching data – the latter will not be important for us).
To smooth qMS , for each η at level m, we glue the rescaled differential
ta11 · · · tamk η to the analogously rescaled differentials on the other components

4 To see this, take a subsequence such that the projective classes [qk] converge to some
point [qMS ] ∈ PΞQ(κ), using the compactness of this space. Since the multi-scale space
contains more refined information than the Hodge bundle, the top level of [qMS ] must
equal the projective class of the non-zero components of q, and so we can choose the
representative qMS to agree with q on these components. Since convergence on lower
levels is the same in PΞQ(κ) as in ΞQ(κ), we see that in fact qk → qMS in ΞQ(κ).
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(we may also need to add in a modification differential to account for certain
residues, but this is small and won’t affect our area estimates below). Here
the tj are scaling parameters, which constitute some of the coordinates on
V . Each ai is a positive integer associated to level i that can be computed
in terms of orders of certain poles of qMS ; the exact formula will not be
important here.

To smooth each horizontal node, a different plumbing procedure is used,
governed by a horizontal node parameter t; this produces a flat cylinder,
whose ratio of height to circumference is on the order of log |t|−1.

If η does not have horizontal nodes, then the area it contributes to a
smooth surface in V is

O (ta11 · · · tamm ) . (4)

For each horizontal node on η (which either connects a component to itself,
or to some other component at the same level), there is an area contribution
of

O
(
(ta11 · · · tamm )2 log |t|−1

)
, (5)

since the circumference of the cylinder is O(ta11 · · · tamm ).
Now we consider the relation between the Riemann surface plumbing

parameters t′i and the multi-scale plumbing coordinates tj , t. Each horizontal
node parameter t has size on the order of the t′i for that node, since both
are on the order of the modulus of the largest conformal annulus homotopic
to the corresponding vanishing cycle. From our discussion at the beginning
of the proof, we then see that |t| is polynomially bounded in terms of |z|.

The size of the plumbing parameter t′i corresponding to a node that
connects two components at levels m and ℓ, with m > ℓ (with respect to the
level structure that is part of the data of qMS) is of the same order as some
(possibly fractional) power of the product t

am−1

m−1 · · · taℓℓ . This, as previously,
is because both quantities are on the order of the modulus of the largest
conformal annulus homotopic to the vanishing cycle of the node.

Using the fact that the level graph is connected, we can go in reverse,
expressing the order of each tj in terms of a product of rational, possibly
negative, powers of the t′i. (By exploring the graph, for each level k, one
expresses t

a−1

−1 · · · takk in terms of a product of some rational, possibly negative,
powers of the t′i. One can then divide to express each tj .) From the discussion
at the beginning of the proof, this means that tj(qk) is on the order of
|zk|r, where r is some rational, possibly negative, number. We know that
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limk→∞ tj(qk) = 0, since qk → qMS and tj(q
MS) = 0. Since limk→∞ zk is

also 0, we conclude that the exponent r must in fact be positive.
Now returning back to our estimate of area of qk, we see that the con-

tribution (4) has order bounded above by a power of |zk|, while for (5) it is
some power of |zk| log |zk|−1. The point is that both of these tend to 0 as
k → ∞. Hence the area contributed to qk by any η not at top level tends to
0 as k → ∞. From the top level components, the area contribution tends to
the area of the top part of qMS . It follows that the area ∥qk∥ tends to the
area of the top part of qMS , which equals ∥q∥1.

■

6.2 Converging vectors and quadratic differentials

Our goal now is to start with a family of tangent vectors to Mg,n that
converge to a tangent vector v to the boundary ∂Mg,n, and then get a
corresponding converging family of quadratic differentials. We will need a
technical assumption on the family, and the resulting quadratic differential
will be pinned down only up to some non-negative scalars.

Norms on products. We will have to compare norms of tangent vectors
and quadratic differentials. Recall that in Section 2.2, we defined the ∥ · ∥1
norm on quadratic differentials as the sum of areas. For tangent vectors to
a single moduli space Mg,n we defined the Teichmüller norm in Section 2.1.
And in Definition 3.1 we defined ∥ ·∥∞ on TT ; we extend in the obvious way
to TM.

We will use the Hodge bundle QMg,n introduced in Section 5.1. In fact,
we will primarily work with the subspace Q<∞Mg,n of finite area differen-
tials, i.e. those with no double poles.

Definition 6.3. For v ∈ TXM, where M is any multi-component moduli
space, we define the top level tangent vector ⊤(v) to be the element of TXM
that is zero on each component Xi of X where ∥vi∥ < ∥v∥∞, and agrees with
v on all other components.

Proposition 6.4. Let Mg,n be a single moduli space and f : ∆ → TMg,n

be a holomorphic family with

f(z) = (X(s(z), t(z)), v(z)) =
N∑
i=1

ci(z)∂si +

M∑
j=1

dj(z)∂tj ∈ TMg,n

such that
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1. (X(z) := X(s(z), t(z)), v(z)) is in TMg,n when z ̸= 0.

2. (X(0), v(0)) ∈ T∂Mg,n and v(0) is not identically zero on every compo-
nent,

3. dj(z) = O(tj(z)) for j = 1, . . .m,

For z ∈ ∆∗, let

q(z) :=
ϕ−1(v(z))

∥ϕ−1(v(z))∥
.

Then any sequence from the family q(z) with z → 0 has an accumulation
point q ∈ Q<∞Mg,n, and any such q agrees with ϕ−1(⊤(v)), up to rescaling
each factor i by some non-negative real ci. Furthermore, q is not identically
zero.

Remark 6.5. At present, we do not know if the conclusion of Proposition 6.4
holds if we remove condition 3. △

Proof. Here is the idea of the proof. The norm on tangent vectors comes
from a sup norm on Beltrami differentials, and thus at the boundary should
limit to a sup of the norms of the tangent vectors on the component Rie-
mann surfaces. This is not literally true, because the Beltrami differentials
efficiently representing the tangent vectors might have significant contribu-
tions from the thin parts of the Riemann surfaces, and these are hard to
control in the limit. However, in our setting condition 3 means that this
thin part contribution is not substantial (this is quite technical and makes
the proof complicated). Then we use this, together with a characterization of
the map ϕ in terms of pairings between quadratic differentials and Beltrami
differentials, to control the corresponding quadratic differentials.

Let Q[0,1]Mg,n ⊂ QMg,n be the locus of differentials with area at most
1. Let (X(zn), v(zn)) be a sequence converging to (X(0), v(0)) and q be
an accumulation point of q(zn) in Q[0,1]Mg,n, which exists since this space
is compact (see [McM13, p.1238] for the case of Abelian differentials; the
quadratic differential case is similar). To prove the desired result, it suffices
to assume that qn → q. The differential q = (q1, . . . , qk) can be decomposed
into components and

∥q∥1 = area(q) =
k∑

i=1

area(qi) ≤ 1.

For brevity, write

Xn = X(zn), X = X(0), vn = v(zn), v = v(0).
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Claim 6.6. Suppose ξn → ξ, with ξn an element of QMg,n lying above Xn

such that ∥ξn∥ is bounded independent of n, and ξ ∈ ∂Q<∞Mg,n lying above
X. Then

lim
n→∞

∫
Xn

ξnvn =

∫
X
ξv.

Proof. By assumption v(z) converges to a vector v = v(0) = (v1(0), . . . , vn(0))
at the multi-component Riemann surface X = (X1, . . . , Xn). The tangent
vector v(z) can be expressed in terms of the frame (∂s, ∂t) as

v(z) = u(z) +R(z),

u(z) :=

N∑
i=1

ci(z)∂si ,

R(z) :=

M∑
j=1

dj(z)∂tj .

Condition 3 implies
dj(z) = O(tj(z)),

and in particular dj(0) = 0, so u(0) = v(0). For z ̸= 0, the tangent vectors
u and R can be represented by Beltrami differentials on the smooth surface
X(z).

Now we claim that ∂si on Xn can be represented by a Beltrami differ-
ential νi,n that converges to νi, in the sense that there is an exhaustion of
X − {nodes} by compact sets Kn and quasiconformal maps fn : Kn → Xn

with dilatation tending to 0, such that the pullbacks f∗n(νi,n) converge to
νi uniformly. The quasiconformal maps we use are furnished from the local
solutions of the Beltrami equation in the description of the surfaces Xs,0

composed with the conformal identification, away from the nodes, of Xs,0

with Xs,t given by the plumbing construction.
The νi,n are defined by first finding representatives of ∂si on deformed

surfaces Xs = Xs,0 within the boundary using the the composition rule
for quasiconformal maps (see [Wol13, p. 425]). From this description one
also sees that these Beltramis converge to νi in the required sense. This
representative of ∂si on Xs is supported away from the nodes, and then
the identification given by plumbing allows us to transport this Beltrami
to define a Beltrami on any Xs,t; this is how we define νi,n on Xn. Since
the relevant Beltramis are supported away from the nodes, the deformations
specified by them commute with the plumbing deformation. Hence νi,n does
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in fact represent ∂si . We also see that νi,n converges to νi in the required
sense.

From the above, and using the “quasiconformal topology” interpretation
of ξn → ξ (see [BCG+19b, Proposition 3.5]) it follows that

lim
n→∞

∫
Xn

ξn∂si = lim
n→∞

∫
Xn

ξnνi,n =

∫
X
ξνi =

∫
X
ξ∂si . (6)

To deal with the ∂tj components of v, we note, using the assumption
that ∥ξn∥ is bounded and the estimates 3 for dj(zn) and (3) for ∂tj , that∣∣∣∣∫

Xn

ξndj(zn)∂tj

∣∣∣∣ ≤ ∥ξn∥ · |dj(zn)| · ∥∂tj∥ = O

(
tj(zn) ·

1

−tj(zn) log |tj(zn)|

)
(7)

= O

(
1

− log |tj(zn)|

)
→n→∞ 0. (8)

We now combine the estimates (6) and (8) to get∫
Xn

ξnvn =

N∑
i=1

ci(zn)

∫
Xn

ξn∂si +

M∑
j=1

∫
Xn

ξndj(zn)∂tj

→n→∞

N∑
i=1

ci(0)

∫
X
ξ∂si + 0 =

∫
X
ξu(0) =

∫
X
ξv(0),

and we are done. □

Now breaking into components, and using the characterization (1) of
∥vi∥ in terms of the pairing with quadratic differentials, gives∫

X
qv =

n∑
i=1

∫
Xi

qivi ≤
n∑

i=1

sup
{qi0:∥qi0∥=∥qi∥}

∫
Xi

qi0v
i

=

n∑
i=1

∥qi∥∥vi∥ ≤ ∥q∥1∥v∥∞

≤ ∥v∥∞.

Now Lemma 2.4 gives ∥vn∥ =
∫
Xn

q(zn)vn. Using this, Claim 6.6 applied
with qn → q, and some of the above, we get the following chain of inequalities
which will use after proving the next Claim:

lim
n→∞

∥vn∥ =

n∑
i=1

∫
Xi

qivi ≤
n∑

i=1

∥qi∥∥vi∥ ≤ ∥q∥1∥v∥∞ ≤ ∥v∥∞. (9)
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We remark here that the inequality limn→∞ ∥vn∥ ≤ ∥v∥∞ could fail if we
did not assume condition 3. To see this, choose a smooth path γ : [0, 1] →
Mg,n with γ([0, 1)) ⊂ Mg,n, γ(1) ∈ ∂Mg,n, and such that v := dγ/dt|t=1 is
in T∂Mg,n. We get a family γ′(t) of tangent vectors, and taking values at
tn tending to 1 gives a sequence vn → v satisfying conditions 1 and 2. The
length |γ| in the Teichmüller metric is ∞, since the boundary is infinitely
far away. This implies

lim sup ∥vn∥ = ∞ > ∥v∥∞.

Claim 6.7. We have
lim inf
n→∞

∥vn∥ ≥ ∥v∥∞.

Proof. We start by finding a ξ ∈ QMg,n lying above X with ∥ξ∥1 = 1
and

∫
X ξv = ∥v∥∞. Using that QMg,n is a vector bundle, we can find

ξn ∈ QMg,n lying above Xn with ξn → ξ. Now convergence in the Hodge
bundle does not in general imply convergence of areas, but since our ξn
lie over a holomorphic family, we can apply Lemma 6.2 to conclude that
limn→∞ ∥ξn∥ = 1, and in particular these quantities are bounded. We now
apply Claim 6.6, to get that

lim
n→∞

∫
Xn

ξnvn =

∫
X
ξv = ∥v∥∞.

Now ∥vn∥ ≥
∫
Xn

ξnvn

∥ξn∥ , and hence

lim inf
n→∞

∥vn∥ ≥ lim inf
n→∞

∫
Xn

ξnvn

∥ξn∥
=

∥v∥∞
1

,

as desired. □

By the above Claim, all the inequalities in (9) must be equalities, and so
∥q∥1 = 1 and

n∑
i=1

∥qi∥∥vi∥ = ∥v∥∞.

Note that
∑n

i=1 ∥qi∥ = ∥q∥1 = 1, which means that the left-hand side of the
above is a weighted average of the ∥vi∥. Now ∥v∥∞ = maxi ∥vi∥, so the only
way the above inequality can hold is for qi = 0 whenever ∥vi∥ < ∥v∥∞.

From the inequalities in (9) actually being equalities, we also get that∫
Xi

qivi = ∥qi∥∥vi∥, for all i.
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In particular for all i such that ∥vi∥ = ∥v∥∞, the above together with
Lemma 2.4 implies that qi equals ϕ−1(vi) up to rescaling by some non-
negative real number. Since ∥q∥1 = 1, we also see that q is not identically
zero.

■

6.3 Tangent families to subvarieties

To be able to use Proposition 6.4, we will need to produce families satisfying
its hypotheses. The next result allows us to do that for any subvariety.

Lemma 6.8. Let N ⊆ Mg,n be an algebraic subvariety, ∂̊N be an irreducible

component of ∂N ∩∆Γ. Let X ∈ ∂̊N be a generic point. Then there exists a
holomorphic family f : ∆ → N with f(0) = X satisfying the following prop-
erty: for any v ∈ TX(∂̊N) that is not identically zero on every component,
there exists a lift f̃ : ∆ → TN of f with f̃(0) = (X, v) and satisfying the
assumptions (1)− (3) in Proposition 6.4.

Proof. Consider the pair (N, ∂̊N) and choose a resolution

r : (Z,D) → (N, ∂̊N)

such that Z is smooth, D is a normal crossing divisor. Choose an open subset
U of the regular (non-singular) locus (∂̊N)reg such that U ′ := r−1(U) → U
is smooth. In particular given v ∈ T ∂̊N |U = TU there exists a lift (X ′, v′) ∈
TU ′ with r∗(X

′, v′) = v. Choose local coordinates x = (x0, x1, . . . , xk) on Z
such that in a neighborhood of a point in U ′ we have

D = {x0 = 0}, v′ =
k∑

i=1

ci∂xi .

Given a point x′ = (x1, . . . , xn) ∈ U ′ consider the path

f(z) = (z, x1, . . . , xn).

For generic x′ ∈ U ′, the path f lies generically in the preimage of the regular
part of N .

Let

h : ∆ → TZ,

z 7→

(
α(z)

k∑
i=1

ci∂xi

)
.
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The image of h is generically contained in

TZ|r−1(Nreg).

We now post-compose h with the derivative map

r∗ : TZ → TMg,n,

go get f̃ := r∗ ◦ h : ∆ → TMg,n.
Properties (1) and (2) are satisfied by construction but (3) needs justifi-

cation. The divisor {ti(x) = 0} is a multiple of {x0 = 0} and hence we can
write tj(x) = xk0hj(x) for some k and hi an analytic function with hi(0) ̸= 0.
In particular

∂tj
∂xi

= xk0
∂hj
∂xi

= O(tj) if i ̸= 0.

We start by computing r∗(x, v
′). Recall that in local coordinates the push-

forward is represented by the Jacobian matrix ( ∂s∂x ,
∂t
∂x)

t. We have

r∗(x, v
′) =

m∑
i=1

c̃i(x)∂si +
n∑

j=1

(
k∑

i=1

∂tj
∂xi

ci

)
∂tj =

m∑
i=1

c̃i(x)∂si +
n∑

j=1

O(tj)∂tj .

Here c̃i are holomorphic functions with c̃i(0, x1, . . . , xn) = ci. Thus dj(x) =
O(tj). The same is true after composing with h.

■

7 Boundary is GL+(2,R)-geodesic

The main goal of this section is Proposition 7.18, which gives that ∂̊N is
GL+(2,R)-geodesic (defined below). This means that there is a large di-
mension set of quadratic differentials generating Teichmüller geodesics lying
in ∂̊N .

We will first discuss several general notions concerning a multi-component
moduli space M and a multi-component stratum Q(µ) over M. We denote
the projection forgetting the differential by p : Q(µ) → M.

7.1 GL+(2,R)-action

We define a GL+(2,R) action on any Q(µ) by taking the usual GL+(2,R)
action (defined in Section 2) on components where the differential is not
identically zero, and the identity on identically zero factors. Though this
gives an action on the whole quadratic Hodge bundle QMg,n, it is not con-
tinuous; the issue is with differentials converging to zero on some component
of the boundary. Nevertheless, this action will be useful to us.
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7.2 GL+(2,R)-geodesic

The below definition captures having many quadratic differentials whose
GL+(2,R) orbits lie in our subvariety.

Definition 7.1. Let N ⊆ M be an irreducible, analytic subvariety. Suppose
that there exists a stratum Q(µ) → M, µ = (κ1, . . . , κm), and an irreducible
algebraic subvariety Q ⊆ Q(µ), the witness, such that:

(i) Q is GL+(2,R)-invariant,

(ii) p(Q) = N ,

(iii) dimQ ≥ 2 dimN ,

(iv) Q does not vary on any component i for which κi = ∞.

Then N is called GL+(2,R)-geodesic.

7.3 The space QN

The connection between totally geodesic subvarieties N in a single moduli
space and GL+(2,R)-invariant subvarieties comes from the fact that Te-
ichmüller geodesics are generated by quadratic differentials. Hence the set
of quadratic differentials generating Teichmüller geodesics lying in N will be
a large and interesting set when N is totally geodesic.

For the remainder of this section, N ⊂ Mg,n will be a totally geodesic

subvariety, ∆Γ a boundary stratum of Mg,n, and ∂̊N an irreducible compo-
nent of ∂N ∩∆Γ.

Definition 7.2. Define

QN := {q ∈ QMg,n : p(gtq) ∈ N for all t ∈ R}.

We will denote by ∂QN the boundary of QN in the Hodge bundle
QMg,n.

Proposition 7.3. The set QN is a GL+(2,R)-invariant subvariety of QMg,n.

Proof. The set is closed, since N is. It is manifestly gt-invariant, for any
t ∈ R. Any q ∈ QN generates a Teichmüller geodesic lying in N , and in
particular its tangent vector v at p(q) lies in TN . Now for any θ ∈ S1,
rθq generates a Teichmüller geodesic γ which is tangent to rθv, and this
vector also lies in TN since N is a complex variety. By Proposition 3.6, N is
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infinitesimally totally geodesic, so if q lies over a generic point of N , then γ is
in fact contained in N , so rθq ∈ QN . Since N is totally geodesic, p(QN) =
N , and so such generic q are certainly dense in QN . By continuity, it follows
that rθq ∈ QN for all q ∈ QN and θ ∈ S1. Since gt, rθ (together with real
scaling) generate GL+(2,R), we get that QN is GL+(2,R)-invariant.

Finally we can apply [EMM15] and [Fil16] to conclude that QN is a
subvariety.

■

7.4 Limits of quadratic differentials in QN

We would like to show that for any v ∈ T∂N , the associated quadratic
differential ϕ−1(v) lies in the boundary ∂QN . We are unable to directly
show this, but instead we prove Proposition 7.7, which produces an element
of ∂QN that agrees with ϕ−1(v) up to certain rescalings by positive reals.
To this end, we use the results of Section 6 to prove several preliminary
lemmas, which give elements of ∂QN related to ϕ−1(v), though only on
certain components.

Recall the ⊤(v) notation from Definition 6.3.

Lemma 7.4. Let X ∈ ∂̊N be a generic point. Then there exists a family
{X(z)}z∈∆ of elements of N with the following property. For any non-
zero v ∈ TX ∂̊N and sequence Xn := X(zn) with zn → 0, there exists qn
quadratic differentials on these Xn that converge to some q ∈ Q<∞Mg,n,
not identically zero, along a subsequence, where

(i) qn ∈ QN , and

(ii) q is a quadratic differential that agrees with ϕ−1(⊤(v)) up to rescaling
each factor i by some non-negative real number ci.

Proof. By Lemma 6.8, there exists a holomorphic family of surfaces {X(z)}z∈∆
such that for any v ∈ TX ∂̊N , there exists lift of this family to tangent vectors
{(X(z), v(z))}z∈∆ ∈ TN with v(0) = v, and satisfying assumptions (1)-(3)
of Proposition 6.4. Applying Proposition 6.4 to this then gives a sequence
{vn} such that qn := ϕ−1(vn)/∥ϕ−1(vn)∥ satisfy condition (ii). Since N is
totally geodesic, by Proposition 3.6 it is infinitesimally totally geodesic, so
qn ∈ QN for all n. Thus condition (i) holds as well. ■

Balanced vectors in the boundary. A tangent vector v ∈ TXN is called
balanced if ∥vi∥ = ∥vj∥ for all i, j with vi ̸= 0, vj ̸= 0. Given v ∈ TXN we
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define the balanced vector b(v) by

b(v)i =

{
vi

∥vi∥ if vi ̸= 0

0 otherwise.

Lemma 7.5. If q ∈ ∂QN then b(ϕ(q)) ∈ T∂N .

Proof. Choose qk ∈ QN with limk→∞ qk = q. By passing to a subsequence,
we can assume that all qk lie in a single stratum Q(µ), and (passing to a
further subsequence) that they converge in the multi-scale space ΞQ(µ) to
some boundary point qMS (see Footnote 4). The top level of qMS , after
removing unstable components, coincides with the non-zero components of
q. Let Y be the closure of QN in the boundary stratum containing qMS . By
Theorem 5.2, Benirschke’s result in our quadratic setting, Y is a level-wise
linear subvariety cut out by linear equations in period coordinates with real
coefficients. This implies that, for each t, the result of applying gt to the
top level differentials of qMS , while not changing the lower levels, remains
in Y . Under the map from Multi-scale to Hodge, this path projects to a
path lying in ∂QN . The tangent vector to this path is precisely b(ϕ(q)). So
b(ϕ(q)) ∈ T∂N . ■

Decomposition of set of components. Given a tangent vector v =
(v1, . . . , vk) ∈ T∂N , we specify a decomposition S(v) of {1, . . . , k} into dis-
joint sets S1 ⊔ · · · ⊔ Sn, by the property that for i ∈ Sℓ, j ∈ Sℓ′ , we have
∥vi∥ > ∥vj∥ if ℓ < ℓ′, and ∥vi∥ = ∥vj∥ if ℓ = ℓ′. We also stipulate that
the Si are all non-empty, except if v has no zero components, in which case
S1, . . . Sn−1 are non-empty while Sn is the empty set. (That is, each part
of the decomposition corresponds to factors of the same norm, the parts are
in descending order of norm, and the last part consists of the factors with
norm 0.)

For any ℓ, we define a vector Lℓ(v) ∈ T∂N by

Lℓ(v)
i =

{
vi if i ∈ Sℓ

0 otherwise.

In other words, Lℓ(v) is the vector given by zeroing out on all components
that don’t lie in the ℓ part.

Lemma 7.6. Let X ∈ ∂̊N be generic, and v ∈ TX(∂̊N). Then ⊤(v) lies in
TX(∂̊N).
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Proof. The proof we give is similar to that of Claim 7.8 below. This follows
the same pattern as that, but this setting is somewhat simpler since here
the statement does not involve quadratic differentials (they are still used in
this proof).

We argue by induction on the number η of non-zero components of v.
The base case is when η = 0, i.e. v = 0, for which the statement is trivial.

For the inductive step, we assume that we have proved the result when
the number of non-zero components is 1, . . . , η − 1, for some η ≥ 1, and
that v is a vector with exactly η components that are non-zero. We begin by
applying Lemma 7.4, giving a non-zero q ∈ ∂QN that agrees with ϕ−1(⊤(v))
rescaled by a non-negative real number ci on the ith component.

We then apply Lemma 7.5 with this q, giving that b(ϕ(q)) ∈ T∂N . By
the relationship between q and ϕ−1(⊤(v)) discussed above, we can find a
suitable scalar multiple w := c · b(ϕ(q)) ̸= 0 that is zero on all components
for which it does not agree with v. Since this tangent vector w comes from
tangent vectors to the components of X, we have w ∈ T (∆Γ), and by using
the genericity assumption on X, we can ensure that w ∈ TX(∂̊N) (we can
exclude X in the locus where ∂̊N intersects other irreducible components of
∆Γ ∩ ∂N).

Now by linearity of TX(∂̊N), it follows that v−w ∈ TX(∂̊N). Now v−w
has strictly fewer components that are non-zero than v does, i.e. fewer than
η, so by the inductive hypothesis, we get that ⊤(v − w) ∈ TX(∂̊N). Using
linearity again, we get that w + ⊤(v − w) ∈ TX(∂̊N); this vector is exactly
⊤(v), so we are done. ■

The following is the main result of this subsection.

Proposition 7.7. Let X ∈ ∂̊N be generic, and v ∈ TX(∂̊N). Then there
exists q ∈ ∂QN such that for each i, qi = ciϕ

−1(vi) for some ci ∈ R>0.
Furthermore, we can take

∑
j∈Sℓ

cj = 1 for all ℓ.

Proof. We begin by applying Lemma 7.4 with X, which gives a family
{X(z)}z∈∆.

We will first consider the case v = ⊤(v). We will argue by induction,
which will involve passing to subsequences and adding quadratic differentials.
For this reason we need to start with an arbitrary sequence of surfaces from
our family, and find quadratic differentials along a subsequence of this.

Claim 7.8. Let X ∈ ∂̊N be generic, and v ∈ TX(∂̊N) with v = ⊤(v), and
suppose we are given a sequence Xn from the family, i.e. Xn = X(zn) for
some zn → 0. Then there exist qn quadratic differentials on Xn with qn ∈
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QN such that qn converges, along some subsequence, to a q ∈ Q<∞Mg,n,
where for each i, qi = ciϕ

−1(vi) for some ci ∈ R>0. Furthermore, we can
take

∑
j∈S1

cj = 1.

Proof. We argue by induction on the number η of non-zero components of
v. The base case is when η = 0, i.e. v = 0, for which the statement follows
by taking all qn to be identically zero.

For the inductive step, we assume that we have proved the result when
the number of non-zero components is less than η, for some η ≥ 1, and that
v is a vector with exactly η components that are non-zero. By Lemma 7.4,
there exists qn quadratic differentials on Xn with qn ∈ QN converging, along
some subsequence nj , to a q ̸= 0 with the following property: q agrees with
ϕ−1(v) rescaled by a non-negative real number ci on the ith component.

By Lemma 7.5 (levelwise independence) applied with this q, we get a
non-zero w ∈ TX(∂̊N) that is zero on all components for which it does not
agree with v. By linearity of TX(∂̊N), it follows that v−w ∈ TX(∂̊N). Now
v−w has strictly fewer components that are non-zero than v does, i.e. fewer
than η. Applying the inductive hypothesis with this v −w, gives that there
exists q′nj

quadratic differentials on Xnj with q′nj
∈ QN converging, along

some subsequence, to a q′ ̸= 0 with the following property: q′ agrees with
ϕ−1(v−w) rescaled by a positive real number ci on the ith component. Note
that ϕ−1(v − w) is non-zero exactly on the components where v is non-zero
and q is zero. Thus q + q′ equals ϕ−1(v), up to positively rescaling each
factor.

To finish the proof we consider the sequence qnj + q′nj
of differentials

on Xnj . By continuity of addition of differentials parameterized by the
quadratic Hodge bundle, qnj + q′nj

converges, along some subsequence, to
q+q′. Now since qnj , q

′
nj

∈ QN , by [Ben24, Proposition 2.1], qnj +q
′
nj

∈ QN .
Thus qnj +q

′
nj

is a sequence with the desired properties, once we rescale each
by a single factor to ensure that

∑
j∈S1

cj = 1 (for n not belonging to the
subsequence nj , we can choose qn arbitrarily).

□

We now relax the restriction that v = ⊤(v).

Claim 7.9. Let X ∈ ∂̊N be generic, and v ∈ TX(∂̊N), and suppose we are
given a sequence Xn from the family, i.e. Xn = X(zn) for some zn → 0.
Then there exist qn quadratic differentials on Xn with qn ∈ QN such that
qn converges, along some subsequence, to q ∈ Q<∞Mg,n, where for each i,
qi = ciϕ

−1(vi) for some ci ∈ R>0. Furthermore, we can take
∑

j∈Sℓ
cj = 1

for all ℓ.
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Proof. Any such v can be written as

v = L1(v) + · · ·+ Ln(v).

We argue by induction on n. For the base case n = 1, the statement is
just Claim 7.8.

For the inductive step, assume that for some n ≥ 2 we have proved the
result for 1, . . . , n − 1, and suppose v is a vector as above. By Lemma 7.6,
each L1(v) ∈ TX(∂̊N). Applying Claim 7.8 with L1(v) gives qn quadratic
differentials on Xn with qn ∈ QN such that qn converges, along some sub-
sequence nj , to a q that agrees with ϕ−1(L1(v)) up to positively rescaling
factors, and with the desired condition on sums of scaling factors.

Now we apply the inductive hypothesis with vector w := L2(v) + · · · +
Ln(v), and sequence {Xnj}. This yields q′nj

quadratic differentials on Xnj

with q′nj
∈ QN such that q′nj

converges, along some subsequence nj , to a

q′ that agrees with ϕ−1(w) up to positively rescaling factors, and with the
desired condition on sums of scaling factors. Then q + q′ equals ϕ−1(v), up
to positively rescaling each factor, and with the desired condition on sums
of scaling factors.

Finally, we consider the sequence qnj + q′nj
of differentials on Xnj . By

continuity of addition of differentials parameterized by the quadratic Hodge
bundle, qnj + q′nj

converges, along some subsequence, to q + q′. Now since
qnj , q

′
nj

∈ QN , by [Ben24, Proposition 2.1], qnj + q′nj
∈ QN . Thus qnj +

q′nj
is a sequence with the desired properties (for n not belonging to the

subsequence nj , we can choose qn arbitrarily). □

The lemma follows immediately from the previous Claim.
■

7.5 Boundary in Hodge bundle

In the previous subsection, we produced lots of elements of ∂QN . Our goal
now is to deduce properties of this whole space, in order to use it to produce
geodesics in the direction of every tangent vector to ∂̊N . Actually, rather
than all of ∂QN , we work with a large subset of it, ∂̊QN ′ defined below.
This set has nicer properties, that we prove below. This set will then be used
in Proposition 7.18 to produce a witness that ∂̊N is GL+(2,R)-geodesic.

The sets ∂̊QN and ∂̊QN ′. Recall that ∂̊N is an irreducible component
of ∂N ∩∆Γ (where ∆Γ is a boundary stratum of ∂Mg,n).
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Definition 7.10. Let ∂̊QN ⊂ ∂QN consist of those elements lying over ∂̊N .

Since, by Proposition 7.3, QN is an algebraic variety, so is ∂QN , and
hence ∂̊QN is also.

We might try to study this variety ∂̊QN directly. It may well contain
differentials that vanish on some components of the underlying stable Rie-
mann surface. A priori, there could be components on which ∂̊N does not
vary, and it is natural to expect that elements of ∂̊QN would vanish on
those components. On the other hand, it could be that an element of ∂̊QN
is “accidentally” zero on some component, in the sense that ∂̊N does vary
on that component. These differentials present an issue, and in particular
their presence means that it is not clear that ∂̊QN is GL+(2,R) invariant.
Hence, we want to exclude such differentials, which suggests the definition
below.

For each factor of the product cover of ∆Γ, the product cover of ∂̊N can
be either varying on that factor (i.e. the projection map to that factor is
non-constant), or non-varying.

Definition 7.11. Let ∂̊QN ′ be the subset of ∂̊QN consisting of those q
whose product cover is zero exactly on the factors where ∂̊N is varying.

Lemma 7.12. The subset ∂̊QN ′ is:

(1) an algebraic subvariety of ∂̊QN , and

(2) equals the subset consisting of those q whose product cover is zero exactly
on those factors where every tangent vector to the product cover of ∂̊N
is zero.

From here on we will assume for notational simplicity that ∆Γ is al-
ready a product (having to take product covers does not change anything
substantially).

Proof. For (1), note that ∂̊QN ′ is the intersection of ∂̊QN with a union of
strata of the boundary, so it too is an algebraic variety.

For (2), we need to show that ∂̊N is non-varying exactly on those factors
for which every tangent vector to it is zero. One direction is immediate:
if ∂̊N is non-varying on some factor, then certainly every tangent vector
to it is zero on that factor. For the other direction, suppose every tangent
vector to ∂̊N is zero on factor i. This implies that the projection map ρi to
the ith factor must be locally constant on (the smooth locus of) ∂̊N . Since
∂̊N is irreducible, this implies that ρi is constant on ∂̊N , hence we have
non-varying on factor i. ■
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GL+(2,R)-invariance. Recall that there are several properties that we
need a witness to ∂̊N being GL+(2,R)-geodesic to satisfy. The set ∂̊QN ′ will
not be the witness, since the witness needs to lie in a single stratum. Rather,
we will eventually intersect with some stratum to produce the witness.

The next lemma, which gives GL+(2,R)-invariance, is a key step in the
proof of our main theorem. The idea is to use the real multi-scale space,
which admits a continuous GL+(2,R)-action, to get that the relevant bound-
ary is GL+(2,R)-invariant. This is inspired by the analogous continuity
property of the GL+(2,R) action on the WYSIWYG space [MW17, p. 934],
used by Mirzakhani-Wright to great effect. The reason we use the real
multi-scale space rather than WYSWIYG is that we need some control on
components on which the differentials vanish.

Lemma 7.13. The subset ∂̊QN ′ of the Hodge bundle is invariant under the
GL+(2,R)-action.

Proof. Consider some q ∈ ∂̊QN ′ lying over a generic point of ∂̊N . There ex-
ists some sequence {qn} in QN converging to q. By passing to a subsequence
if necessary, we can assume that all qn lie in a fixed stratum Q(µ).

We consider the real multi-scale space ΞQ(µ) associated to Q(µ) in-
troduced in Section 5.3. By passing to a subsequence if necessary, we can
assume that the qn converge in the real multi-scale space to a real multi-scale
differential qR (see Footnote 4). In Section 5.3 several maps were discussed;
we will use π : ΞQ(µ) → QMg,n. Since π is continuous, we have π(qR) = q.

Now the real multi-scale space admits a continuous GL+(2,R)-action,
extending the action on Q(µ). So, for any t ∈ R, we get that gtqn → gtq

R in
the real multi-scale space, as n → ∞. It follows that gtqn → π(gtq

R) in the
Hodge bundle. Since gtqn is also in QN (by its very definition), we get that
π(gtq

R) ∈ ∂QN .
Note that the gt action on the boundary of the real multi-scale space

preserves the boundary stratum of the underlying Riemann surfaces. From
this, and since locally near q the varieties ∂̊N and ∂N agree (since q was
assumed to lie over a generic point of ∂̊N), we get that for t of small absolute
value, the projection of gtq

R to Mg,n lies in ∂̊N . But the components of gtq
R

corresponding to vanishing differentials are exactly the same as those for q
(up to contractions of some P1 components). And since ∂̊N does not vary
on these components (since q ∈ ∂̊QN ′), we get that gtq

R agrees with q in
terms of the Riemann surfaces (up to contractions of some P1 components)
on these vanishing differential components. On the other hand, from the
way the actions are defined, gtq and gtq

R agree for the components where
the differential does not vanish. Hence π(gtq

R) = gtq, and so gtq ∈ ∂QN .
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Since the components on which the differentials vanish are exactly the same
for q and gtq, and we’ve already seen that the projection of gtq

R to Mg,n

(and hence of gtq) lies in ∂̊N , we in fact get that gtq ∈ ∂̊QN ′.
So we have shown that for generic q, and small t (depending on q),

gtq ∈ ∂̊QN ′. Lemma 7.14 allows us to relax the generic and small conditions
– we get for any q and t ∈ R that gtq ∈ ∂̊QN ′. Since ∂̊QN ′ is a complex
algebraic variety, it is invariant under rθ, for any θ ∈ S1. Since these gt, rθ
generate GL+(2,R), we get the desired result. ■

Lemma 7.14. Suppose bt is a continuous action of R on a real-analytic
variety M , such that the orbit maps are real-analytic (in the sense that for
any open U ⊂M , x ∈ U , and real-analytic function f : U → R, the function
t 7→ f(btx) is real-analytic on the open set {t : btx ∈ U}). Let X ⊂ M be a
real-analytic subvariety with the following invariance property: for a generic
x ∈ X, there exists some t0 = t0(x) > 0 such that btx ∈ X for all t with
|t| < t0. Then X is bt-invariant.

Proof. We first claim that for generic x ∈ X, we have that btx ∈ X for all
t ∈ R. It suffices to show that the set

S := {t0 ∈ R+ : btx ∈ X for all t with |t| < t0},

is both closed and open in R+ (it is non-empty by hypothesis).
Closedness is immediate from the definition.
For openness, let t0 ∈ S, and consider a neighborhood V of bt0x in M

such that X ∩ V is cut out in V by real-analytic functions defined on all
of V . There is some ϵ such that btx ∈ V for all t ∈ (t0 − ϵ, t0 + ϵ). Let
f : V → R be an analytic function vanishing on X ∩ V , and consider the
function g : (t0 − ϵ, t0 + ϵ) → R given by t 7→ f(btx). This is also real-
analytic, by the assumption on analyticity of orbit maps. It vanishes for all
t ∈ (t0 − ϵ, t0), since for these btx ∈ X ∩ V . But since it’s real-analytic, g
must then vanish on all of (t0 − ϵ, t0 + ϵ). So for t in this interval, btx is in
the vanishing locus of f .

Since this argument holds for any f , we get that btx ∈ X for any t ∈
(t0 − ϵ, t0 + ϵ). Together with an analogous argument starting with b−t0x,
we conclude that (t0 − ϵ′, t0 + ϵ′) ⊂ S, for ϵ′ the minimum of the ϵ produced
for bt0x and b−t0x. So we have shown openness, and thus our first claim.

Finally to get the desired result for all x ∈ X from the above, we use
density of generic points, the continuity of the action, and the fact that X
is closed in M .

■
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Dimension bound and the map BS . The next property that we address
towards using ∂̊QN ′ to produce a witness that ∂̊N is GL+(2,R)-geodesic is
the dimension lower bound (iii).

If we knew that ϕ−1(v) ∈ ∂QN for each v ∈ T∂N , this would be easy,
since T∂N has the right dimension, and ϕ is a homeomorphism. We will use
Proposition 7.7, proved above, which is a related statement, but somewhat
less precise in that the differential produced could differ from ϕ−1(v) by
certain positive scaling factors on the various components. Consequently
our proof of the dimension bound will be more complicated.

Let S be some decomposition of the set of factor labels {1, . . . , k} into
disjoint subsets S1 ⊔ · · · ⊔ Sn, where S1, . . . , Sn−1 are non-empty and Sn
consists of the factors where some (equivalently, all) differential in ∂̊QN ′ is
zero. We define maps

BS : ∂̊QN ′ → T∂M,

BS(q
1, . . . , qk) =

(
r1ϕ(q

1), . . . , rkϕ(q
k)
)
,

where ri is defined as follows. If i ∈ Sn then ri = 1, and otherwise ri :=
1

∥qi∥
∑

j∈Sℓ
∥qj∥, with ℓ the index such that i ∈ Sℓ. Because we define the

map only on ∂̊QN ′, there is no division by zero. The map is defined so that
tangent vectors in the image have equal norms on the components lying in
the same part of the decomposition.

Lemma 7.15. The set ⋃
S
BS(∂̊QN

′)

contains a dense Zariski open subset of T ∂̊N . Here the union ranges over
the decompositions S where BS is defined (see above).

Proof. We apply Proposition 7.7, with v a generic tangent vector in T ∂̊N ,
yielding a q ∈ ∂QN (on the same surface as v), and with qi = ciϕ

−1(vi) and∑
j∈Sℓ

cj = 1 for all ℓ. We claim that q ∈ ∂̊QN ′. Note that since the ci are all
positive, q is zero exactly on those factors where v is. So, by Lemma 7.12,
(2), it suffices to show that v belongs to the set V ′ of vectors that are 0
exactly on the factors where all elements of T ∂̊N are 0. Note that V ′ is a
Zariski open subset of T ∂̊N . Since T ∂̊N is irreducible, V ′ is non-empty, and
so a generic vector v will lie in it, which gives the claim.

Now we claim that BS(v)(q) = v. First note that for i ∈ Sn, we have
BS(v)(q)

i = vi. Now for i in Sℓ ̸= Sn, using that ∥vi∥ = ∥vj∥ for any other
j ∈ Sℓ, and that ϕ is norm-preserving, we get
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BS(v)(q)
i = riϕ(ciϕ

−1(vi)) =

∑
j∈Sℓ

∥cjϕ−1(vj)∥
∥ciϕ−1(vi)∥

civ
i =

∥ϕ−1(vi)∥
∑

j∈Sℓ
cj

ci∥ϕ−1(vi)∥
civ

i = vi,

for each i, which establishes our claim.
The desired result then follows, since S(v) is one of the decompositions

over which the union in the statement is taken. ■

Lemma 7.16. For any S for which BS is defined, and any X ∈ ∂̊N , we
have

dimH BS(∂̊QN
′
X) ≤ dim ∂QN ′

X ,

where dimH denotes Hausdorff dimension.

Proof. We first show that BS is a real-analytic map between varieties when
restricted to each stratum Q(µ). On Q(µ), each norm function ∥qj∥ is real-
analytic (for j a component where the differentials are not identically zero),
since it has a real-analytic expression in terms of period coordinates. Next
we claim that each component function ϕ(qj) is real-analytic (as a function
of qj , and hence also as a function of q). On Q(µ), the map t 7→ gtq

j has a
real-analytic expression in terms of period coordinates. The tangent vector
to this path is ϕ(qj)/∥qj∥. It follows that the component function ϕ(qj) is
real-analytic. Since BS is constructed from the ϕ(qj) and norm functions,
the restriction of BS to Q(µ) is real-analytic.

Real-analytic maps are smooth, and smooth maps are non-increasing for
Hausdorff dimension. Hence

dimH B(∂̊QN ′
X ∩Q(µ)) ≤ dimH(∂̊QN ′

X ∩Q(µ)).

Applying this for each of the finitely many µ gives

dimH B(∂̊QN ′
X) = max

µ
dimH B(∂̊QN ′

X ∩Q(µ))

≤ max
µ

dimH(∂̊QN ′
X ∩Q(µ)) = dim ∂̊QN ′

X ,

as desired. ■

Lemma 7.17. For generic X ∈ ∂̊N , we have

dim ∂̊QN ′
X ≥ dimTX ∂̊N.
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Proof. For generic X, by Lemma 7.15, we get that
⋃

S BS(∂̊QN
′
X) con-

tains a Zariski open subset of TX ∂̊N . Then taking dimensions and applying
Lemma 7.16 gives

dimTX ∂̊N ≤ dimH

(⋃
S
BS(∂̊QN

′
X)

)
= max

S
dimH BS(∂̊QN

′
X)

≤ max
S

dim ∂̊QN ′
X = dim ∂̊QN ′

X .

■

We have now assembled the tools that we need to prove the GL+(2,R)-
geodesic property, the main result of this section.

Proposition 7.18. Suppose Mg,n is a single moduli space, N ⊆ Mg,n a

totally geodesic subvariety, and ∂̊N an irreducible component of the intersec-
tion of ∂N with a boundary stratum ∆Γ of ∂Mg,n. Then ∂̊N is GL+(2,R)-
geodesic.

Proof. Recall that, by Lemma 7.12 (1), ∂̊QN ′ is algebraic, hence its inter-
section Q(µ)∩ ∂̊QN ′ with any stratum Q(µ) of the Hodge bundle boundary
∂QMg,n is also algebraic. Let Q1, . . . , Qn be the (finitely many) irreducible

components of Q(µ) ∩ ∂̊QN ′, ranging over the finitely many strata Q(µ).
We will eventually choose Q to be one of these Qi.

By Lemma 7.17, for generic X ∈ ∂̊N , we get dim ∂̊QN ′
X ≥ dimTX ∂̊N

and hence there exists some i = i(X) such that dim(∂̊QN ′
X ∩Qi) ≥ dim ∂̊N.

Let
Ei := {X ∈ ∂̊N : dim(∂̊QN ′

X ∩Qi) ≥ dim ∂̊N}.

By the previous paragraph ∂̊N = E1 ∪ · · · ∪ En. Each Ei is a constructible
set, since the dimension of an algebraic set varies semi-continuously. Now
since ∂̊N is an irreducible variety, ∂̊N = Ei for some i. Pick some such i,
and define Q to be Qi. It has the property that dim(∂̊QN ′

X ∩Q) ≥ dim ∂̊N

for generic X ∈ ∂̊N . Since this dimension is non-zero, in particular we get
that p(Q) = ∂̊N , which is property (ii) of GL+(2,R)-geodesic. We also get
that dimQ ≥ 2 dim ∂̊N , property (iii).

For property (iv), first note that by the definition of ∂̊QN ′, if the set
Q(µ) ∩ ∂̊QN ′ is non-empty then for all factors where the differentials in
Q(µ) are zero, it must be that ∂̊N does not vary along that component.
Hence Q does not vary along that component either, and we’re done.

For (i), we begin by applying Lemma 7.13, which gives that ∂̊QN ′ is
GL+(2,R)-invariant. Since each Q(µ) is GL+(2,R)-invariant, we get that
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Q(µ)∩ ∂̊QN ′ is as well. Now Q is some irreducible component of this variety,
so for a generic point q ∈ Q, we have that Q locally agrees with Q(µ)∩ ∂̊QN ′

within Q(µ). Since Q(µ)∩∂̊QN ′ is gt-invariant for all t ∈ R, we get that for t
sufficiently small, gtq ∈ Q. Applying Lemma 7.14 gives that Q is gt invariant
for all t ∈ R. Invariance of Q under rθ, for any θ ∈ S1, is immediate from Q
being a complex algebraic subvariety. Since such gt, rθ generate GL+(2,R),
we get that Q is GL+(2,R)-invariant.

■

8 GL+(2,R)-geodesic implies totally geodesic

The notion of GL+(2,R)-geodesic for a subset of multi-component moduli
space M was introduced above in Section 7.2. In this section, we show that
this property implies infinitesimally totally geodesic, and then we combine
with results from Section 3 and Section 7 to prove the main result of the
paper, Theorem 1.4.

8.1 GL+(2,R)-geodesic implies infinitesimally totally geodesic

The definition of GL+(2,R)-geodesic gives a large dimension set of quadratic
differentials generating geodesics tangent to N . However, what we really
want in order to show the totally geodesic property is that the set of such
tangent vectors has large dimension. In multi-component moduli spaces,
many different quadratic differentials can give rise to the same tangent vec-
tor, since rescaling the factors by different real numbers still results in the
same Teichmüller geodesic.

To deal with this issue, we first consider the case of prime subvarieties
(recall this notion was defined in Section 1.2). For these, we can apply the
fact that ratios of areas are constant, Proposition 4.3, which allows us to rule
out having too many quadratic differentials generating the same Teichmüller
geodesic.

Definition 8.1. We say a geodesic in M (in the sense of Definition 1.1) is
single-speed if all the rescaling factors ci are the same.

Note that such a geodesic moves at the same speed in every factor of the
product cover of M.

Lemma 8.2. Suppose N ⊆ M is prime and a GL+(2,R)-geodesic subva-
riety. Then for a generic set of X ∈ N , for every v ∈ TXN , there is a
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single-speed geodesic in N and tangent to v. In particular N is infinitesi-
mally totally geodesic.

Proof. For notational simplicity, we will assume that M is a product (oth-
erwise, we can pass to its product cover). Let Q ⊂ Q(µ), µ = (κ1, . . . , κm),
be the witness that N is GL+(2,R)-geodesic. Since Q is non-varying on any
component i for which κi = ∞, by removing these factors, we can regard Q
as a subvariety of a stratum Q(µ̃) of multi-component translation surfaces,
i.e. none of the components of µ̃ are ∞ (recall Section 4.1). From this, one
gets a notion of prime, which Q must satisfy, since a product decomposition
of it would also yield a product decomposition of N .

Let X be a generic point of N , and let QX denote the subset of Q lying
over X. Consider the map

ψ : QX → TXN, (10)

ψ(q) =
d

dt
gt∥q∥1(q)|t=0, (11)

i.e. ψ(q) is the tangent vector to the path determined by q, moving at speed
∥q∥1 in every factor (recall ∥q∥1 is the area norm, given by the sum of the
areas of the components). This tangent vector lies in TXN because Q is
GL+(2,R)-invariant, and p(Q) ⊂ N . (Recall that the GL+(2,R)-action is
defined as the identity on any component where the the differential vanishes
identically, and hence on these components ψ(q) will be the zero vector).

The relevance of the map ψ is that for every v ∈ ψ(Q), there is a single-
speed geodesic lying in N tangent to v. We would like to show that ψ(Q) is
large, and in particular, dense in TXN .

Now consider the closure QX of QX in the bundle QM. For generic X,
QX will be a smooth variety. We can extend ψ to a map on ψ on QX , using
the same formula as above. A priori, ψ takes values in TXM.

We would like to show that ψ is continuous. We have to be careful
because ψ extends naturally to a map on all of QM, but it is not continuous
there – consider a sequence of unit area differentials that are non-vanishing
on all components converging to a differential that vanishes on exactly one
component. In the claim below, we will use the prime property to rule this
behavior out on QX .

Claim 8.3. The map ψ is continuous, and takes values in TXN .

Proof. To show continuity, we consider any sequence qn → q, with qn, q ∈
QX .
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First consider the case ∥q∥1 = 0, i.e. q is zero on every component of
X. Since area varies continuously on QM, we see that ∥qn∥1 → 0, and thus
ψ(qn) → 0 = ψ(q). So this case is complete.

Now consider the case ∥q∥1 ̸= 0. By the homogeneity properties of QX

and ψ, it suffices to assume that ∥q∥1 = ∥qn∥1 = 1, for all n. Now all these
qn, q are limits of unit norm elements of QX . By Proposition 4.3 (applied
in Q(µ̃)), the ratios of areas of different components of differentials in the
unit area locus of Q are constant. Since area varies continuously, all the
qn, q also have these same ratios of areas. In particular, each qn, q vanishes
on some component of X iff the differentials in the stratum Q(µ) do. For
such sequences, convergence of the values ψ(qn) can be seen as in the proof
of Lemma 2.1 giving continuity of ϕ (which is related to ψ by rescaling by
area norm). We have thus completed this case, and hence we conclude that
ψ is continuous.

Finally, since ψ is continuous and the values of ψ lie in the closed subset
TXN of TXM, it follows that values of ψ also lie in TXN . □

The claim above allows us to think of ψ as a map QX → TXN , which
we will do for the remainder of the proof.

Claim 8.4. The map ψ is injective.

Proof. Suppose that q1, q2 ∈ QX with ψ(q1) = ψ(q2). Let qj = (q1j , . . . , q
k
j )

for j = 1, 2, and ψ(q1) = ψ(q2) = (v1, . . . , vk). Note that for each i, qi1 and
qi2 are equal up to some constant real multiple (cf. Section 2.3). Also, for
j = 1, 2 and any i such that qij ̸= 0, we have ∥vi∥ = ∥qj∥1 By considering
such an i, we see that ∥q1∥1 = ∥q2∥1, i.e. they have the same total area.

Each qj is a limit of differentials in Q, and, by rescaling, we can take
these differentials to also have norm ∥q1∥1 = ∥q2∥1. Now by Proposition 4.3
(applied in Q(µ̃)), the ratios of areas of different components of differentials
in each constant area locus of Q are constant. So by continuity of area, it
then follows that ∥qi1∥ = ∥qi2∥ for all i. Since we also know that qi1 and qi2
are equal up to some constant real multiple, we now get that this multiple
must be 1. So qi1 = qi2 for all i, i.e. q1 = q2, as desired.

□

Using the irreducibility of Q, dimQ ≥ 2 dimN , and p(Q) = N , we get
dimQX ≥ dimN for generic X. Thus ψ is a continuous (Claim 8.3) and
injective (Claim 8.4) map from QX , which is a smooth variety of dimension
at least dimN , to TXN . By invariance of domain, its image must be open.
Now the quadratic differential on X that is zero on all factors is contained in
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QX , and hence the zero vector is in the image of ψ. Since ψ is homogeneous
with respect to R scaling, its image must be similarly homogeneous. Since
the image is also open and contains 0, it must in fact be all of TXN .

Since QX − QX has smaller dimension than QX , we deduce from the
above that ψ(QX) is topologically dense in TXN . As discussed above, all
the vectors in this image are tangent to single-speed geodesics lying in N .
Since the set of vectors with this property is topologically closed (since N is
closed), we’ve proved the desired result.

■

We now want to relax the condition that N be prime. We will decompose
into prime factors. We need to understand how the witness to the GL+(2,R)
property decomposes. For this we will use the following.

Lemma 8.5. Suppose Q ⊆ Q(µ), µ = (κ1, . . . , κm), is a GL+(2,R)-invariant,
irreducible, algebraic set, and that Q does not vary on any component i for
which κi = ∞. Let N = p(Q). Then

dimQ ≤ 2 dimN.

Proof. From the non-varying assumption, we can regard Q as a subvariety
of a stratum Q(µ̃) of multi-component translation surfaces, i.e. none of the
components of µ̃ are ∞. And Q is prime in Q(µ̃) iff it is prime in Q(µ).

We first consider the case when Q is prime. Let X be a smooth point of
N . Consider the map ψ : QX → TXN defined in (11) in proof of Lemma 8.2.
As discussed there, ψ is continuous and injective (using that Q is prime in
Q(µ̃)).

It follows that dimQX ≤ dimTXN = dimN , for X ∈ N sm a smooth
point. Now

dim p−1(N sm) ≤ dimN sm + max
X∈Nsm

dimQX ≤ dimN + dimN.

Now since Q = p−1(N) is irreducible, it equals the closure of p−1(N sm).
Hence we get dimQ ≤ 2 dimN , so we are done in the case Q prime.

Now if Q is not prime, then Q is a product of primes Q = Q1× · · ·×Qk.
We see that each Qi is GL

+(2,R)-invariant, irreducible, algebraic, and does
not vary on any component for which κi = ∞. Set Ni = p(Qi). Then
N = N1 × · · · ×Nk and, by the result for primes,

dimQ = dimQ1 + · · ·+ dimQk ≤ 2 dimN1 + · · ·+ 2dimNk = 2dimN,

and we are done.
■
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Using the above, we next show that the prime factors are also GL+(2,R)-
geodesic.

Proposition 8.6. Let N ⊂ Mg1,n1 × · · · ×Mgk,nk
be a GL+(2,R)-geodesic

subvariety. Suppose N = N1 × N2, where N1 ⊂ Mg1,n1 × · · · × Mgs,ns

and N2 ⊂ Mgs+1,ns+1 × · · · × Mgk,nk
, for some k. Then each Ni is also

GL+(2,R)-geodesic.

Proof. Let Q be a witness that N is GL+(2,R)-geodesic. Let ρi : N → Ni

be the projection. We claim that ρi(Q) is a witness that Ni is GL
+(2,R)-

geodesic. First note that it is irreducible, as it’s the (closure of the) image
under an algebraic map of an irreducible algebraic set.

Properties (i), (ii), (iv) for ρi(Q) follow immediately from the correspond-
ing properties of Q.

For property (iii), since Q ⊂ ρ1(Q) × ρ2(Q) and using property (iii) for
Q, we get

dim ρ1(Q) + dim ρ2(Q) ≥ dimQ ≥ 2 dimN = 2dimN1 + 2dimN2. (12)

Now by Lemma 8.5, dim ρi(Q) ≤ 2 dimNi for each i. Combined with the
above, this implies that in fact dim ρi(Q) = 2 dimNi for each i, which is
property (iii). ■

Finally, we can use the above to relax the condition that N be prime.

Lemma 8.7. Suppose N ⊆ M is any GL+(2,R)-geodesic subvariety. Then
N is infinitesimally totally geodesic.

Proof. Note that the product cover of N is also GL+(2,R)-geodesic (a wit-
ness can be lifted to quadratic differentials over the product cover). We
begin by decomposing this product cover as∏

i

Ni

where Ni are prime. By Proposition 8.6 (and analogous versions of it in
which the components are reordered), each Ni is GL

+(2,R)-geodesic. So we
can apply Lemma 8.2, which yields that each Ni is infinitesimally totally
geodesic. It is easy to see that a product of infinitesimally geodesic subvari-
eties is again infinitesimally totally geodesic. So the product cover of N is
infinitesimally totally geodesic. This implies that N itself is infinitesimally
totally geodesic.

■
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8.2 Proof of Theorem 1.4

We can now prove the main result of the paper.

Proof of Theorem 1.4. By Proposition 7.18, each ∂̊N is GL+(2,R)-geodesic.
Then Lemma 8.7 gives that ∂̊N is infinitesimally totally geodesic, and finally
by Proposition 3.5, it’s totally geodesic.

■

9 Structure of prime totally geodesic subvarieties

In this section we prove Theorem 1.7, using results from the previous sec-
tions. We will first prove two preliminary lemmas, starting with the follow-
ing which gives injectivity of the projection maps on the lift to Teichmüller
space.

Lemma 9.1. Let N ⊂ Mg1,n1 × · · · × Mgk,nk
be prime and GL+(2,R)-

geodesic. Let Ñ be a lift of N to T := Tg1,n1 × · · · × Tgk,nk
. Then for

any distinct points X,Y ∈ Ñ there is a unique single-speed geodesic lying
in Ñ that contains both X,Y . Furthermore, for each i, the projection map
Ñ → Tgi,ni is injective.

Proof. By Lemma 8.2, for a generic point in N and any tangent vector at
that point, there is single-speed geodesic in N tangent to that vector. By
lifting to Ñ , we get that, for a generic X in Ñ , for all v ∈ TXÑ there
is a single-speed geodesic tangent to v and lying in Ñ . As in the proof
of Proposition 3.5, we can deduce from this that any X,Y ∈ Ñ can be
connected by a single-speed geodesic lying in Ñ .

The uniqueness of the geodesic follows from uniqueness of geodesics in
T .

The injectivity statement follows from the existence of the single-speed
geodesic: if X,Y are distinct, then they differ in some factor, but since
there is a single-speed geodesic connecting them, they must then differ in all
factors. ■

Proof of Theorem 1.7. By Proposition 7.18, ∂̊N is GL+(2,R)-geodesic. It
follows easily that its product cover is also GL+(2,R)-geodesic. By Proposi-
tion 8.6, each prime factor Nj of the product cover of ∂̊N in some Mg1,n1 ×
· · · ×Mgk,nk

is also GL+(2,R)-geodesic. Now Lemma 9.1 implies that for a
lift Ñj of Nj to T := Tg1,n1×· · ·×Tgk,nk

, each projection map Φ̃ : Ñj → Tgi,ni

is injective. This means that the map Φ : Nj → Mgi,ni is locally injective in
the orbifold sense, as desired.
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■

Next we show the stronger statement that the projections in the above
theorem are in fact local isometries, in an appropriate sense. We consider
the metric dp from Definition 3.1, for 1 ≤ p ≤ ∞. Suppose N ⊂ M a totally
geodesic subvariety, and Φ : N → M′, where M,M′ are multi-component
moduli spaces, with Teichmüller space covers T , T ′, respectively. We say
that Φ is a dp-local isometry if for any lift Ñ ⊂ T of N , any lift Φ̃ : Ñ → T ′

is a local isometry for dp (this metric is used on domain and target).
(The reason we work with lifts to Teichmüller spaces rather than di-

rectly on multi-component moduli spaces is due to potential issues at orbifold
points.)

Proposition 9.2. With the same setup as Theorem 1.7, for any for 1 <
p <∞, the map Φ is a dp-local isometry.

Proof. As in proof of Theorem 1.7, we see that each Nj is GL+(2,R)-
geodesic. Consider any lift Ñj of Nj to T := Tg1,n1 × · · · × Tgk,nk

. We
claim that Φ̃ : Ñj → Tgi,ni is a dp-isometry, which implies Φ is a dp-local
isometry. Let X,Y ∈ Ñj be distinct. By Lemma 9.1, there exists a single-
speed geodesic arc γ connecting X,Y . This means the projections of γ to
each of the factors of T are all Teichmüller geodesic arcs of the same length
L. Since the dp metric is uniquely geodesic and γ is a geodesic arc for
this metric (see proof of Proposition 3.3), it follows that dp(X,Y ) = L. But
Φ̃(X), Φ̃(Y ) ∈ Tgi,ni are connected by Φ(γ), which we’ve seen also has length
L, and hence dp(Φ̃(X), Φ̃(Y )) = L, and we are done.

■

Example 9.3. The following example shows that local injectivity, in the
orbifold sense, of the projection map in Theorem 1.7 cannot be upgraded
to injectivity, for general GL+(2,R)-geodesic subvarieties (we do not claim
that our example appears as the boundary of a totally geodesic subvariety
of some Mg,n).

It is known [Sch06] that for any genus g ≥ 2, there exist surfaces of genus
g with Veech group Γ(2), the principal congruence subgroup of SL(2,Z)
of level 2. Let N1 ⊂ Mg be the associated Teichmüller curve for such a
surface, and let N2 be the modular curve (stabilizer SL(2,Z)). The index
is [Γ : Γ(2)] = 6. Thus, there is a degree six covering map f : N1 → N2,
which is a local isometry. Now, define the totally geodesic prime subvariety
N ⊂ Mg ×M1,1 to be the graph of f as a map from N1 to N2. Since f is
not injective, the projection ρ2 : N → M1,1 is not injective.
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We note that N is GL+(2,R)-geodesic in the sense of Definition 7.1.
Indeed, consider the following set, defining a witness

Q = {(q, s∗q) : q ∈ QN1} ⊂ QMg ×QM1,1.

The pushforward s∗q is the pushforward of a torus cover as a half-
translation surface, to the torus. Observe that N is prime, as Q is complex
2-dimensional, so cannot be written as a product of a subset in QMg and a
subset in QM1,1. △
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