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Abstract

In this informal expository note, we quickly introduce and survey compactifications
of strata of holomorphic 1-forms on Riemann surfaces, i.e. spaces of translation surfaces.
In the last decade, several of these have been constructed, studied, and successfully
applied to problems. We discuss relations between their definitions and properties,
focusing on the different notions of convergence from a flat geometric perspective.

1 Motivation

The study of holomorphic differentials on Riemann surfaces has been a vibrant area of
research for many years. Differentials have persistently played a major role in the algebro-
geometric study of curves and in Teichmüller theory. The cotangent space of Teichmüller
space at a Riemann surface S is naturally identified with holomorphic quadratic differentials
on S. A somewhat newer aspect is the connection to billiard dynamics. A translation
surface is a Riemann surface equipped with a holomorphic 1-form; one source of these is
unfoldings of rational billiard tables. There is a GL2(R) action on the space of translation
surfaces, which is central to understanding dynamics on individual translation surfaces
as well as Teichmüller geodesic flow. These spaces, which are stratified according to the
multiplicity of zeros of the differential, have rich structure, and admit various interesting
types of geometry.

A fundamental property of these strata is that they are non-compact. This makes the
theory interesting, but also can be a major obstacle; for instance, it means that recurrence
properties of various flows are not automatic. Given a non-compact space, it is often fruitful
to study its compactifications. Here are several reasons for this:

1. The compactification can shed light on the nature of the non-compactness of the
original space. For instance, it might contain information about the number of ends
of the original space.

2. Access to results for compact spaces. This occurs for the basic example of affine
space Cn, which can be compactified by projective space CPn. In CPn, one has
Bezout’s theorem on intersections as well as tools such as Poincaré duality for compact
manifolds. These algebraic and topological motivations apply to strata of differentials.
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3. The recursive structure exhibited by the boundary. Each boundary we will discuss
parametrizes Riemann surfaces and differentials, but on more degenerate (hence sim-
pler) surfaces; thus the compactifications are modular. This makes possible certain
inductive arguments, provided one can achieve suitable degenerations.

Plan of the article. We will first recall in Section 3 the natural Deligne-Mumford com-
pactification of the moduli space of Riemann surfaces. Next we move on to strata of
differentials, discussing the sources of non-compactness in Section 4. We then focus on four
recently constructed compactifications of strata of differentials in the remaining sections.
Several of these have played central roles in recent advances in the theory of translation
surfaces.
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3 Deligne-Mumford compactification

We begin by recalling the Deligne-Mumford [DM69] compactificationMg ofMg, the space
of genus g Riemann surfaces (without any differentials). This turns out to be really the “one”
compactification ofMg. Most of the compactifications of strata of differentials are based in
some way on Deligne-Mumford. It can be defined from the perspective of algebraic geometry,
hyperbolic geometry, or complex analysis. We will discuss the hyperbolic perspective; the
complex analytic one is similar, while the algebro-geometric one is rather different and
involves geometric invariant theory. The basic idea behind the compactification is that
certain curves on the surface can get “short”; in the limit these curves are pinched and the
Riemann surface develops a node. See Figure 1.

To make this slightly more precise, we begin by recalling the augmented Teichmüller
space T̂g, which is a non-compact bordification of Teichmüller space Tg (the orbifold univer-
sal cover of Mg, parametrizing Riemann surfaces with a marking up to homotopy). From
any pants decomposition of Sg, a topological surface of genus g, we get a system of global
Fenchel-Nielsen coordinates. For each cuff of the pants, there is a (hyperbolic) length pa-
rameter taking values in R>0 and a twist parameter taking values in R. Then T̂g is defined
by adding points to Tg for which some cuff lengths in a Fenchel-Nielsen chart are zero; this
space has a natural topology. The new points do not contain any information about the
twist parameter for cuffs that get pinched. For more details, see [Abi77] and references
therein.

The space T̂g is not particularly nice; for instance it is not locally compact, since any
neighborhood of a boundary point contains surfaces with any twist parameter in R for a
pinched cuff curve. However, the action of the mapping class group Mod(Sg) on Tg extends

nicely to T̂g. The Deligne-Mumford compactificationMg is defined to be the quotient, and
it is a very nice space.
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Figure 1: Riemann surfaces in M3 with red curves getting pinched converge to a nodal
Riemann surface in M3. The limit surface lies in a piece of ∂M3 parametrized by M1,2 ×
M1,1 ×M1,1.

Properties. The Deligne-Mumford space has the structure of a smooth compact complex
orbifold. In fact, via the algebro-geometric perspective, it’s a smooth projective variety 1.

To explain the smoothness ofMg at the boundary, note that we can think of length and
twist as like magnitude and angle in polar coordinates for C (the twist for Tg took values in
R, but after quotienting by the action of the mapping class group, in particular the Dehn
twist about the pinched curve, we are left with a value in the circle). Then adjoining points
with zero length parameter is the same as adding in the origin of the polar coordinate
system.

The compactness can be seen by combining (i) the existence of constants Bg (the Bers
constants) such that any surface inMg has a pants decomposition with all cuffs of hyperbolic
length at most Bg, with (ii) the fact that in each genus there are only finitely many types
of pants decompositions, up to the action of the mapping class group.

The boundary ∂Mg := Mg −Mg is essentially a union of certain products of moduli
spaces of lower complexity Riemann surfaces. These Riemann surfaces have punctures
corresponding to the pinched curves; for this reason it is better to start out by generalizing
the problem to compactifying Mg,n, the moduli space of genus g Riemann surfaces with
n punctures/marked points. The boundary ∂Mg is not quite a smooth subvariety of Mg;
it has several irreducible components, which can intersect each other, and some of the
components have self-intersections. However, ∂Mg stills sits rather nicely in Mg; it is a
normal crossing divisor.

Applications. The construction of the projective algebraic varietyMg shows thatMg is
a quasi-projective variety, and thus it has solid footing in the world of algebraic geometry.

Using Mg, it was shown in the landmark paper [HM82] that Mg is a variety of general
type for g ≥ 24; this implies that Mg cannot be “rationally parametrized”. This was

1though because special Riemann surfaces admit automorphisms, in many cases it should be thought of
as a stack
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considered a big surprise at the time.
The compactification has also been used to great effect in Brill-Noether theory, which

studies maps from algebraic curves to projective spaces of various dimensions (in e.g.
[GH80]). One often can show that curves with a certain property form a Zariski open
subset of Mg, but it can be challenging to show that such a set is actually non-empty.
Boundary points of Mg, which are nodal curves, can be helpful in this regard, since, when
sufficiently degenerate, they become combinatorial (and often tractable) to analyze.

Deligne-Mumford space also has various applications in Teichmüller geometry. For in-
stance, in a recent paper [DS21] of the author and Sapir, it’s used to show that no proper
algebraic subvariety of Mg (in particular, a projection of a stratum of differentials) can be
coarsely dense with respect to the Teichmüller metric.

4 Sources of non-compactness of strata

We now equip our surfaces with differentials. We denote by H = H(κ1, . . . , κm) the stratum
of holomorphic differentials (not identically zero) on a compact Riemann surface with zeros
of orders κ1, . . . , κm. For all of the boundaries, it will be crucial to allow marked points;
we take κi = 0 to denote a marked regular point. Later on, we will also need to consider
meromorphic differentials, and we extend the notation above to allow the κi to take negative
integer values, recording the order of a pole of the differential.

The non-compactness of H has three sources discussed in the next subsections. The
fact that these are the only such sources follows from the thick-thin decomposition for flat
surfaces (see [Min92, Section 4.3] and [Raf07]).

4.1 R>0 action

The most obvious source of non-compactness of H is the R>0 action by scaling the differ-
ential. It is generally not useful to add a limit point to a sequence such as X, 2X, 3X, . . .,
where X is some fixed element of H. Instead we will consider compactifications of PH,
the quotient of H by the C∗ action (in what follows P will always denote a quotient by
C∗). Sometimes it is better to quotient by R>0, or, equivalently, to consider only unit-area
surfaces. Quotienting by R>0 retains more information than by C∗, but the disadvantage
is that the resulting space loses its complex analytic structure.

4.2 High modulus flat cylinders

A sequence of surfaces in H with Euclidean cylinders of aspect ratio going to infinity di-
verges. In fact, the underlying Riemann surfaces already diverge, since the cylinders give
conformal annuli of high modulus. This phenomenon already occurs in H(0), the space of
genus 1 flat surfaces with a single marked point; see Figure 2.

All of the compactifications we will consider deal with this source of non-compactness
in the same way. The flat limit of the cylinders is taken to be two half-infinite Euclidean
cylinders. The underlying Riemann surfaces converge to a singular Riemann surface with
a node corresponding to the infinite ends.
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Figure 2: Surfaces in H(0) converging to a meromorphic differential with a pair of simple
poles. The top shows convergence of flat structures, while the bottom depicts convergence
of the underlying Riemann surfaces.

We can also consider the nodal Riemann surface with the node punctured out, and then
fill in with two marked points, giving a smooth compact Riemann surface. The limit of the
holomorphic 1-forms develops simple poles at the marked points. One can see how a simple
pole corresponds to a half-infinite cylinder by pulling back the 1-form dz (which descends
to a 1-form on the Euclidean half-infinite cylinder) to the punctured disc D∗ via the map
z 7→ log z. The new 1-form is d log z = 1

zdz, which has a simple pole at 0. This point should
be thought of as corresponding to the point “at the end” of the half-infinite cylinder.

4.3 Small subsurfaces

One can construct translation surfaces by gluing along slits, and thus it is possible for a
whole subsurface to be very small. The running example we will focus on is the family given
in the middle of Figure 3, in which the whole green and red subsurfaces are getting small
as ε→ 0. There is no analogous phenomenon in the world of hyperbolic surfaces, since the
collar lemma forbids two short hyperbolic closed geodesics from intersecting.

The rest of this article is devoted to describing how the different compactifications deal
with small subsurfaces, and the differences in properties that result. We define them in
order of increasing amount of information remembered about limit points.

5 What You See Is What You Get

The WYSIWYG compactification is in some sense the most straightforward, though it has
the disadvantage that the total space is not particularly nice. The notion of convergence
we will describe was introduced in [McM13], and the WYISWYG space was extensively
studied in [MW17].

The reader should begin by studying Figure 3 to see what convergence in WYSIWYG
is meant to capture.

The way that the WYSIWYG deals with small subsurfaces is to simply forget them.
This is the sense of the word “See” in What You See Is What You Get; since the small
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Figure 3: Convergence of a family of translation surfaces in the WYSIWYG HW . The
surfaces Xε are in the genus 3 stratum H(1, 1, 1, 1), while the limit lies in the genus 0
stratum H(0, 0). Since the red and green subsurfaces get very small, they do not appear in

the limit. The green and red points on X
W

record the location where the green and red
subsurfaces “disappeared”.

parts become microscopic, one does not see them in the limit. Given polygon representa-
tions X,X1, X2, . . . of translation surfaces, perhaps in different strata (and we also allow
disconnected surfaces, and marked points), there is a natural notion of geometric conver-
gence Xn → X: edges of the polygons should converge in the limit. The WYSIWYG space

HW is then defined by attaching to H any surface with marked points (from any stratum)
that can be obtained as such a limit of surfaces in H. Additionally, one attaches surfaces

with infinite cylinders, as described in Section 4.2. This gives HW as a set, and then one
endows it with a natural topology. 2

Note that the limit of a sequence can be disconnected. For instance, start with the
surface on the left in Figure 3, but now shrink the upper blue part, keeping the red and
green subsurfaces fixed size (and shrinking both slits). The limit has two components, cor-
responding to the red and green subsurfaces; it lies in a piece of the boundary parametrized
by H(0)×H(0).

Properties. The quotient PHW is a compactification of HW .
Since GL2(R) acts on all the objects in the definition, there is a natural continuous

extension of its action from H to all of HW .
The WYSIWYG is built out of pieces from various strata. Although each stratum has

nice properties (in particular, each is a quasi-projective algebraic variety), the way that they

2A formal definition of the convergence above goes as follows: there should be maps fn : X − Un → Xn,
diffeomorphisms onto their images, where Un are a decreasing family of open neighborhoods of the marked
points of X, such that (i) the pullbacks of the differentials from Xn converge to the differential on X, and
(ii) the injectivity radius of points in Xn − fn(X − Un) tends to zero.
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Figure 4: Convergence in the Hodge bundleHHB. On X
HB

the blue piece is a component on
which the differentials converge to a non-zero differential. On the green and red components,
the differentials tends to 0, and only the Riemann surface structure here is remembered.

The limit X
HB

lies in a piece of the boundary parametrized by H(0, 0)×M1 ×M1.

are glued together turns out to make the resulting space not so nice. In particular, there
is a natural map from an algebraic variety, the projective Hodge bundle compactification

PHHB (see next section) to PHW , but there is no way to give PHW the structure of an
algebraic variety in such a way that this map is a morphism of varieties [CW21, Theorem
1.1].

Applications. The WYSIWYG compactification has been used to great effect in the
study of GL2(R)-orbit closures in H, a central topic in Teichmüller dynamics. Since the
GL2(R) action extends to the WYSIWYG boundary, the closure in the boundary can be
understood using the same type of tools that apply in H, in particular the results of Eskin-
Mirzakhani [EM18] and Eskin-Mirzakhani-Mohammadi [EMM15], which give that each
GL2(R)-orbit closure is an affine invariant manifold N .

Provided that one can show certain degenerations exist within N , an inductive classifica-

tion strategy using HW becomes possible. Using this, Mirzakhani-Wright [MW18] classified
full rank affine invariant manifolds. This was then generalized in a series of papers, culmi-
nating with [AW23], which classifies high rank affine invariant manifolds.

6 Hodge bundle compactification

The Hodge bundle compactification PHHB records all the data of the WYSWIYG, while
not completely ignoring information about small subsurfaces. Instead, the limit of the
underlying Riemann surfaces of such vanishing subsurfaces is remembered, while any extra
information from the differential is forgotten. See Figure 4.

The above essentially already defines HHB, but to give a more formal description, we
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begin by recalling the definitions of some related spaces. The Hodge bundle ΩMg is the
holomorphic vector bundle over Mg whose fiber over a Riemann surface S is the vector
space of holomorphic 1-forms on S. This bundle has a natural extension to a holomorphic
vector bundle ΩMg over Mg, which we also call the Hodge bundle. The fiber over a nodal
Riemann surface S consists of certain meromorphic 1-forms on S with at worst simples
poles. The condition is that the differential is holomorphic, except possibly at the nodes,
where the differential is allowed to have simple poles; in this case, there must be a simple
pole on both sides of the node, and the residues must be opposite. In terms of flat geometry,
these correspond to pairs of half-infinite cylinders, as in Figure 2. Note that the differential
is allowed to vanish on some (or all) components of S.

The space HHB can then be succinctly defined as the closure of the stratum H in ΩMg.

All of these spaces admit a C∗ action by scaling of differentials, and PHHB is just the
quotient by this action. Since ΩMg is a vector bundle over a compact space, PΩMg is

compact, and hence so is PHHB. We could have also defined the WYSIWYG using these

spaces: HW is the quotient of HHB that identifies two points on the boundary if the result
of removing components where the differentials vanish and filling in the resulting punctures
with marked points yields the same translation surfaces with marked points. From this

perspective, it is easy to see that PHW is in fact compact.

Properties. The space PHHB is a projective algebraic variety, since it is the closure of a

quasi-projective variety inside the projective variety PΩMg
3. HoweverHHB is not a smooth

variety (see [BCG+19, Example 14.1] – this shows the incidence variety compactification is

not smooth, but it can also be adapted to show non-smoothness of HHB).

7 Incidence variety compactification

As we move up in our hierarchy of compactifications, we would like to remember more
flat geometric information about the shape of small subsurfaces. Since the differentials are
converging to zero, the idea is to rescale them so they converge to a non-zero limit. One
imagines having a set of magnifying glasses of various magnifications to look at various
parts of the surface as they are degenerating. In this sense one remembers more than what
one “sees” with just the naked eye in the WYSWIYG.

For the IVC compactification, we start with the Hodge bundle compactification, and
then additionally remember a differential, up to complex scaling, for each component of the
limiting Riemann surface on which the differential vanishes. This space was defined and
studied by Bainbridge-Chen-Gendron-Grushevsky-Möller in [BCG+18].

In Figure 5 we illustrate how our running example of degenerating family converges in
the IVC.

To construct the IVC formally, we start first by defining a slightly simpler compactifi-

cation PHDM , based on the Deligne-Mumford compactification Mg,n with marked points.

3The closure is taken in the Euclidean topology, but for a quasi-projective variety this is the same as the
Zariski closure.
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Figure 5: Convergence in the incidence variety compactification HIV C . On the upper, blue

component of X
IV C

, it remembers a holomorphic differential with marked points. For each
of the green and red surfaces, it remembers a Riemann surface with marked points recording
the location of the zeros of the degenerating differentials. On each, one can find a unique
meromorphic differential, up to complex scaling, with a pole at the node, and zeros at the
marked points; flat pictures of these differentials are shown on the bottom right. Each
can be thought of as a limit when the component is rescaled to converge to something not

identically zero. The limit X
IV C

does not remember the relative sizes of, say, the slits on

the green and red subsurfaces. The piece of the boundary that X
IV C

lies in is parametrized
by H(0, 0)×M1,3 ×M1,3.

9



We leverage the basic complex analytic fact that a holomorphic 1-form on a smooth Rie-
mann surface is determined, up to complex scale, by the locations of its zeros. This im-
plies that for a stratum H with n zeros, there is an embedding PH → Mg,n given by
[(S, ω)] 7→ (S, z1, . . . , zn), where zi ∈ X is the location of the ith zero of ω 4. We then define

HDM to be the closure ofH inMg,n via this embedding. A point on the boundary is a nodal
Riemann surface with marked points, and this combination of data contains information
about the shapes of a sequence of translation surfaces converging to the boundary point.

The IVC is constructed by combining the information of PHDM with that of the Hodge

bundle compactification HHB. We consider the embedding H → ΩMg,n given by (S, ω) 7→
(S, z1, . . . , zn, ω), where again zi ∈ X is the location of the ith zero of ω. Then the IVC

HIV C is defined to be the closure of H in ΩMg,n via this embedding.

Interpretation of boundary points. Points in ∂HIV C remember information about
differentials that are going to zero on some component; however this information is not
directly encoded in a differential, but rather through the limiting locations of the zeros. In
particular, it is not immediately apparent which points in ΩMg,n actually lie in the closure
of H.

The main result of [BCG+18] is a characterization of the closure in terms of differentials
on the components of the limit. A point ΩMg,n lies in the closure of H if it admits a
meromorphic differential on each component that has zeros at the marked points and poles
at some of the nodes, and satisfies some additional explicit conditions. The boundary point
only remembers this meromorphic differential up to complex scaling on each component
separately. In addition to poles of order 1 arising from high-modulus cylinders, poles of
higher order also arise, which give flat surfaces of infinite area – such a pole represents the
larger part of the surface, seen from the perspective of the smaller part. The model for a
pole of order 2 is the point∞ for the differential dz on the Riemann sphere Ĉ; one computes

the order using the coordinate change ζ = 1/z. The green (resp. red) subsurface on X
IV C

in Figure 5 has an order 2 pole, which is the point at infinity in the plane that the green
(resp. red) disc lies in.

Poles of order higher than 2 also arise. The flat picture of such a pole looks like multiple
copies of C glued together along ray slits. Poles that arise often have residues (though this

does not occur for the X
IV C

in our running example). There are various compatibility
conditions on pole orders and residues, notably the Global Residue Condition, needed for

a collection of meromorphic differentials to appear in ∂HIV C .

Properties. We have defined HIV C as the closure of H within an ambient algebraic va-

riety, so its also an algebraic variety, and in fact PHIV C is a projective algebraic variety.
The term incidence variety is used because a point in the image of H has the property
that the marked points of the Riemann surface coincide with zeros of the differential, an

incidence condition. However, HIV C is not a smooth variety; it has fairly serious singular-
ities (see [BCG+19, Example 14.1]; this example uses the multi-scale compactification but

4To define this, we should really start with a finite cover of the stratum H where the zeros are labeled,
which allows us to sensibly speak of the “ith zero”; this is a minor issue.
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Figure 6: Convergence in the multi-scale HMS
. On the upper blue component of X

MS
,

there’s a holomorphic differential with marked points. On the union of the lower green
and red components, there’s a single meromorphic differential, up to complex scaling. The

limit X
MS

remembers the relative sizes of, say, the slits on the green and red subsurfaces,
since they lie on the same (disconnected) surface that is projectivized. It also contains
the combinatorial data of a level graph, shown on the right, which has a vertex for each
component, with an ordering given by the height on the page, and edges between vertices

that share a node. The limit X
MS

lies in a piece of the boundary parametrized by H(0, 0)×
P[H(1, 1,−2)×H(1, 1,−2)].

non-smoothness was suspected earlier).

8 Multi-scale compactification

Degenerating families of differentials often have a natural set of scales associated with dif-
ferent parts of the surface. For instance, in our running example, there is a scale (size
around 1) associated with the blue subsurface, and a smaller scale (size around ε) associ-
ated with the smaller green and red subsurfaces. We would like a compactification that (i)
faithfully remembers the set of scales and their ordering, and (ii) also allows us to compare
sizes/lengths of objects on subsurfaces of the same scale (e.g. on the green and red subsur-
faces in our running example). The IVC is a step towards these goals, but does not fully
achieve either – for instance the limit example in Figure 5 fails (ii). This is because the IVC
relies on recovering differentials, up to complex scaling, from the locations of their zeros; it
does not directly record meromorphic differentials.

The idea of the multi-scale compactification, defined and studied in [BCG+19], is to
fix these deficiencies of the IVC by directly remembering meromorphic differentials, as well
as the ordered set of scales. See Figure 6 to see how this works in our running example,
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Figure 7: Convergence of a different family Yε in HMS
; the red subsurface is now getting

small much faster than the green. The level graph has three levels, which encodes that
blue was much larger than green which was much larger than red. The red and green are

projectivized separately, since they are at different levels. The limit Y
MS

lies in a piece of
the boundary parametrized by H(0, 0)×PH(1, 1,−2)×PH(1, 1,−2). The limit of Yε in the
WYSWIYG, Hodge bundle, and IVC is the same as the limit of Xε; only in multi-scale do
we get different limits.
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and Figure 7 for a different family that has three different scales. Unlike the previous

spaces we’ve discussed, HMS
does not admit a succinct description (that we know of);

its construction takes a great deal of effort. Higher order poles and residues both play
important roles, as in the IVC. There is an additional subtlety that only arises with poles
of order at least 3 called prong matching ; it has to do with different combinatorial choices
for how to glue in such a differential into a higher component.

Properties. The payoff for the hard work of constructing HMS
is that we get a very

nice space. In particular, encoding so much information in limit points results in a space

that is smooth, as a complex orbifold. The boundary ∂HMS
is a normal crossing divisor.

These properties were proved in the original paper [BCG+19]. The first construction was

complex-analytic and did not yield that PHMS
is a projective algebraic variety, but this

has since been shown in two different ways [CCM22, CGH+22].

Applications. The multi-scale compactification has already played a central role in com-
putations of Chern classes and Euler characteristics of strata of differentials [CMZ22]; the
smoothness of the space is crucial, since it allows one to invoke Poincaré duality.

This compactification has also proved useful in the study of affine invariant manifolds.
In work of the author [Doz23], it is used to control the measure of the set of surfaces in an
affine invariant manifold that have multiple short saddle connections. Here the complex-

analytic structure and compactness play key roles, as does the property that, since PHMS

remembers so much information, neighborhoods of boundary points are quite small, which
restricts the geometry of the surfaces that lie in them. Using similar techniques, Bonnafoux
[Bon22] shows that the Siegel-Veech transform of any affine measure is in L2. In [BDG22],

HMS
is used to give a new proof and generalization of Wright’s Cylinder Deformation

Theorem, as well as to better understand the equations that cut out an affine invariant
manifold.

Along these lines, it is hoped that HMS
will be helpful in the classification of affine

invariant manifolds via inductive arguments on the boundary. The WYSIWYG has al-
ready been used in this way, as discussed above. Since the multi-scale remembers more
information, different avenues of attack may be available.

In [Ben22], double ramification loci, which are of great interest in algebraic and sym-
plectic geometry, are interpreted via exact differentials as linear submanifolds of strata, and

their closure is studied via the multi-scale compactification. Very recently in [CMS23], HMS

is used to investigate Chern classes of affine invariant manifolds.

Principal boundary. The principal boundary of a stratum was constructed by Eskin-
Masur-Zorich [EMZ03] well before the compactifications described above had been defined.
They attach to H limits of families of surfaces obtained by shrinking configurations of
parallel saddle connections. Their space does not give a compactification; their purpose
was rather to compute Siegel-Veech constants, which are averages of geometric counts over
strata. Via the Siegel-Veech integral formula, such a constant can be reinterpreted in terms
of the volume of the locus where certain saddle connections are ε-short. This locus be
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GL2(R) action extends
Projectivization is
a projective variety

Smooth orbifold

WYSWIYG HW Yes No No

Hodge Bundle HHB No Yes No

IVC HIV C No Yes No

Multi-scale HMS
No Yes Yes

Table 1: Summary of properties of four compactifications

PHMS PHIV C PHHB PHW

PHDM Mg

Figure 8: Natural maps between the various compactifications fit into a commutative dia-
gram.

thought of as a tubular neighborhood of a degenerate stratum where those saddle connec-
tions have been contracted to zero length. Hence the desired volume is the volume of the
degenerate stratum multiplied by a factor involving ε. These degenerate strata form the
principal boundary.

The principal boundary has been interpreted in [CC19] as a certain nice subset of HIV C

(and it can also be embedded into the multi-scale HMS
; see [Lee23, Section 4]). The

boundary surfaces here all have just two levels.
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