
Counting geodesics on expander surfaces

Benjamin Dozier ∗ Jenya Sapir †

December 5, 2023

Abstract

We study properties of typical closed geodesics on expander surfaces
of high genus, i.e. closed hyperbolic surfaces with a uniform spectral
gap of the Laplacian. Under an additional systole lower bound as-
sumption, we show almost every geodesic of length much greater than√
g log g is non-simple. And we prove almost every closed geodesic of

length much greater than g(log g)2 is filling, i.e. each component of
the complement of the geodesic is a topological disc. Our results apply
to Weil-Petersson random surfaces, random covers of a fixed surface,
and Brooks-Makover random surfaces, since these models are known
to have uniform spectral gap asymptotically almost surely.

Our proof technique involves adapting Margulis’ counting strategy
to work at low length scales.
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1 Introduction

Let X be a connected, closed, orientable hyperbolic surface. It is easy to
see that the shortest closed geodesic on X is always simple, i.e. does not
self-intersect. The number of simple geodesics less than a given length grows
polynomially [Riv01, Mir08], while the total number of closed geodesics
grows exponentially (by work of Delsarte, Huber, and Selberg; see [Bus10]
for references). Thus non-simple closed geodesics must eventually become
predominant. At what length scale does the transition occur?

We refer to this as the “birthday problem” for geodesics, by analogy
with the basic probability question about the number of uniform, indepen-
dent samples with replacement from a collection of n objects needed before
some object is picked multiple times. The answer will depend on particular
geometric features of the surface. In this paper, we address this question for
expander surfaces. We also study the question of the length scale at which
almost all closed geodesics are filling, i.e. each component of the complement
of the geodesic (projected to the surface X) is a topological disc.

The Laplace operator on X has a discrete spectrum and always has a
simple eigenvalue of 0. The spectral gap is the distance to the next smallest
eigenvalue. For δ > 0 we say that X is a δ-expander surface if its spectral
gap is greater than δ. This terminology is motivated by an analogous and
much studied concept for graphs. Families of δ-expander surfaces exhibit
many interesting properties such as fast mixing of geodesic flow and lower
bound on Cheeger constant. Random constructions typically give expander
families.

We denote by N(X,L), respectively Nsimp(X,L), the number of closed
geodesics, respectively simple closed geodesics, on X of length at most L.
The systole of a hyperbolic surface is the length of the shortest closed
geodesic.

Theorem 1.1. Let δ, s0, ε > 0. There exists a constant c = c(δ, s0, ε) such
that for any δ-expander surface X of genus g with systole at least s0, and
any L > c

√
g log g,

Nsimp(X,L) ≤ ε ·N(X,L).

Conjecture 1.2. In the above, one can replace the condition L > c
√
g log g

by L > c
√
g.

Wu and Xue have recently proved the analogous conjecture for the spe-
cific case of Weil-Petersson random surfaces [WX22, Theorem 4, part (2)].
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It is also conceivable that the theorem (and conjecture) hold for all sur-
faces X (with no assumption about spectral gap or systole).

Asymptotic notation. In this paper, we use Hardy’s notation A ≺ B to
mean A = o(B) as the independent variable (typically the genus g) goes to
∞.

Remark 1.3. For the regime L ≺ √g, whether Nsimp(X,L) is dominant
depends on more aspects of the geometry of the surface, beyond spectral
gap and systole lower bound.

On the one hand, in this regime Weil-Petersson random surfaces will
have Nsimp(X,L) > (1 − ε)N(X,L) asymptotically almost surely [WX22,
Theorem 4 (1)].

On the other hand, surfaces obtained by gluing fixed hyperbolic pairs of
pants (say with all cuffs of length 2) according to a random regular graph,
with any twists, asymptotically almost surely form an expander family with
lower bound on systole. This follows by combining (i) a comparison of the
Cheeger constant for the surface to that of the graph [Bus78, Section 4.1],
and (ii) the well-known lower bound on Cheeger constant for random reg-
ular graphs. For these surfaces, we anticipate that Nsimp(X,L) ≺ N(X,L)
whenever L→∞ with g (so including many cases in which L ≺ √g), since
every time a geodesic enters a pair of pants it has a definite chance of picking
up a self-intersection before leaving. 4

Let Nfill(X,L) denote the number of filling closed geodesics on X of
length at most L.

Theorem 1.4. Let δ, s0, ε > 0. There exists a constant c = c(δ, s0, ε) such
that for any δ-expander surface X of genus g with systole at least s0 and
any L > c · g(log g)2,

Nfill(X,L) ≥ (1− ε)N(X,L).

Remark 1.5. It is conceivable that the L > c · g(log g)2 condition can be
weakened to L > c · g log g, though some new methods would be necessary.
Our technique relies on sampling the geodesic at times that are at least
c log g apart, in order to ensure independence. But we believe one should be
able to argue with less independence.

We do not anticipate that the bound can be made smaller than c ·g log g.
We now sketch a reason for this. Consider the surfaces glued from fixed size
pants described Remark 1.3. Any filling closed geodesic must intersect every
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pair of pants, and for the decomposition into fixed size pants, we anticipate
that this event is governed by the classical “coupon collector problem.” This
is the problem of determining how many independent, uniform draws (with
replacement) from a collection of n different objects are needed before it is
highly likely that every object has been drawn at least once. The transition
from low to high probability occurs around c · n log n draws. This also
matches the solution to the analogous “cover time” problem for random
regular graphs [BK89, CF05].

However, we anticipate surfaces sampled from the three random models
we discuss below to behave differently. In particular we do not anticipate
that such surfaces have a decomposition into pants of bounded size. For
these models, it is conceivable that the result above might hold for L > c ·g,
as suggested in [WX22, Question p.5] (for the Weil-Petersson model). 4

1.1 Applications to random surfaces

We now give applications of Theorem 1.1 to several different models of ran-
dom surfaces. There is also an analogous story for random regular graphs
[DS22].

1.1.1 Weil-Petersson random surfaces

Our original inspiration for this project was [LW21, Conjecture 2], which
concerns the birthday problem for Weil-Petersson random surfaces. While
we were writing up our results, this conjecture was resolved in a very precise
manner in [WX22]. Our methods give a very different proof of part of that
result. We require a length lower bound that is larger than the optimal one
by a factor of log g. On the other hand, our techniques allow us to study
other random models as well, described below.

Let PWP
g [·] denote the probability of some event with respect to surfaces

drawn from the Weil-Petersson measure on Mg, the moduli space of genus
g hyperbolic surfaces.

Corollary 1.6 (Weil-Petersson surfaces). Fix ε > 0, and let L be some
function of genus g.

(i) (Weaker version of [WX22], Theorem 4) If L � √g log g, then

lim
g→∞

PWP
g [Nsimp(X,L) < ε ·N(X,L)] = 1.
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(ii) If L � g · (log g)2, then

lim
g→∞

PWP
g [Nfill(X,L) ≥ (1− ε) ·N(X,L)] = 1.

Proof. Fix η > 0. By [Mir13, Theorem 4.2], we can find s0 > 0 such that

lim
g→∞

PWP
g [systole(X) > s0] > 1− η. (1)

Also by [Mir13, Theorem 4.8], there exists a δ > 0 such that

lim
g→∞

PWP
g [X is δ-expander] = 1. (2)

Now for this δ, s0, ε, we apply Theorem 1.1. For the constant c from
this theorem, we have, by (1) and (2), for all g sufficiently large, and any
L′ > c

√
g log g:

PWP
g [Nsimp(X,L

′) < ε ·N(X,L′)] > 1− η.

In particular, for our L � √g log g we have

lim
g→∞

PWP
g [Nsimp(X,L) < ε ·N(X,L)] > 1− η.

Since this holds for any η > 0, we get (i).
The proof of (ii) follows the same pattern, using Theorem 1.4. �

1.1.2 Random covers

Let Y be a fixed closed hyperbolic surface. The random cover model of
random hyperbolic surfaces gives a finitely-supported probability measure
on Mg for each g such that the Euler characteristic 2 − 2g is a a multiple
of χ(Y ); it is simply counting measure on the set of all genus g Riemannian
covers of Y .

Let PYg [·] denote the probability of some event with respect to surfaces
in Mg drawn from this random cover measure.

Corollary 1.7 (Random covers). Fix ε > 0, and let L be a function of
genus g.

(i) If L � √g log g, then

lim
g→∞

PYg [Nsimp(X,L) < ε ·N(X,L)] = 1.
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(ii) If L � g · (log g)2, then

lim
g→∞

PYg [Nfill(X,L) ≥ (1− ε) ·N(X,L)] = 1.

Proof. The structure of the proof is the same as proof of Corollary 1.6.
Control of the systole for random covers is easy. For any cover X of Y ,

we have systole(X) ≥ systole(Y ), since any closed geodesic γ on X projects
to a closed geodesic on Y with length at most `X(γ).

To control spectral gap, we appeal to [MNP22, Theorem 1.5], which gives
that there exists δ > 0 (depending on Y ) such that

lim
g→∞

PYg [X is δ-expander] = 1. (3)

(The δ can be taken to be any real less than min{λ1(Y ), 3/16}.)
The rest of the proof is identical to proof of Corollary 1.6, using Theo-

rem 1.1 and Theorem 1.4. �

1.1.3 Brooks-Makover (Belyi) random surfaces

Yet another model of random hyperbolic surfaces was introduced in [BM04].
Gluing together ideal hyperbolic triangles (“midpoint to midpoint”) ac-

cording to a trivalent ribbon graph yields a cusped hyperbolic surface. Such
a surface can be compactified by considering the corresponding punctured
Riemann surface, filling in the puncture, and then taking the uniformizing
hyperbolic metric in the conformal class of this closed Riemann surface.

Fix an integer 2n and choose the trivalent ribbon graph uniformly at
random from the (finite) collection of such on 2n vertices. The resulting
closed surface is a Brooks-Makover random surface, and we get a finitely-
supported probability measure on the set of hyperbolic surfaces. The genus
of the surfaces in the support is not determined by n (though much is known
about the distribution of genus; see [Gam06, Corollary 5.1]). We denote by
PBMn [·] the probability of some event with respect to surfaces drawn from
this measure.

Corollary 1.8 (Brooks-Makover surfaces). Fix ε > 0, and let L be a func-
tion of n (half the number of triangles).

(i) If L �
√
n log n, then

lim
g→∞

PBMn [Nsimp(X,L) < ε ·N(X,L)] = 1.
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(ii) If L � n(log n)2, then

lim
g→∞

PBMn [Nfill(X,L) ≥ (1− ε) ·N(X,L)] = 1.

Proof. Although the genus of the surfaces in the support of PBMn is not
deterministic, it will be enough for our purposes to use a simple linear upper
bound:

n− 1 ≥ 2g − 2.

This is easily proved via the Euler characteristic formula with e = 3f/2 = 3n
and v ≥ 1, where v, e, f are the number of vertices, edges, faces, respectively,
of the triangulation.

Combining this inequality with our assumption that L �
√
n log n, we

then get that our function L satisfies

L � √g log g,

for g the genus of any surface in the support of PBMn .
By [BM04, Theorem 2.2 (a), (c)], there exist constants δ > 0 and s0 > 0

such that

lim
n→∞

PBMn [systole(X) > s0] = 1,

lim
n→∞

PBMn [X is δ-expander] = 1.

Item (i) then follows by applying Theorem 1.1, as for the previous two
random models. Item (ii) is proved similarly, using Theorem 1.4.

�

1.2 Relation to prior work

The issue of the relative frequency of simple geodesics compared to all
geodesics arises when studying the spectral gap, in particular for random
surfaces (see [LW21, WX21, AM23]). More broadly, this paper fits into a
line of work on the “shape of a random hyperbolic surface of high genus”,
pioneered by Brooks and Makover [BM04] for surfaces glued from triangles,
and by Mirzakhani [Mir13] for the Weil-Petersson model. For behavior of
geodesics in this context, see for example [GPY11, MP19, MT22, NWX23].
A recent major triumph in this area is the use of a random construction to
prove the existence of family of closed hyperbolic surfaces of growing genus
and spectral gap approaching 1/4 [HM21]. Our main theorem is not in the
random setting, but involves conditions that common models of random
surfaces satisfy, so our results apply to these, as discussed above.
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1.3 Discussion and outline of proof

The key to our proofs is transfering probabilistic arguments for the “birth-
day” and “coupon-collector” problems into the hyperbolic geometry setting
using techniques of Margulis for counting closed geodesics. Our methods are
very flexible and should be applicable to other counting problems. We de-
velop a toolbox for translating results that hold for walks on regular graphs
to the surface context.

A crucial ingredient in Margulis’ approach is mixing of the geodesic flow;
in our setting we need effective mixing, which follows from the spectral gap
assumption. We also show that effective mixing in fact implies effective
multiple mixing, using the expansion/contraction properties of hyperbolic
geodesic flow. Multiple mixing can be thought of as a notion of independence
(it corresponds to the Markovian property of random walks on graphs).

A significant difference between the graph and surface contexts is that a
geodesic returning close to where it has been before is not enough to guar-
antee a self-intersection (there are arbitrarily long simple closed geodesics
on a fixed surface; these must come back very close to previously visited
places, but the different strands near such a place are nearly parallel). So
instead we work with a more restrictive property, namely that the geodesic
comes back near where it has been and at definite angle bounded away from
zero. This does guarantee a self-intersection.

There are various technical complications that arise because we must
discretize our surface in order to leverage the analogy with graphs. Fur-
thermore, we must do this discretization in a “uniform” way across different
surfaces with genus going to infinity.

Outline of proof.

• In Section 2, we prove results on effective mixing, and effective multiple
mixing, of the geodesic flow on expander surfaces, using a theorem of
Ratner. The sets for which we prove mixing are “flow boxes”.

• In Section 3, we prove an effective prime geodesic theorem, Theo-
rem 3.1, for expander surfaces. We follow the strategy of Margulis,
using the effective mixing result developed in the previous section.

• In Section 4, we prove the required upper bound on the number of
simple geodesics, Proposition 4.17, and then combine this with our
effective prime geodesic theorem to prove Theorem 1.1.
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– In Section 4.1, we demonstrate the ideas in the proof of Proposi-
tion 4.17 by first proving an analogous discrete probability result.

– In Sections 4.2 - 4.6, we work towards bounding the number of
simple closed geodesics of length roughly L that pass through
some flow box B (Proposition 4.13).

– In Section 4.2, we find a collection of 2g − 2 pairs of flow boxes
with the property that if a geodesic passes through both flow
boxes in a pair, it is forced to self-intersect.

– In Sections 4.3.1 - 4.3, we control the set of directions that do
not pass through any pair of these flow boxes. We do this by
breaking up such directions further into sets R that avoid too
many of our flow boxes, and Qk that often pass through one
flow box of a pair, but not both. We control these separately in
sections Section 4.3.1 and Section 4.3.2.

– In Section 4.6 we prove Proposition 4.13. To do this, we impose
the condition that the geodesics return to B, and then translate
our measure bounds into a bound on the number of simple closed
geodesics hitting B.

– In Section 4.7, we average the previous count over all possible
flow boxes B to bound the number of simple closed geodesics of
length at most L in Proposition 4.17.

• In Section 5, we prove Theorem 1.4 on filling geodesics. We first
construct a controlled set of flow boxes with the property that any
closed geodesic that intersects all of them must be filling. We then
show that most sufficiently long closed geodesics intersect all of these
flow boxes.

1.4 Acknowledgements

We thank Mike Lipnowski, Bram Petri, Katie Mann, and Alex Wright for
helpful conversations and comments. And we thank Michael Magee for
raising the question to us of counting closed geodesics on random cover
surfaces.

2 Effective mixing and multiple mixing

In this section we establish effective mixing, and effective multiple mixing,
of the geodesic flow on expander surfaces, using results of Ratner. Some
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restriction has to be put on the sets used for mixing. We use “flow boxes”,
which can be described in the universal cover, and thus behave in a uniform
manner as we increase the genus. These give a good way of discretizing the
unit tangent bundle of our surfaces.

2.1 Notation and setup

We let T 1X be the unit tangent bundle to X. There is a natural measure µ
on T 1X, the Liouville (or Haar) measure. We normalize µ to be a probability
measure, i.e. µ(T 1X) = 1.

Matrices for geodesic and horocylic flows. Let

gt =

(
et/2 0

0 e−t/2

)
, hsr =

(
1 r
0 1

)
, hur =

(
1 0
r 1

)
.

We identify PSL2(R) with T 1H via the map that takes a matrix A to the
image Av0, where v0 is the upwards pointing unit tangent vector at i ∈
H, under (the derivative of) the Möbius action. Under this identification,
gt, h

s
r, h

u
r generate the geodesic, stable (contracting) horocycle, and unstable

(expanding) horocycle flows, respectively, via multiplication on the right,
e.g. gt(Av0) = Agtv0. These flows preserve the measure µ.

Flow boxes B(v). We define flow boxes according to three parameters
η1, η2, η3 > 0. For each v ∈ T 1X, we let

B(v) := {hur1gth
s
r2v : |r1| < η1/2, |t| < η2/2, |r2| < η3/2},

which we refer to as the η1 × η2 × η3 flow box centered at v. By η flow box,
we will mean an η × η × η flow box.

We say an η flow box is embedded if the map (r1, t, r2) 7→ hur1gth
s
r2v is

an injection on the domain |r1|, |t|, |r2| < η/2. For η small, the coordinates
r1, t, r2 on a flow box behave almost exactly like standard coordinates on a
Euclidean rectangular box.

For technical purposes, given B = B(v) an η flow box, we also define
B+ to be the 3η flow box centered at v. Likewise B++, B− are flow boxes
of size 9η and η/3, respectively, centered at v.

2.2 Effective mixing for flow boxes
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Lemma 2.1 (Effective mixing for flow boxes). There exists some function
f(η, ε) such that for any δ > 0, there exists κ = κ(δ) > 0 with the following
property. Let X be a δ-expander surface, v, w ∈ T 1X, and η > 0 such that
the 3η flow boxes B+(v) and B+(w) are embedded. Then for any ε > 0,

µ (gtB(v) ∩B(w)) = µ(B(v))2 ·
(

1 +O(ε) +
1

µ(B(v))
O(f(η, ε)te−κt)

)
,

for all t > 0, where the constants in the O(·) terms are absolute.

Proof. Note that µ(B(v)) = µ(B(w)) for any v, w unit tangent vectors on
surfaces of the same genus (assuming the flow boxes are embedded). Let
χεB(v) be a smooth (C∞) approximation to the indicator function χB(v). We
choose these approximating functions uniformly over the possible choices of
X and v, i.e. the restriction of the function to a small neighborhood of B(v)
looks the same over all such X, v. Specifically, we take, for each η and ε, an
η flow box B in T 1H, and then define χεB such that

(i) 0 ≤ χεB ≤ 1,

(ii) µ(support(χεB)) ≤ (1 + ε)µ(B).

(iii) support(χεB) ⊂ B+.

Then for any X, v such that the relevant boxes are embedded, note that
there is an isometry between a small ball in X and a small ball in H, such
that the induced action on unit tangent bundles takes v to the center of B.
We then define χεB(v) on B+(v) by pulling back χεB along this map; on the

complement of B+(v), we take the value of χεB(v) to be 0.
Then let

hv := χεB(v) −
∫
X
χεB(v)dµ.

Note hv has mean 0 and is smooth.
Now we apply [Mat13, Theorem 2] (which is in terms of the spectrum of

the Casimir operator, but, as remarked on p. 473 of that paper, the bottom
part of the spectrum of Casimir and Laplace operators coincide). This is an
explicit version of [Rat87], and gives that there exists an absolute constant
c, and a κ > 0 depending on δ, such that for any t ≥ 1,

〈gthv, hw〉 ≤
[
c‖L3

Whv‖
(
‖hw‖+ c‖L3

Whw‖
)

+ c‖L3
Whw‖

(
‖hv‖+ c‖L3

Whv‖
)

(4)

+ c
(
‖hv‖+ c‖L3

Whv‖ )( ‖hw‖+ c‖L3
Whw‖

) ]
te−κt, (5)
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where ‖ · ‖ is the (L2, µ) norm, and LW denotes the Lie derivative in the W
direction, where

W =

(
0 1
−1 0

)
∈ sl2(R).

Now

‖L3
Whv‖2 = ‖L3

Wχ
ε
B(v)‖

2 (6)

≤ sup
∣∣∣L3
Wχ

ε
B(v)

∣∣∣2 · µ(support(χεB(v))
)

(7)

≤ f(η, ε) · (1 + ε)µ(B(v)), (8)

where we take f := sup
∣∣∣L3
Wχ

ε
B(v)

∣∣∣2. This does not depend on X or v,

because of our uniform definition of the χεB(v) and the fact that LW is a
local differential operator.

Now, using that µ is a probability measure, we get

‖hv‖2 =

∫ (
χεB(v)

)2
dµ−

(∫
χεB(v)dµ

)2

≤
∫ (

χεB(v)

)2
dµ ≤ (1 + ε)µ(B(v)),

(9)

and we also get the same bounds for hw. Using (9) and (8) in (5) gives

〈gthv, hw〉 ≤ f(η, ε) · µ(B(v)) · te−κt

for some new f only depending only on η, ε. Then, using that hv, hw, gthv
have mean 0, we get

〈gtχεB(v), χ
ε
B(w)〉 =

〈
gt

(
hv +

∫
χεB(v)dµ

)
, hw +

∫
χεB(w)dµ

〉
(10)

=

〈
gthv +

∫
χεB(v)dµ, hw +

∫
χεB(w)dµ

〉
(11)

=

∫
χεB(v)dµ

∫
χεB(w)dµ+ 〈gthv, hw〉 (12)

=

∫
χεB(v)dµ

∫
χεB(w)dµ+O

(
f(η, ε) · µ(B(v)) · te−κt

)
,

(13)

where the implied constant in O(·) is absolute.
The above discussion only used the properties (i) and (ii) of the smoothed

indicator function χε. Now to get an upper approximation, we pick χεB(v)
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with the additional property that χB(v) ≤ χεB(v) and
∫
χεB(v)dµ ≤ (1 +

ε)µ(B(v)). Then (13) gives

µ(gtB(v) ∩B(w)) = 〈gtχB(v), χB(w)〉
≤ 〈gtχεB(v), χ

ε
B(w)〉

=

∫
χεB(v)dµ

∫
χεB(w)dµ+O

(
f(η, ε) · µ(B(v)) · te−κt

)
≤ (1 + ε)2µ(B(v))µ(B(w)) +O

(
f(η, ε) · µ(B(v)) · te−κt

)
≤ µ(B(v))2

(
1 + 2ε+ ε2 +

1

µ(B(v))
O
(
f(η, ε) · te−κt

))
,

which gives us the upper bound part of the desired result.
For the lower bound, we pick χεB(v) satisfying (i) and (ii) and also χεB(v) ≤

χB(v) and
∫
χεB(v)dµ ≥ (1− ε)µ(B(v)). Then (13) gives

µ(gtB(v) ∩B(w)) = 〈gtχB(v), χB(w)〉
≥ 〈gtχεB(v), χ

ε
B(w)〉

=

∫
χεB(v)dµ

∫
χεB(w)dµ+O

(
f(η, ε) · µ(B(v)) · te−κt

)
≥ (1− ε)2µ(B(v))µ(B(w)) +O

(
f(η, ε) · µ(B(v)) · te−κt

)
,

which then gives us the lower bound in the desired result. This completes
the proof. �

2.3 Effective multiple mixing

We now prove effective multiple mixing for any finite number k of flow boxes.
The result follows from effective mixing and the expansion/contraction (Anosov)
property of the geodesic flow. Note the error term becomes bad as k in-
creases; we only use the result for small k.

Theorem 2.2 (Effective multiple mixing). Fix δ, ε, η > 0. Then there exists
some c > 0 with the following property. Let X be any δ-expander surface,
and B1, . . . , Bk ⊂ T 1X be η flow boxes. Given t1, . . . , tk ≥ 0, define

Sk := {v : gt1v ∈ B1, . . . , gtkv ∈ Bk}.

Then

µ(B)k(1− ε)k ≤ µ (Sk) ≤ µ(B)k(1 + ε)k

whenever ti− ti−1 ≥ c log g for each i ≥ 1. (Here B is any of the flow boxes,
which all have the same µ measure.)
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contracting
expanding

flow

Figure 1: The geometric mechanism that allows one to prove (effective) mul-
tiple mixing, using mixing. In the middle box, the red components, coming
from a condition on the past, are “perpendicular” to the blue components,
which come from a condition on the future. This is the analog in the hyper-
bolic dynamics setting of the Markov property for random walks.

Proof. The upper and lower bounds follow from Lemma 2.3 and Lemma 2.4
below, respectively. �

An obstacle in proving Theorem 2.2 is the phenomenon of edge effects,
which means the shape of some components of intersection differs from the
typical shape. To deal with edge effects we enlarge/shrink our flow boxes
slightly, getting upper and lower bounds in the next two lemmas.

For each i, we define B+ε
i to be the (1 + ε)η parameter flow box with the

same center as Bi.

Lemma 2.3. With the same setup as in Theorem 2.2, there exist sets
S̄1, . . . , S̄k such that for each j

(i) Sj ⊂ S̄j

(ii) µ(S̄j) ≤ µ(B+ε)j(1 + ε)j

(iii) Every component of S̄j has full width in contracting direction, and
width e−tjη in expanding direction.

Proof. We will prove the result by induction on j. For j = 1, we take
S̄j := Sj , and the properties trivially hold.
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So assume we have already constructed S̄j−1.
Now by Lemma 2.1, we can choose c > 0 such that if tj − tj−1 > c log g,

then

µ
(
B+ε
j−1 ∩ g−(tj−tj−1)B

+ε
j

)
= µ(B+ε)2(1 +O(ε)),

where the implicit constant in O(·) is ≤ 1. We have used that the 1
µ(B(v))

factor in the error term in Lemma 2.1 is comparable to 1/g (since B(v) is
fixed size, while µ is defined to be a probability measure).

Now consider B+ε
j−1 ∩ g−(tj−tj−1)B

+ε
j . A bounded number of the com-

ponents of this set interact with the edges of B+ε
j−1 or B+ε

j , but no such
component contains a point in gtj−1Sj−1 (for this we need the gap c log g
between times to be sufficiently large, and larger when B+ε is only a slight
enlargement of B; since we choose c after ε, this is not an issue). So we throw
out all such components, leaving a set F ⊂ B+ε

j−1∩ g−(tj−tj−1)B
+ε
j . From the

expansion/contraction dynamics, we see that each component of F has width
e−tj+tj−1η in the expanding direction, full width in the contracting direction,
and average width η/2 in the flow direction (by applying mixing to some-
what smaller flow boxes). It follows that there are 2etj−tj−1µ(B+ε)(1+O(ε))
components of F .

Now let
S̄′j :=

(
gtj−1S̄j−1

)
∩ F,

S̄j := g−tj−1(S̄′j).

By the inductive hypothesis, the containment statement (i) for S̄j−1
holds, and combined with the way F was defined, we have that Sj ⊂ S̄j ,
giving (i).

By the inductive hypothesis for (iii), we get that each component C of
gtj−1S̄j−1 has full width in expanding direction, and width e−tjη in contract-
ing direction. And from the above discussion defining F , we know about the
shapes of each of its components C′. It is not necessary for C to intersect C′
(because of offset in the flow direction), but if they do, then their intersec-
tion has width e−(tj−tj−1)η in the expanding direction, and width e−tj−1η in
the contracting direction. See Figure 1. Applying g−tj−1 gives the desired
statement (iii) about the structure of each component of S̄j .

For the measure statement (ii), observe that for each fixed component C
of gtj−1S̄j−1, the average of µ(C ∩ C′) over components C′ of F equals

AC := µ(C)e−(tj−tj−1)/2.
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So

µ(S̄j) = µ(S̄′j)

=
∑
C

∑
C′
µ(C ∩ C′)

=
∑
C

#comp (F ) ·AC

=
∑
C

(
2etj−tj−1µ(B+ε)

)
(1 +O(ε))

(
µ(C)e−(tj−tj−1)/2

)
= µ(B+ε)(1 +O(ε))

∑
C
µ(C)

= µ(B+ε)(1 +O(ε)) · µ(gtj−1S̄j−1)

= µ(B+ε)(1 +O(ε)) · µ(B+ε)j−1(1 +O(ε))j−1 (by induction)

= µ(B+ε)j(1 +O(ε))j ,

and in the above the constant in the O(·) is ≤ 1, so we get the desired result.
�

For each i, we define B−εi to be the (1− ε)η parameter flow box with the
same center as Bi.

Lemma 2.4. With the same setup as in Theorem 2.2, there exist sets
S̄1, . . . , Sk such that for each j

(i) Sj ⊃ S̄j

(ii) µ(S̄j) ≥ µ(B−ε)j(1− ε)j

(iii) Every component of S̄j has full width in contracting direction, and
width e−tjη in expanding direction.

Proof. The proof is very similar to that of Lemma 2.3. �

3 Effective prime geodesic theorem

Using techniques developed by Margulis ([Mar04], also see [KH95, Section
20.6]) and effective mixing (Lemma 2.1), we prove the following effective
version of the prime geodesic theorem, for surfaces with definite spectral gap.
While we were writing this paper, Wu-Xue proved a related result [WX22,
Theorem 2]; they use the Selberg Trace Formula, which is a fundamentally
different approach.
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Theorem 3.1 (Effective prime geodesic theorem). Fix δ > 0, s0 > 0, ε > 0.
There exists a constant c = c(δ, s0, ε) such that for any δ-expander surface
X of genus g with systole greater than s0, and L > c log g,

1− ε ≤ N(X,L)

eL/L
≤ 1 + ε.

Proof. The only ways in which we will use the particular geometry of the
surface X are (i) a lower bound on systole to ensure that the flow boxes are
embedded, and (ii) the rate of mixing.

Choose η small, which for now means less than s0; later we will send η
to 0. For η sufficiently small, any embedded η flow box B := B(v) behaves
very much like a product.

Now we study the sets gtB ∩B. By Lemma 2.1,

µ(gtB ∩B) = µ(B)2
(

1 +O(ε′) +
1

µ(B)
O(f(η, ε′)te−κt)

)
, (14)

for any choice of ε′ > 0, where f(η, ε′) is some function that does not depend
on the genus of the surface or the tangent vector v, and κ > 0 only depends
on δ.

We now study the geometry of each component of gtB ∩ B. If we ap-
ply geodesic flow gt to B, in the contracting horocycle direction it gets
contracted by a factor of e−t, in the flow direction its width remains un-
changed, and in the expanding horocycle direction it gets expanded by a
factor of et. This follows from the identity:

hur1 gt′ h
s
r2 gt = gt h

u
r1et

gt′ h
s
re−t

(recall that the flows are applied on the right).
It follows from this description of gtB that the set gtB ∩ B consists

primarily of “full components” of intersection that have thickness ηe−t in
the contracting direction while spanning all of B in the expanding direction.
By applying Lemma 2.1 to somewhat smaller flow boxes, we see that on
average each full component extends close to 1/2 way through B in the
g direction, with the actual amount differing multiplicatively from 1/2 by
the same form of error term as in (14). There are also a number of other
components that either (i) have smaller thickness in the contracting direction
because they lie near the extreme parts of B in the hs direction, or (ii) do
not span all of B in the expanding direction. But the number of components
of types (i) and (ii) is O(1), specifically the total number is bounded above
by 6.
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It follows from this description and (14) that

#comp(gtB ∩B) =
µ(gtB ∩B)

average volume of each component
+O(1) (15)

=
µ(B)2

(
1 +O(ε′) + 1

µ(B)O(f(η, ε′)te−κt)
)

1
2e
−tµ(B)

(
1 +O(ε′) + 1

µ(B)O(f(η, ε′)te−κt)
) +O(1)

(16)

= 2etµ(B)

(
1 +O(ε′) +

1

µ(B)
O(f(η, ε′)te−κt)

)
+O(1).

(17)

Now components of gLB ∩ B correspond (up to a small additive error)
to closed geodesics of length in [L − η, L + η] with a distinguished time η
segment during which it passes through B, the number of which we denote
by N(B,L, η). This is due to Anosov Closing Lemma (Lemma 6.1, which
applies at all length scales). So, combined with (17), we get

N(B,L, η) = 2eLµ(B)

(
1 +O(ε′) +

1

µ(B)
O(f(η, ε′)Le−κL)

)
+O(1).

To count the number N(X, [L−η, L+η]) of all closed geodesics of length
in [L − η, L + η] we apply the above results over all B (which all have the
same measure, denoted µ(B)), giving

N(X,L− η, L+ η) · L · µ(B)

= (1 + o(1))
∑

|γ|∈[L−η,L+η]

∫ |γ|
t=0

(∫
T 1X

χ{v:γ(t)∈B}dµ(v)

)
dt

= (1 + o(1))

∫
T 1X

∑
|γ|∈[L−η,L+η]

(∫ |γ|
t=0

χ{v:γ(t)∈B}dt

)
dµ(v)

= (1 + o(1))

∫
T 1X

η ·N(B,L, η)dµ(v)

= (1 + o(1))η

[
2eLµ(B)

(
1 +O(ε′) +

1

µ(B)
O(f(η, ε′)Le−κL)

)
+O(1)

]
.

The 1+o(1) error term in the above is present since the geodesics counted
don’t all have length exactly L; the o(·) is as η → 0. In the above we have
summed over geodesics γ and picked a (unit-speed) parametrization γ(t)
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of each; the summands do not depend on the choice of parametrization.
Rearranging gives

N(X,L− η, L+ η) = (18)

2ηeL

L
(1 + o(1))

(
1 +O(ε′) +

1

µ(B)
O(f(η, ε′)Le−κL)

)
+
η ·O(1)

L · µ(B)
.

(19)

We then sum the above over values up to L, and take η small, so that the
sum of the main terms 2ηeL/L is well-approximated by

∫ L
s0
et/tdt (recall that

we are assuming the systole is greater than s0, hence N(X, s0) = 0, which
is why we can take the lower bound of integration to be s0). This in turn
is close to eL/L (with multiplicative error tending to 1 as η → 0 and any
L→∞). That is

N(X,L) = (1 + o(1))
eL

L
+ E1 + E2, (20)

where E1, E2 are error terms described below coming from integrating the
error terms in (19).

We estimate the first error term as

E1 = (1 + o(1))

∫ L

s0

et

t

(
O(ε′) +

1

µ(B)
O(f(η, ε′)te−κt)

)
dt (21)

= (1 + o(1))
eL

L
·O(ε′) +

1

µ(B)
O(f(η, ε′))

1

1− κ
e(1−κ)L (22)

= (1 + o(1))
eL

L
·O(ε′) +

g

η3
O(f(η, ε′))

1

1− κ
e(1−κ)L. (23)

The second error term is

E2 = (1 + o(1))

∫ L

s0

O(1)

t · µ(B)
dt (24)

≤ (1 + o(1))
L ·O(1)

s0 · µ(B)
≤ (1 + o(1))

L ·O(1)g

s0 · η3
. (25)

Now examining (23) and (25), we see that upon taking η, ε′ small in terms
of ε, both error terms can be bounded by ε·eL/L whenever L > c log g, where
c depends on ε (and δ). The desired result then follows by applying these
estimates in (20).

�
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4 Simple geodesics

In this section we will get an upper bound on simple geodesics Nsimp(X,L),
which will allow us to prove Theorem 1.1.

4.1 An analogous probability problem

The heuristic for Theorem 1.1 derives from analysis of the “birthday prob-
lem” in probability. This involves picking k objects from a collection of n,
with replacement. The question is: how large does k need to be to guaran-
tee the chance of getting at least one object more than once is high? The
transition occurs near k =

√
n.

In our situation we have to discretize our continuous space. We will want
the resulting “boxes” to be disjoint. As a result, they will not actually cover
the whole space, but rather some definite fraction of it (the “good” objects
below are the ones corresponding to these disjoint boxes). In order to prove
a geodesic self-intersects, it is not enough to show that it comes back close
to where it has been previously. It will be enough to show that it comes
back close, and at a definite angle (i.e. “transversely”).

We incorporate these two differences from the “birthday” situation into
a modified probability problem, which we then solve. Our proof of the The-
orem 1.1 will then be an analog of this, but in the context of hyperbolic
dynamics, which, although deterministic, behaves much like a random sys-
tem.

Proposition 4.1. Fix α with 0 < α < 1/3. Let x1, . . . , x` be samples from
a collection S of n distinct objects. The samples are chosen independently,
uniformly at random, and with replacement. We are additionally given a
subset G ⊂ S, the “good” objects, which has size at least α · n, together with
an injective map T : G→ S, the “transverse object” map.

Then

p := P[6 ∃(i, j) with xj = T (xi)]→ 0

as n→∞, provided that ` �
√
n.

Proof. Begin by setting k := min(`, n2/3).

1. Let

r := P
[
#
(
{x1, . . . , xb(1−α)kc} ∩G

)
≤ αk/4

]
.

This is the probability that too few good objects are hit among the
early choices.
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2. Let

q := P[#
(
{x1, . . . , xb(1−α)kc} ∩G

)
> αk/4

and xb(1−α)kc+1, . . . , xk 6∈ T ({x1, . . . , xb(1−α)kc} ∩G)].

This is the probability that enough good objects are hit among the
early choices, and none of the later choices hits a transverse to one of
the good earlier choices.

It is clear that p ≤ r + q.
To bound r, we will define further probabilities based on two cases:

(A) Let

r0 := P [#{i : 1 ≤ i ≤ (1− α)k, xi ∈ G} ≤ αk/2] ,

the probability that too few of the early choices hit good objects.

(B) Let

r1 := P[#{i : 1 ≤ i ≤ (1− α)k, xi ∈ G} > αk/2

and #
(
{x1, . . . , xb(1−α)kc} ∩G

)
≤ αk/4],

the probability that enough of the early choices hit good objects, but
among these there are not enough distinct objects hit.

Note that r ≤ r0 + r1.

Bounding r0: We use the second moment method. Let Xi be the indicator
random variable of the event that xi ∈ G. Let X =

∑
i≤(1−α)kXi, so

r0 = P[X ≤ αk/2]. We first compute the expected value of X. Note that
E[Xi] = P[xi ∈ G] = α. So

E[X] =
∑

i≤(1−α)k

E[Xi] = α(1− α)k > (2/3)αk,

using the assumption α < 1/3.
Now we compute the second moment, using independence of the Xi:

Var(X) =
∑
i,j

Cov(Xi, Xj) =
∑
i

Var(Xi) =
∑
i

(α− α2) = (α− α2)(1− α)k

< αk.
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So by Markov’s inequality:

r0 = P[X ≤ αk/2] ≤ P[|X − EX| > αk/6] = P[(|X − EX)2 > (αk/6)2]

≤ E[(X − EX)2]

(αk/6)2
=

Var(X)

(αk/6)2
≤ αk

(αk/6)2
=

36

α

1

k

and hence r0 → 0 as k → ∞ (which must happen when n → ∞, since
k �
√
n).

Bounding r1: We use the first moment method.
Let Yi,j be the indicator of the event xi = xj , and Y =

∑
i<j Yi,j . Note

that on the event defining r1, we must have Y ≥ αk/2−αk/4 = αk/2, since
there are least this many values of j such that xj ∈ G and xi = xj for some
value of i < j. Then by Markov, we get

r1 ≤ P [Y ≥ αk/2] ≤ E[Y ]

αk/2
≤ k2/n

αk/2
=

2

α

k

n
,

which, since k ≤ n2/3 , goes to 0 as n→∞.

Bounding q: Consider the conditional probability

q′ := P[xb(1−α)kc+1, . . . , xk 6∈ T ({x1, . . . , xb(1−α)kc} ∩G)

| #
(
{x1, . . . , xb(1−α)kc} ∩G

)
> αk/4].

Note that q ≤ q′, so it suffices to bound q′. Since T is injective, the
condition on the right implies that T ({x1, . . . , xb(1−α)kc} ∩ G) has at least
αk/4 elements. So, ala the birthday problem, we compute the probability
that xb(1−α)kc+1, . . . , xk all avoid these αk/4 objects (notice that these later
choices are independent of those involved in the condition), giving

q′ ≤
(

1− αk/4

n

)αk−1
≈ exp

(
−αk/4

n

)αk−1
= exp(−Ω(k2/n)),

(where we have used that for n large, 1 − αk/4
n ≥ 0, since k ≤ n2/3). The

last term goes to 0 as n→∞, and hence so does q.

Completing the proof: Combing the above three cases, we get that

p = r + q ≤ r0 + r1 + q → 0.

�
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4.2 Flow boxes for proof of Theorem 1.1

Properties of the flow boxes. Recall from Section 2 the various defini-
tions associated with flow boxes. In what follows, we will find a collection of
disjoint flow boxes that cover a definite proportion of the surface. Addition-
ally, each box B is paired with a “transverse” box B̂ such that a geodesic
crossing through B and B̂ is guaranteed to self-intersect transversely.

For each v ∈ T 1X, we define the rotated vector v̂ := r90◦v. If B = B(v)
is an η flow box centered at v, we define the transverse box B̂ to be the η
flow box centered at v̂.

Figure 2: Transverse flow boxes guaranteeing a self-intersection. In (the unit
tangent bundle over) every pair of pants, we can fit a pair of transverse flow
boxes B, B̂ of definite size. Any geodesic that lands in both B and B̂ must
have a self-intersection. Thus a simple geodesic cannot hit both boxes in
any such pair. We use this condition to bound the number of simple closed
geodesics of length at most L.

Proposition 4.2. There exists η0, α > 0, and v1, . . . , v2g−2 ∈ T 1X such
that for all η with η0/1000 ≤ η ≤ η0, the η flow boxes Bi := B(vi) and
B̂i := B(v̂i) satisfy:

(i) µ (∪iBi) > α.

(ii) The B1, . . . , B2g−2, B̂1, . . . , B̂2g−2 are pairwise disjoint

(iii) If t1, t2 ∈ R and v is such that gt1v ∈ Bi and gt2v ∈ B̂i, then the
geodesic t 7→ gtv has a transverse self-intersection
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Figure 3: Every right-angled hyperbolic hexagon contains a disc of definite
area.

(iv) “full box separated” i.e. for any w ∈ T 1X −
⋃2g−2
i=1 B̂+

i , the η flow box

B(w) satisfies B(w) ⊂ T 1X −
⋃2g−2
i=1 B̂i.

Here η0, α are independent of g, but do depend on the systole lower bound
s0 that X is assumed to satisfy.

The proof of this proposition will depend on the following observation
giving that any surface has many points where the injectivity radius is
bounded below by a uniform constant.

Lemma 4.3. There is a universal constant r0 > 0 so that any hyperbolic
pair of pants P with geodesic boundary contains an embedded ball of radius
r0.

Proof. We first decompose our pair of pants P into two isometric right-
angled hexagons. Let H be one of these hexagons. By the Gauss-Bonnet
formula, the area of a H is π. We can cut H into the union of 4 triangles.
See Figure 3. One of these triangles, denoted T , must have area at least
π/4. Every hyperbolic triangle of area at least A contains an embedded
ball of radius r(A), for some function r. This follows from compactness of
the set of isometry types of such triangles (allowing ideal vertices), since
hyperbolic triangles are determined up to isometry by their angles, and the
area bound implies the angle sum is bounded from above away from π. So
we take r0 = r(π/4).

�

With this, we can prove the proposition.

Proof of Proposition 4.2. Let X be any hyperbolic surface of genus g. Take
a pants decomposition P1, . . . , P2g−2 of X. By Lemma 4.3, we can fit a disc
Di of radius r0 inside each pair of pants Pi. As the pairs of pants have
disjoint interiors, these discs will be pairwise disjoint, as well.

We will find our collection of flow boxes B1, . . . , B2g−2, B̂1, . . . , B̂2g−2 in
the unit tangent bundle above these discs. Let π : T 1X → X be the usual
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projection. We observe that there is some constant η0 so that for all η < η0,
if B is an η flow box, and π(B) ⊂ Di, then B is embedded in T 1X. In fact,
for all η small enough, a lift of B will be embedded in the universal cover
T 1H2, and since Di is embedded in X, then B will be embedded in T 1X.

Fix such an η0. Make it smaller if necessary, so that η0 < r0/100 (and
note that we might retroactively make η0 smaller again later in the proof).
We will show that the proposition holds for any η with η0/1000 < η < η0.

Suppose pi is the center of Di. Let vi be any vector in T 1
piX. Then we

claim that the η flow box Bi = B(vi) centered at vi is embedded in T 1X.
In fact, let w ∈ Bi. Then to get from π(vi) = pi to π(w), we must follow
a leaf of the stable horocycle foliation, then a geodesic segment, then a leaf
of the unstable horocycle foliation, and each segment we follow has length
at most η. Thus, the distance from pi to π(w) is at most 3η. As 3η < r0
by definition, π(w) ∈ Di. So π(Bi) ⊂ Di, and by the above discussion, Bi
must be embedded.

Note that if we fix η0, and if η > η0/1000, say, then there will be some
α depending on η so that

µ(Bi) > αµ(T 1Pi)

where T 1Pi = π−1Pi is the unit tangent bundle of Pi inside X. As there is
a box above each pair of pants, we see that

µ

(
2g−2⋃
i=1

Bi

)
> α

Thus, our collection of boxes B1, . . . , B2g−2 satisfies part (i).
Next, let v̂i = rπ/2vi, that is, the tangent vector making an angle of

π/2 with vi. Recall B̂i = B(v̂i). Again making η0 smaller if necessary, we
claim that Bi and B̂i are disjoint. In fact, choose any PSL(2,R)-invariant
Riemannian metric on T 1H2. This induces a Riemannian metric on T 1X.
Then as η0 goes to 0, for any η < η0, the diameter of the η flow boxes Bi
and B̂i also goes to zero. Thus, Bi must be disjoint from B̂i for all η small
enough. This establishes (ii).

Moreover, if w ∈ Bi and ŵ ∈ B̂i, then w and ŵ also get arbitrarily close
to vi and v̂i, respectively. In fact, let γvi and γv̂i be the complete geodesics
tangent to vi and v̂i. Then γvi and γv̂i intersect at an angle of π/2. This
means that the geodesics γw and γŵ tangent to w and ŵ, must also intersect
transversely for η0 small enough, establishing (iii).

Lastly, we will show that the flow boxes are “full box separated”. Recall
that B̂+

i is the 3η flow box centered around v̂i. Since we chose η0 < r/1000,
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the box B̂+
i is still embedded in T 1X. Let w ∈ T 1X −

⋃2g−2
i=1 B̂+

i . We will

show that B(w) is disjoint from
⋃2g−2
i=1 B̂i. In fact, let w′ ∈ B(w). Suppose

w′ ∈ B̂i for some i. If the flow boxes were, in fact, Euclidean boxes, then
the fact that w′ ∈ B(w) ∩ B̂i and that these are both η flow boxes would
mean that w was in the 2η flow box around v̂i. But as η tends to 0, the
flow boxes get close to Euclidean boxes. So choosing η0 smaller, if needed,
w′ ∈ B(w) ∩ B̂i implies that w is in the 3η flow box about v̂i. In other
words, w ∈ B̂+

i , which contradicts our assumptions. Thus, our collection of
flow boxes satisfies condition (iv). �

4.3 Bound on measure of S

Fix an η flow box B ⊂ T 1X. We will focus for now on bounding from above
the number of simple closed geodesics that intersect B.

Let

S := {v ∈ B : t 7→ gtv does not self-intersect},

i.e. the set of all vectors in B tangent to (not necessarily closed) simple
geodesics.

We need a bound on the measure of this set, and then we will add
the condition that the arcs return to B at time L, since we are interested in
counting closed geodesics. However, having bounds on measures is not quite
enough, since simple closed geodesics will correspond to certain connected
components, and we need to make sure that there are not too many of these.
To address this, we will work with a modified larger set S̄, with the property
that every vector in its complement corresponds to an arc with a “robust
self-intersection”, which must occur before a certain time. We then bound
the measure of S̄.

The existence and properties of this set S̄ are the content of the next
lemma.

Lemma 4.4. For any ε > 0, there exists c with the following property. For
any k positive integer, there exists a set S̄ ⊂ B, such that

(i) S̄ ⊃ S,

(ii) For any u ∈ B − S̄, there exists some η flow box B0 and t1, t2 ∈
[0, kc log g] such that gt1u ∈ B++

0 and gt2u ∈ B̂−0 (which implies the
geodesic segment through u has a “robust self-intersection”),
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(iii)

µ(S̄) ≤ µ(B)

(
ε+O(1/k) +O(k/g) +

{
1− 1

O(1)
kµ(B)

}αk)
.

We will construct S̄ as a union of setsR andQk corresponding to different
behavior with respect to a collection of flow boxes that we use to probe
simplicity, discussed in Section 4.2.

Collection of flow boxes. We fix {Bν}2g−2ν=1 = {B1, . . . , B2g−2} a collec-
tion of η flow boxes in T 1X given by Proposition 4.2, where η = η0/27, for
the η0 given by that proposition.

Discrete set of times. We pick times at which to sample the geodesic
segments. Let t1, t2, . . . such ti+1 − ti = c log g (where c will be chosen large
later, as mentioned in the lemmas below; it is related to mixing time for
geodesic flow, and will depend on an error parameter ε). The earlier and
later times among these will play somewhat different roles when we study
self-intersections.

4.3.1 R: Vectors that hit too few flow boxes {Bν}

For any positive integer k, let

R = R(k) :=
{
v ∈ B : #{ν : ∃j ≤ (1− α)k such that gtjv ∈ Bν} < αk/4

}
,

i.e. R consists of vectors that do not hit at least α
4 k distinct elements of

{Bν} among times t1, . . . , tb(1−α)kc.

Lemma 4.5. For any ε > 0, there exists c such that

µ(R) ≤ µ(B) (ε+O(1/k) +O(k/g)) .

Proof. We have R = R0 tR1 for the sets R0, R1 defined below. The desired
bound is just the sum of the bounds from Lemma 4.6 for R0 and Lemma 4.7
for R1. �
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Decomposition R = R0 t R1. We define a set of starting vectors that
visit our collection of flow boxes too few times:

R0 = R0(k) := {v ∈ B : #{i : i ≤ (1− α)k, gtiv ∈ ∪νBν} ≤ (α/2)k} .

The complementary set consists of vectors that hit flows boxes at enough
times, but that still hit too few distinct flow boxes:

R1 := R−R0.

Lemma 4.6. For any ε > 0, there exists c such that

µ(R0) ≤ µ(B) (ε+O(1/k)) .

Proof. For each i with i ≤ (1− α)k, and each ν, define Xiν : B → R by

Xiν(v) =

{
1 if gtiv ∈ Bν
0 otherwise.

Since the boxes Bν are all disjoint, we have that

Xi :=
∑
ν

Xiν

is either 0 or 1 for all i, and determines whether gtiv hits any of the boxes
B1, . . . , B2g−2 at time ti. Thus, if we set

X =
∑

i≤(1−α)k

Xi,

then X(v) is the number of times i for which gtiv hits boxes B1, . . . , B2g−2.
So we wish to show

µ({v : X(v) ≤ (α/2)k}) = µ(B) (O(ε) +O(1/k)) .

We will use the second moment method. For this, we will first estimate
1

µ(B)

∫
BXdµ and 1

µ(B)

∫
BX

2dµ. To estimate
∫
BX, we just need to estimate∫

BXiν for each i, ν. We have∫
B
Xiν = µ({v ∈ B : gtiv ∈ Bν})

= µ(B ∩ g−ti(Bν))

= µ(Bν)2 (1 +O(ε)) ,
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for c sufficiently large, where the last line is due to effective mixing (Lemma 2.1
or k = 2 case of Theorem 2.2).

Then summing gives

1

µ(B)

∫
B
X =

1

µ(B)

∑
i≤(1−α)k

∑
ν

∫
B
Xiν =

∑
i≤(1−α)k

∑
ν

µ(Bν) (1 +O(ε))

(26)

= (1− α)kα(1 +O(ε)). (27)

Now we must estimate 1
µ(B)

∫
BX

2. Writing X =
∑

iXi, we see that

X2 =
∑
i

Xi +
∑
i 6=j

XiXj

where we use that Xi is always either 0 or 1, and so (Xi)
2 = Xi. To estimate∫

BXiXj , we use that Xi =
∑

ν Xiν , and so XiXj =
∑

ν,ν′ XiνXjν′ . Now for
i 6= j ∫

B
XiνXjν′ = µ({v ∈ B : gtiv ∈ Bν , gtjv ∈ Bν′})

= µ(B ∩ g−tiBν ∩ g−tjBν′)
= µ(B)µ(Bν)µ(Bν′) (1 +O(ε))3 ,

for c sufficiently large, where the last line comes from effective 3-mixing, i.e.
the k = 3 case of Theorem 2.2.

For ε small enough, (1 +O(ε))3 = (1 +O(ε)). Thus, summing over all
ν, ν ′, we get for i 6= j

1

µ(B)

∫
B
XiXj = α2 (1 +O(ε)) .

Using this, (27), and the fact that there are at most (1−α)2k2 pairs of i 6= j,
we see that

1

µ(B)

∫
B
X2 =

1

µ(B)

∫
B
X +

∑
i 6=j

1

µ(B)

∫
B
XiXj (28)

≤ (1− α)kα(1 +O(ε)) + (1− α)2k2α2(1 +O(ε)) (29)

Combining the first and second moment bounds, (27) and (29), we esti-
mate

1

µ(B)

∫
B

(X − (1− α)αk)2 =
1

µ(B)

(∫
B
X2 − 2(1− α)αk

∫
B
X + µ(B)(1− α)2α2k2

)
≤ (1 +O(ε))

(
(1− α)kα+ (1− α)2k2α2 − 2(1− α)2(kα)2 + (1− α)2k2α2

)
= O(k) +O(εk2).

29



Using this, we apply a Chebyshev bound. Note that since we can assume
that α is small, if X ≤ (α/2)k then |X − (1− α)αk| ≥ (1/3)αk. So:

1

µ(B)
· µ ({v : X(v) ≤ (α/2)k}) ≤ 1

µ(B)
· µ
(
{v : (X(v)− (1− α)αk)2 ≥ (αk/3)2}

)
≤

1
µ(B)

∫
B(X − (1− α)αk)2

(αk/3)2

≤ O(k) +O(εk2)

(αk/3)2

≤ O(1/k) +O(ε),

which gives the desired result.
�

Lemma 4.7. There exists c such that

µ(R1) ≤ µ(B)O(k/g).

Proof. We will measure collisions with the function Yi,j : B → R given by

Yi,j(v) =

{
1 if ∃ν such that gtiv, gtjv ∈ Bν
0 otherwise.

Let Y :=
∑

i<j≤(1−α)k Yi,j . Note that if v ∈ R1 then Y (v) ≥ αk/2−αk/4 =
αk/2 since there must be at least this many values of j < (1−α)k such that
gtjv is in some flow box Bν and there exists some i < j for which gtiv is in
the same flow box. Thus

µ(R1) ≤ µ({v ∈ B : Y (v) ≥ αk/2}). (30)

We now use the first moment method to bound the right hand term
above. Define Yi,j,ν : B → R by

Yi,j,ν(v) =

{
1 if gtiv, gtjv ∈ Bν
0 otherwise,

and note that, by disjointness of the Bν , we have Yi,j =
∑

ν Yi,j,ν . Hence by
effective multiple mixing, Theorem 2.2,
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∫
B
Yi,j =

∑
ν

∫
B
Yi,j,ν =

∑
ν

µ(B ∩ g−tiBν ∩ g−tjBν)

=
∑
ν

µ(B)µ(Bν)2O(1)

= αµ(B)2O(1).

Then∫
B
Y =

∑
i<j≤(1−α)k

∫
B
Yi,j ≤ ((1− α)k)2

(
αµ(B)2O(1)

)
≤ O(1)k2µ(B)2.

Using this we apply a Markov bound:

µ({v ∈ B : Y (v) ≥ αk/2}) ≤
∫
B Y

αk/2
≤ O(1)k2µ(B)2

αk/2
= µ(B)O(k/g),

since µ(B) = O(1/g). Combining with (30) gives the desired result.
�

4.3.2 Q: Vectors that hit enough flow boxes {Bν}

We now consider those vectors that intersect enough flow boxes, and then
consider decreasing subsets that avoid progressively more types of self-intersection.
We show that the measure of these subsets decreases in a definite way.

We fix a positive integer k. Then let

Q= :=B −R

=
{
v ∈ B : ∃Bν1(v), . . . , Bνb(α/4)kc(v) ∈ {Bν} distinct s.t. ∀i ≤ α

4
k,

∃j ≤ (1− α)k s.t. gtjv ∈ Bνi(v)
}
,

i.e. Q= consists of vectors that hit at least α
4 k distinct elements of {Bν}

among times t1, . . . , tb(1−α)kc, which we label Bν1(v), . . . , Bνb(α/4)kc(v).
To deal with “edge effect components”, we will consider similar sets

defined with respect to flow boxes of slightly different size (as in proof of
Theorem 2.2). Let Q+ ⊂ B+ be the corresponding set for the {B+

ν }, i.e.

Q+ :=
{
v ∈ B+ : ∃B+

ν+1 (v)
, . . . , B+

ν+b(α/4)kc(v)
∈ {B+

ν } distinct s.t. ∀i ≤ α

4
k,

∃j ≤ (1− α)k s.t. gtjv ∈ B+

ν+i (v)

}
.
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Note that Q= ⊂ Q+. We then define Q to be the union of components
of Q+ that intersect Q= i.e.

Q :=
⋃
{C component of Q+ : C ∩Q= 6= ∅}.

Note that Q= ⊂ Q ⊂ Q+.
In the the below lemma we construct progressively smaller sets Qj by

imposing further conditions. Part (iii) corresponds to the fact that Qj is
defined in terms of conditions on the behavior of vectors under geodesic
flow only up to time tj .

Lemma 4.8. For each k ≥ 0, there exist sets

Qd(1−α)ke−1 ⊃ Qd(1−α)ke ⊃ · · · ⊃ Qk

where Qd(1−α)ke−1 := Q, and such that for each j = d(1− α)ke, . . . , k:

(i) S∩Q = S∩Qj. Furthermore, for any u ∈ Qj−1−Qj, there exists some
Bν and j′ ≤ k such that gtj′u ∈ B

++
ν and gtju ∈ B̂−ν (which implies

the geodesic segment through u has a “robust self-intersection”).

(ii) µ(Qj) ≤ µ(B)
{

1− 1
O(1)kµ(B)

}j−d(1−α)ke
, where {x} denotes max(x, 0).

(iii) Qj is a union of subboxes that are full width in the contracting direc-
tion, and have width ≥ e−tjη in the expanding direction.

Proof. We will inductively construct the sets, verifying the listed properties
along the way.

For the base case, set Qd(1−α)ke := Q. Then properties (i) and (ii) are
immediate. For (iii), note that because of the space between the Bν and
B+
ν , any component of Q+ that intersects Q= is contracting width full and

expanding width ≥ e−td(1−α)keη.
Suppose we have constructed Qj with the desired properties; we will now

construct Qj+1.
Note that any v ∈ Qj is also in Q, hence also in Q+, which means there

exist B+

ν+1 (v)
, . . . , B+

ν+b(α/4)kc(v)
∈ {B+

ν } distinct such that for each i ≤ α
4 k there

exists a j ≤ (1 − α)k such that gtjv ∈ B+
νi(v)

. Note that any v′ sufficiently

close to v will satisfy this same property with the boxes enlarged, i.e. gtjv
′ ∈

B++
νi(v)

(for the same i’s and j’s as for v). By a simple 3-times covering lemma

argument, we can cover at least 1/1000 of the measure of Qj by a union of a
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set P of disjoint subboxes that have full width in the contracting direction
and width at least e−tjη in the expanding direction, and such that for each
P ∈ P we can take a common value of ν1(P ), . . . , νb(α/)4kc(P ) that works
for all v′ ∈ P . That is, for each i there exists a j ≤ (1 − α)k such that
gtjv

′ ∈ B++
νi(P ) for all v′ ∈ P .

With this definition of P, we then define

Q=
j+1 := Qj −

⋃
P∈P

dα
4
ke⋃

`=1

P ∩ g−tj+1B̂ν`(P ),

Q−j+1 := Qj −
⋃
P∈P

dα
4
ke⋃

`=1

P ∩ g−tj+1B̂
−
ν`(P ).

Note that Q=
j+1 ⊂ Q

−
j+1. Finally, define Qj+1 to be the union of components

of Q−j+1 that intersect Q=
j+1. Note that Q=

j+1 ⊂ Qj+1 ⊂ Q−j+1.
We now verify the desired properties of Qj+1 (assuming the properties

for Qj).

1. For Property (i), we first prove the second more specific statement. We
will prove the condition holds for any tangent vector u in Qj −Q=

j+1,
from which the desired result follows since Q=

j+1 ⊂ Qj+1. Note that
for any such u, there is some P ∈ P and ` such that u ∈ P , and
g−tj+1B̂ν`(P ), i.e. gtj+1u ∈ B̂ν`(P ). On the other hand, by definition

of ν`(P ), there exists j′ such that gtj′u ∈ B
++
ν`(P ). This is the desired

statement.

Next we show that
S ∩Qj = S ∩Qj+1.

In fact, by the above, for any u ∈ Qj − Qj+1, its geodesic segment
hits both B++

ν`(P ), B̂ν`(P ), which forces it to have a self-intersection (by

Proposition 4.2, (iii)), and hence cannot lie in S. Iterating the equality
over j gives S ∩Q = S ∩Qj+1.

2. Property (ii) we will prove by bounding µ(Q−j+1) using disjointness of

B̂−ν`(P ), B̂
−
ν`′ (P ).

First note that for any P ∈ P, by Lemma 4.10 (for which the width
hypothesis holds by property (iii) for Qj , which we know by induction):

µ
(
P ∩ g−tj+1B̂

−
ν`(P )

)
≥ (1− ε)µ(P )µ(B−ν`(P )) ≥

1

O(1)
µ(P )µ(B),

(31)
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where here, and in the below computation, O(1) is positive.

Then

µ(Qj+1) ≤ µ(Q−j+1) = µ

Qj − ⋃
P∈P

⋃
`≤α

4
k

P ∩ g−tj+1B̂
−
ν`(P )


≤ µ(Qj)−

∑
P∈P

∑
`≤α

4
k

µ
(
P ∩ g−tj+1B̂

−
ν`(P )

)
(by disjointness)

≤ µ(Qj)−
∑
P∈P

∑
`≤α

4
k

1

O(1)
µ(P )µ(B) (by (31))

≤ µ(Qj)− µ(B) · α
4
k · 1

O(1)

∑
P∈P

µ(P )

≤ µ(Qj)− µ(B) · α
4
k · 1

O(1)
· µ(Qj)

1000
(using property of P)

≤ µ(Qj)

[
1− 1

O(1)
µ(B)k

]
≤ µ(B)

[
1− 1

O(1)
µ(B)k

]j−d(1−α)ke [
1− 1

O(1)
µ(B)k

]
(by inductive hyp. for Qj)

≤ µ(B)

[
1− 1

O(1)
µ(B)k

]j+1−d(1−α)ke
.

3. Property (iii) follows from the “full box separated” property of our
flow boxes; edge effects are avoided by only taking the components
that intersect Q=

j+1.

�

4.4 Proof of Lemma 4.4

Proof of Lemma 4.4. We define

S̄ := R ∪Qk,

where R = R(k) was defined in Section 4.3.1, and Qk in Lemma 4.8.

1. For (i), note that by definition of Q=, we have B = R∪Q=, and since
Q ⊃ Q=, we also have B = R ∪ Q. By applying Lemma 4.8 (i) we
then see that S ⊂ R ∪Qk = S̄.
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2. For (ii), note that any u ∈ B− S̄ is in some Qj−Qj+1 (it is “removed”
at some stage in the process of paring down the Qj). By the second
part of Lemma 4.8 (i), this means that u satisfies the desired property.

3. For (iii), we have

µ(S̄) ≤ µ(R) + µ(Qk),

and then we use the measure estimates Lemma 4.5 and Lemma 4.8
(ii).

�

4.5 Lemmas on intersections with subboxes

Here we prove lemmas concerning the intersection of a subbox with the
preimage of a full box under geodesic flow for a sufficiently large time.
These are used in Section 4.3.2 and Section 4.6. While we do not have
effective mixing for arbitrary subboxes, under certain conditions involving
their shape, we can get control using effective mixing of the full flow boxes
that contain them.

The first lemma concerns a subbox that is full in the expanding direc-
tion; this condition corresponds to conditioning only on past behavior. This
lemma is then used in the proof of Lemma 4.10, which concerns a subbox
that is full in the contracting direction and has width in the expanding
direction controlled from below.

Lemma 4.9. For any ε > 0, there exists c satisfying the following. Let
B0, B1 be η flow boxes. Let P ⊂ B0 be a subbox that is full width in the
expanding direction. Then for T ≥ c log g,

µ(P ∩ g−TB1) ≥ (1− ε)µ(P )µ(B1).

Proof. Recall that B−i is a flow box with the same center as Bi, but with
width η/3 in each direction. Let F be the union of components of B0 ∩
g−TB1 that also intersect B−0 ∩ g−T (B−1 ). Clearly F ⊂ B0 ∩ g−TB1. Since
this construction removes components with edge effects, we get that the
components of F are all full in the contracting direction (as subsets of B0),
and width ≥ e−T η in the expanding direction.

By effective mixing, Lemma 2.1, we can choose c > 0 such that if
tk − tk−1 > c log g, then (noting that the 1

µ(Bi)
factor in the error term is
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comparable to 1/g, since Bi is fixed size, but µ is defined to be a probability
measure):

µ(B0 ∩ g−TB1) ≥ µ(B0)µ(B1)(1 +O(ε)).

It also follows from effective mixing, Lemma 2.1 applied to smaller flow
boxes, that the components of B0 ∩ g−TB1 have average width in the flow
direction within an 1 +O(ε) factor of η/2. Since F is obtained from this set
by removing a bounded number of components, the same measure bound
and average flow width statements of components are also true of F .

From the geometry of P and components of F , we then see that, as in
proof of Lemma 2.3,

µ(P ∩ F ) =
1

µ(B0)
µ(P )µ(F )(1 +O(ε))

≥ 1

µ(B0)
µ(P )µ(B0)µ(B1)(1 +O(ε)) = µ(P )µ(B1)(1 +O(ε)),

from which the desired bound follows.
�

Lemma 4.10. For any ε, η > 0, there exists c satisfying the following. Let
B,B′ be η flow boxes, and t ≥ 0. Let P ⊂ B be a subbox that is full width in
the contracting direction, and width e−tη in the expanding direction. Then
if T ≥ t+ c log g,

µ(P ∩ g−TB′) ≥ (1− ε)µ(P )µ(B′).

Proof. Note that gt(P ) has expanding width exactly η, contracting width
e−tη (and flow direction width is unchanged). Take an η flow box Bint
centered at the center of gt(P

′).
Now we apply Lemma 4.9 with B0 = Bint, B1 = B′, subbox gt(P ) ⊂ B0,

and time c log g. We get that

µ(gt(P ) ∩ g−c log gB′) ≥ (1− ε)µ(gtP )µ(B′),

and then using invariance of measure under geodesic flow gives

µ(P ′ ∩ g−TB′) ≥ (1− ε)µ(P ′)µ(B′).

�
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The next lemma is a variant of the above. The conclusion is an upper
(rather than lower) bound on the number of components (rather than mea-
sure). An additional condition on fullness in the geodesic flow direction is
needed.

Lemma 4.11. Suppose P ⊂ B is a subbox of B of width e−tη in the ex-
panding direction for t < L− c log g, and full width in the geodesic flow and
contracting directions. Then

#comp(P ∩ g−LB) ≤ O(1)e−t+Lµ(B).

Proof. This is proved by first getting a measure bound as in Lemma 4.9
and Lemma 4.10 (here we want an upper, rather than lower, bound, but
the technique is the same). To translate this into a bound on the number
of components, the assumption that P has full width in the geodesic flow
direction needs to be used. The components of P ∩g−LB need not be full in
the geodesic flow direction, but this is dealt with by starting with enlarged
flow boxes B+ as in Section 4.3.2.

�

4.6 Simple closed geodesics hitting B

In what follows, we will show that S is in fact “buffered” inside the set S̄
from Lemma 4.4 in the following sense.

Lemma 4.12. Let v ∈ S. Suppose v ∈ P ⊂ B, where P is a flow box of
width eL−c log gη in the expanding direction, and η in both the contracting
and geodesic flow directions. Then P ⊂ S̄, for any S̄ given by Lemma 4.4
with k < L

c log g − 1.

Proof. Let v ∈ S. Instead of working with an arbitrary flow box containing
v, we let P be the 2eL−c log gη× 2η× 2η flow box centered at v. Note that P
will contain any eL−c log gη flow box containing v, but P need not lie entirely
inside B. We will show that P ∩B ⊂ S̄.

Suppose for contradiction that there is some w ∈ B− S̄ for which w ∈ P .
In that case, by Lemma 4.4 part (ii) there is some η flow box B0, and some
t1, t2, so that

gtiw ∈ B++
0 , and gtjw ∈ B̂−0

(recall that each additional + superscript multiplies the dimensions of the
respective boxes by 3, while − divides by 3), where

0 ≤ t1, t2 ≤ kc log g <

(
L

c log g
− 1

)
c log g = L− c log g.
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It follows that gt1P and gt2P are flow boxes of dimension at most 2η
centered at gt1v and gt2v, respectively. Since

gt1w ∈ gt1P ∩B++
0 , and gt2w ∈ gt2P ∩ B̂−0 ,

we have that
gt1v ∈ B+++

0 , and gt2v ∈ B̂+
0 .

But recall that in Section 4.3, we chose η so that 27η = η0, where η0
is the constant in Proposition 4.2. So by part (iii) of that proposition,
the geodesic tangent to v has a self-intersection. But this contradicts the
assumption that v ∈ S (the set of vectors tangent to a simple geodesic).

�

Proposition 4.13. For any ε > 0, there is a c > 0 so that the following
holds. Let B be an η flow box. Define Nsimp(B,L, η) to be the number of
geodesic segments of length η in B that lie on a simple closed geodesic of
length `, with L− η ≤ ` ≤ L+ η. Then,

Nsimp(B,L, η) ≤ O(1)eLµ(B)

(
ε+O(1/k) +O(k/g) +

{
1− 1

O(1)
kµ(B)

}αk)

for any k < L
c log g − 1.

Proof. Fixing L, we let S̊ be the set of those directions in S that are tangent
to a simple closed geodesic of length `, with L − η ≤ ` ≤ L + η, for η the
dimension of our flow box B. Recall that S is the set of directions v so that
v lies on a length η geodesic segment σ in B, and σ is part of a simple (not
necessarily closed) geodesic. Note that S is foliated by geodesic segments,
as, if v ∈ S, then all of σ is in S. For each segment σ in S, let Pσ be a
flow box in B of width e−L+c log gη in the expanding direction, and full in
the geodesic flow and contracting directions, that contains σ. (We do not
require Pσ to be centered at σ to deal with the case of arcs σ that are close
to the boundary of B.)

Set
S̄′ :=

⋃
σ

Pσ

to be the union of all of these boxes. Since S is not a discrete set of geodesic
arcs, the boxes Pσ are not disjoint. However, for η small, the union of two
such boxes is simply a box that is wider in the expanding direction, so this
will not be a problem.
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We then let
˚̄S = S̄′ ∩ g−LB.

We will show that counting connected components of ˚̄S is equivalent to
counting simple closed geodesics passing throughB (with multiplicity, count-
ing the number of times they pass through.)

By definition, S̊ is foliated by geodesic segments of length η. Note that
Nsimp(B,L, η) is exactly the number of these segments. Then

Claim 4.14. We have

Nsimp(B,L, η) ≤ #comp(˚̄S).

Proof. By definition, S ⊂ S̄′, where S is the set of v ∈ B that lie on any
simple geodesic, not necessarily a closed one. If v ∈ S̊, then g`v = v ∈ B,
for some ` with L − η ≤ ` ≤ L + η. Let σ be the geodesic segment in B
containing v; there must be some v′ ∈ σ so that gLv ∈ B. Thus, every such

segment σ passes through S̄′ ∩ g−LB = ˚̄S.

Note that each component of ˚̄S lies in some connected component of
B ∩ g−LB. By Lemma 6.2, each component of B ∩ g−LB intersects at most
one segment σ of length η of a (not necessarily simple) closed geodesic with
length in [L − η, L + η]. Thus, at most one such segment passes through

each connected component of ˚̄S. �

Next, we wish to count the number of connected components of ˚̄S. To
do this, we’ll count the number of connected components of S̄′, and then,
for each such component P , count the number of connected components of
P ∩ g−LB.

Claim 4.15. We have

#comp(S̄′) ≤ eL−c log g
(
ε+O(1/k) +O(k/g) +

{
1− 1

O(1)
kµ(B)

}αk)
,

where k = min( L
c log g , g

2/3), and c sufficiently large (depending on ε).

Proof. Let S̄ be a set given by Lemma 4.4. By Lemma 4.12, Pσ ⊂ S̄ for
each σ. So,

S̄′ ⊂ S̄.
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Figure 4: A component of S̄′ contained in a component of S̄. Both contain
the segments of simple geodesics in S.

The advantage of S̄′ over S̄ is that it has a nicer decomposition into
“wide enough” flow boxes (see Figure 4). We use the bound from Lemma
4.4 to get a bound on the measure:

µ(S̄′) ≤ µ(S̄) ≤ µ(B)

(
ε+O(1/k) +O(k/g) +

{
1− 1

O(1)
kµ(B)

}αk)
.

Moreover, the connected components of S̄′ are all unions of the boxes
Pσ. Thus, each connected component P has width e−tη for t ≤ L − c log g
in the expanding direction, and full width in the other two. In other words,

µ(P ) ≥ e−L+c log gµ(B).

Dividing the upper bound for µ(S̄′) by this gives the desired result. �

Combining the previous Claim with Lemma 4.11 allows us to count the

number of connected components of ˚̄S:

Claim 4.16. The number of connected components of ˚̄S satisfies

#comp(˚̄S) ≤ O(1)eLµ(B)

(
ε+O(1/k) +O(k/g) +

{
1− 1

O(1)
kµ(B)

}αk)
,

where k = min( L
c log g , g

2/3), and c sufficiently large (depending on ε).
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Proof. Recall that
˚̄S = S̄′ ∩ g−LB

By Claim 4.15, the number of components of S̄′ satisfies

#comp(S̄′) ≤ eL−c log g
(
ε+O(1/k) +O(k/g) +

{
1− 1

O(1)
kµ(B)

}αk)
.

(32)

From the way S̄′ was defined, it is a union of subboxes that have width
e−L+c log gη in the expanding direction. Thus, each component P of S̄′ has
width e−tη in the expanding direction, for t < L− c log g, and full width in
the geodesic flow and contracting direction. Thus by Lemma 4.11

#comp(P ∩ g−LB) ≤ O(1)e−t+Lµ(B)

for each P . But t < L− c log g, so we have

#comp(P ∩ g−LB) ≤ O(1)ec log gµ(B). (33)

Taking the product of the bounds (32) and (33), we see that the number

of components of ˚̄S = S̄′ ∩ g−LB satisfies the desired bound
�

The proposition now follows by putting together Claim 4.14 and Claim
4.16.

�

4.7 Completing the proof of Theorem 1.1

Proposition 4.17. Fix δ, s0, ε > 0. There exists a constant d such that
for any δ-expander surface X of genus g with systole at least s0, and L >
d
√
g log g,

Nsimp(X,L) ≤ ε · eL/L.

Proof. Fix ε > 0. Fix η with 0 < η < s0. For each v ∈ T 1X, let B = B(v)
be an η flow box centered at v. For each η much smaller than the systole of
X, for all v ∈ T 1X, we have that B(v) is embedded in T 1X.

Recall that Nsimp(B,L, η) is defined to be the number of geodesic seg-
ments of length η in B that lie on a simple closed geodesic of length `, with
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L − η ≤ ` ≤ L + η. This number is related to the number of simple closed
curves that pass through B, but if a simple closed curve passes through B
multiple times, then we count it multiple times. By Proposition 4.13, for
any fixed ε′ > 0, there is a c > 0 so that

Nsimp(B,L, η) (34)

≤ eLµ(B)

(
O(ε′) +O(1/k) +O(k/g) +

{
1− 1

O(1)
kµ(B)

}αk)
(35)

for any k < L
c log g − 1.

Claim 4.18. There exists d (depending on ε) such that if L > d
√
g log g,

then

Nsimp(B,L, η) ≤ ε · eLµ(B).

Proof. For any choice of d > c, take

k = min

(
L

c log g
− 1,

1

d
g2/3

)
.

The reason for including 1
dg

2/3 in the min is to ensure that the O(k/g) error
term in (35) is small.

Then L > d
√
g log g implies

d

c

√
g < k.

Using this, we can estimate the terms in the second factor of (35).
First, we can choose ε′ so that the O(ε′) term is bounded above by ε/3.

Note that this gives us a fixed choice of c that we will use for the remainder
of the proof.

Next, we have that

O(1/k) +O(k/g) = O

(
c

d
√
g

)
+O

(
1

dg1/3

)
=

1

d
O(g−1/3).

So we can choose d large enough so that for all g, the O(1/k)+O(k/g) term
is also bounded above by ε/3.

Now we use the estimate{
1− 1

O(1)
kµ(B)

}αk
≤ e−

α
O(1)

µ(B)k2
.
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(This approximation can be justified with the inequality 1 − x ≤ e−x for
x ≥ 0, since 1

O(1)kµ(B) < 1 if d is chosen appropriately, using that µ(B) =

O(1/g) and k ≤ 1
dg

2/3. Recall that {x} := max(x, 0).)

Since k > d
c

√
g, and µ(B) = O(1/g), we have

− α

O(1)
µ(B)k2 = −dO(1).

So we again increase d if needed so that{
1− 1

O(1)
kµ(B)

}αk
≤ e−dO(1) < ε/3.

We have now appropriately bounded all the error terms in (35), so we con-
clude the Claim. �

Now instead of just focusing on a single flow box B, we let Nsimp(X, [L−
η, L+ η]) be the number of simple closed geodesics on all of X, which have
length `, for L − η ≤ ` ≤ L + η. We estimate Nsimp(X, [L − η, L + η]) by
integrating N(B(v), L, η) over flow boxes centered over vectors v ∈ T 1X.
By the same argument as in the proof of Theorem 3.1,

Nsimp(X, [L− η, L+ η]) ≤ (1 + o(1))
η

L− η
1

µ(B)

∫
T 1X

Nsimp(B(w), L, η)dµw

where for each w ∈ T 1X, B(w) is the η flow box centered at w.
For all L large enough, 1

L−η < 1+ε
L . As L > d

√
g log g, we can again

increase d if necessary so that this is the case for all g. By Claim 4.18,
Nsimp(B(w), L, η) < ε · µ(B)eL, so we get

Nsimp(X, [L− η, L+ η]) ≤ ε(1 + ε) · η e
L

L
.

for all L > d
√
g log g.

Recall that Nsimp(X,L) is the total number of simple closed geodesics
of length at most L. Then, trivially,

Nsimp(X,L) ≤ N(X,L/2) +Nsimp(X, [L/2, L])

where Nsimp(X, [L/2, L]) is the number of simple closed geodesics of length
in [L/2, L]. By Theorem 3.1, for ε′ as in equation (35),

N(X,L/2) ≤ (1 + ε′)
eL/2

L
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since our lower bound on L implies L > c log g. Thus, since L > d
√
g log g,

we have that for d > c large enough

N(X,L/2) < ε · e
L

L
.

So, if we bound Nsimp(X, [L/2, L]), then we are done. We write:

Nsimp(X, [L/2, L]) ≤
L/η∑

i=L/2η

Nsimp(X, [η(i− 1), η(i+ 1)]).

Doubling d if we have to, we use that since L/2 > d
2

√
g log g, then for all i

with ηi ≥ L/2,

Nsimp(X, [η(i− 1), η(i+ 1)]) < ε(1 + ε) · η e
iη

iη

≤ ε(1 + ε) · η e
iη

L/2
.

Next,

L/η∑
i=L/2η

eiη =
eL+η − eL/2

eη − 1
≤ eη

eη − 1
eL.

Thus,

Nsimp(X, [L/2, L]) ≤ 2ε(1 + ε) · ηeη

eη − 1

eL

L
.

In other words, for any ε > 0, we can find a d > c > 0 so that L >
d
√
g log g implies

Nsimp(X,L) ≤ eL

L

(
ε+ 2ε(1 + ε) · ηeη

eη − 1

)
.

Since η is fixed, the term ηeη

eη−1 is just some constant, and we have proved
the desired result.

�

Proof of Theorem 1.1. We combine Proposition 4.17 and Theorem 3.1. �

5 Filling geodesics

In this section we prove Theorem 1.4. Throughout, X is a δ-expander surface
with systole(X) > s0.
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Figure 5: The projection of any closed geodesic γ that intersects all the
orange flow boxes (which are actually in the unit tangent bundle T 1X)
has a subset that mimics the blue triangulation. In particular, this subset
cuts the surface into topological discs, and hence γ is filling. The blue
triangulation is obtained by finding a “net” of points that are neither too
close together, nor too separated, and then taking the associated Delaunay
triangulation. The resulting triangles have bounded geometry, which means
that the orange flow boxes can be taken to be uniformly sized.

5.1 Flow boxes to detect filling geodesics

Lemma 5.1. There exists η > 0 and C (depending only on the systole bound
s0), and η flow boxes B1, . . . , BCg ⊂ T 1X such that if γ is a closed geodesic
that intersects every Bi, then γ is filling.

Proof. The idea of the proof is illustrated in Figure 5. Choose a finite
collection of discs Di of radius r ≤ s0/6 that cover X (we may need to make
r smaller than this, as discussed later in the proof). By the 3-times covering
lemma, among these discs, we can find D1, . . . , Dk that are disjoint, and
such that 3D1, . . . , 3Dk (where 3Di is the disc with the same center as Di,
and 3 times the radius) cover X. Let pi be the center of Di.

Now let D be the Delaunay triangulation of X with respect to the set
of vertices {p1, . . . , pk} (it is possible to get a Delaunay tessellation where
some of the faces are not triangles; if so we perturb the points very slightly,
and then we will get a triangulation).

Claim 5.2. For any triangle in D, the edge lengths lie in [2r, 6r] and angles
at most 150◦.

Proof. For the lower bound on edge lengths, note that since the discsD1, . . . , Dk

are disjoint, any pair of distinct centers cannot be closer than distance 2r.
For the upper bound on edge lengths, first note that any point in X

is at most distance 3r from one of p1, . . . , pk, since the discs 3D1, . . . , 3Dk

45



Figure 6: The edge length bounds and Delaunay property give control of
angles

are assumed to cover X. This implies that in the Voronoi tessellation with
respect to {p1, . . . , pk}, any point x in the Voronoi cell Vi containing pi
satisfies d(x, pi) ≤ 3r. So if Vi, Vj are adjacent Voronoi cells, then d(pi, pj) ≤
6r. Since the Delaunay triangulation is the dual of the Voronoi tessellation,
all edges in D must have length at most 6r.

To prove the claim about angles, we first note that, using the properties
just proved, any triangle in D lies in a ball of radius 6r, which we can
assume is sufficiently small so that the geometry in this ball is very close to
Euclidean (we can define r smaller if necessary; this would be a problem if it
depended on the surface/genus, but it does not need to here). In Euclidean
space, the Delaunay triangulation has the property that the disc bounded by
any circumcircle of one of its triangles does not contain any other Delaunay
vertex. Since every point of X has distance at most 3r to the vertex set of
D, we then see that the radius of this circumcircle is at most 3r.

The desired lower bound on angles then will follow from this Euclidean
geometry fact (see Figure 6): if ABC is a triangle whose circumcircle is
centered at P and such that the line BC separates A from P , then

∠BAC = 180◦ − 2 arcsin

(
|BC|

2 · |PB|

)
.

For ABC one of our Delaunay triangles, we have |BC| ≥ 2r, and |PB| ≤
3r. Using these in the above gives ∠BAC ≤ 180◦ − 2 arcsin(1/3) ≤ 150◦.

�

Now we will define the flow boxes B1, . . . , Bk. For each edge ei of D, let
vi be one of the two vectors tangent to ei at its midpoint. Then we let Bi :=
B(vi) be the η flow box centered at vi. If we take η sufficiently small, then
any closed geodesic γ that intersects all such Bi will contain a subset whose
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projection to the surface has all complementary regions homeomorphic to
discs. In particular γ will be filling. Because of the upper bound on edge
lengths of D, and upper bound on angles (which implies a lower bound on
angles, since all the triangles are small, hence close to Euclidean), we can
take η to be uniform (depending only on systole lower bound s0, and not on
other features of the surface such as the genus).

i

Figure 7: The Delaunay vertices have bounded degree

All that remains is to estimate k, the number of the Bi. First, note
that #vertices(D) ≤ c · g, for some c depending only on the systole lower
bound s0. This is because the discs D1, . . . , Dk, whose centers are exactly
the vertices of D, are disjoint and have radius r (depending only on systole
bound s0), while the area of the surface X is (4g− 4)π. The valence of each
vertex pi in D is uniformly bounded by some d. In fact, for each vertex pj
that is a neighbor of pi, the disc Di centered at pi is entirely contained in
the ball of radius 7r about p; since each such Di has radius r and they are
disjoint, there is a bounded number of them. See Figure 7. Hence

#edges(D) ≤ d ·#vertices(D) ≤ d · c · g.

Since k = #edges(D), taking C = dc gives the desired bound of Cg flow
boxes.

�

5.2 Geodesics avoiding flow boxes

Lemma 5.3. Fix ε > 0 and C > 0. There exists a constant c with the
following property. Let B = {B1, . . . , BCg} be any collection of η flow boxes
in T 1X. Let

NB(X,L) := #{γ closed geodesic on X : `(γ) ≤ L, ∃B ∈ B s.t. γ ∩B = ∅},
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i.e. the number of closed geodesics that avoid some element of B. Then for
any L > cg(log g)2,

NB(X,L) ≤ ε · eL/L.

Proof. We will first study the geodesics starting in some particular flow
box. So fix B an η/3 flow box. Then let NB(B,L, η/3) denote the number
of geodesic segments of length η/3 in B that are part of a closed geodesic
of length in [L − η/3, L + η/3] that does not intersect some element of B.
Our first goal is to upper bound NB(B,L, η/3), and then we will use this to
upper bound NB(X,L).

Claim 5.4. We have

NB(B,L, η/3) ≤ ε · µ(B)eL.

We will prove this after Claim 5.5 below. In preparation, we will study
measures of sets of tangent vectors in B that avoid some element of B,
without the condition of being tangent to an actual closed geodesic.

Let B− := {B−1 , . . . , B
−
Cg} be contracted flow boxes. Let

t1 = c′ log g, t2 = 2c′ log g, . . . , tk = kc′ log g, tk+1 = L,

where c′ and k will also be chosen later. Then let

SB− := {v ∈ B ∩ g−LB : {gtv}Lt=0 ∩B−i = ∅ for some i = 1, . . . , Cg},

i.e. the set of those tangent vectors that avoid some element of B−. We
will bound the measure of SB− from above. Let k = ddg log ge, where d
is a constant that will be specified later. We want the gap between every
successive pair to be at least c′ log g, for c′ the constant in Lemma 5.8, which
we will apply shortly. To ensure this, we need

L > (k + 1)c′ log g = (dg log g + 1)c′ log g.

Since the right-hand term is O(g(log g)2), the above inequality will hold if
we take the c in the current lemma sufficiently large.

Now with these ti, we have

SB− ⊂ {v ∈ B ∩ g−LB : {gt1v, . . . , gtkv} ∩B
−
i = ∅ for some i = 1, . . . , Cg}.
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To bound the measure of the right-hand side above, we use Lemma 5.8
(which gives us the value of c′) with flow boxes B,B1, . . . , BCg, giving

µ(SB−) ≤ (1 + ε)µ(B)2
Cg∑
i=1

[1− (1− ε)µ(Bi)]
k (36)

= (1 + ε)µ(B)2(Cg) [1− (1− ε)µ(Bi)]
k (37)

≤ (1 + ε)µ(B)2(Cg)

[
1− 1

O(1)g

]k
. (38)

Now we use the approximation

g

(
1− 1

O(1)g

)k
≤ O(1)g exp

(
− 1

O(1)g

)k
≤ O(1)g exp

(
−k
O(1)g

)
,

which can be made arbitrarily small by choosing d large, since k ≥ dg log g.
Applying this to (38) we get

µ(SB−) ≤ ε · µ(B)2. (39)

Claim 5.5. At most κ := 4
√
ε fraction of the components of B ∩ g−LB are

completely contained in SB−.

Proof. Assume the contrary. LetN = #comp(B∩g−LB), and let P1, . . . , PN
be the components of B ∩ g−LB, ordered such that µ(P1) ≤ · · · ≤ µ(PN ).
Then

µ(SB−) ≥
∑
i<κN

µ(Pi) ≥
∑

(κ/2)N<i<κN

µ(Pi) ≥ µ(Pb(κ/2)Nc) · (κ/2)N.

Using that N ≥ µ(B)eL, which follows from effective mixing and the con-
traction/expansion (as in proof of Theorem 3.1), and (39), we get that

µ(Pb(κ/2)Nc) ≤ µ(SB−) · 2

κ ·N
≤ ε · µ(B)2

2

4
√
εµ(B)eL

=

√
ε

2
· e−Lµ(B).

On the other hand, by effective mixing, Theorem 2.2, applied to smaller
flow boxes, we see that the components of B ∩ g−LB have widths in the
flow direction that are close to equidistributed in [0, η/3]. Combined with
our understanding of the shape of these components in the contracting and
expanding directions, we get

µ(Pb(κ/2)Nc) ≥
1

2
· (κ/2)e−Lµ(B) =

1

2
(2
√
ε)e−Lµ(B) =

√
ε · e−Lµ(B),

contradicting the inequality above.
�
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Proof of Claim 5.4. Observe that if v ∈ B ∩ g−LB and v 6∈ SB− , then for
any w in v’s connected component of B ∩ g−LB, we have w 6∈ SB. This is
because all vectors in the component travel closely together up to time L,
and since {gtv} hits every B−i , we see that {gtw} will hit every Bi.

Thus any segment counted by NB(B,L, η/3) intersects a component of
B ∩ g−LB that is entirely contained in SB− ; let K be the number of such
components. It follows from Claim 5.5 that

K ≤ 4
√
ε ·#comp(B ∩ g−LB) ≤ 4

√
ε · µ(B)eL.

Now Lemma 6.2 implies that each component of B ∩ g−LB intersects at
most one η/3 segment of a closed geodesic with length in [L− η/3, L+ η/3].
So

NB(B,L, η/3) ≤ K
≤ 4
√
ε · µ(B)eL.

Choosing ε appropriately gives the desired result.
�

To complete the proof of the lemma, we upper bound NB(X,L) using
Claim 5.4, an upper bound on NB(B,L, η/3). The first step is to follow the
analogous part of proof of Theorem 3.1, which involves averaging over all
possible start boxes B, to get

NB(X, [L− η/3, L+ η/3]) ≤ ε · (η/3) · e
L

L
,

where the left-hand side denotes the number of closed geodesics of length in
[L−η/3, L+η/3] for which there is some element of B that the geodesic does
not intersect. By enlarging d if necessary, we get the above bound with L
replaced by any value between L/2 and L. We then sum over these values,
as in the end of the proof of Proposition 4.17.

�

Remark 5.6. In Claim 5.5 above, we used equidistribution of widths of
intersection components in the flow direction. This technique was not used
in proof of Theorem 1.1. An alternate way to prove that theorem would be
the control the shape of components throughout the proof, and then get a
measure bound on the relevant subset of B ∩ g−LB. The desired bound on
number of simple closed geodesics could then be deduced from the measure
bound using the equidistribution as above.
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On the other hand, there is another way of proving Lemma 5.3 avoiding
the use of the equidistribution result. This involves some more steps, as in
proof of Theorem 1.1, to account for non-fullness of intersection components
in the geodesic flow direction. 4

Lemma 5.8 below was used in the proof of Lemma 5.3 above; Lemma 5.7
is used in the proof of Lemma 5.8.

Lemma 5.7. Fix δ, ε > 0. There exists some c > 0 such that for any δ-
expander surface X the following holds. Let B0, . . . , Bk ⊂ T 1X be η flow
boxes. For each i, let Ei be either Bi, or the complement in T 1X of Bi, and
let

mi =

{
(1 + ε)µ(Bi) if Ei = Bi
1− (1− ε)µ(Bi) if Ei = T 1X −Bi.

Then

µ ({v : gtiv ∈ Ei, for i = 0, . . . , k}) ≤ m0 · · ·mk

for any t0 < · · · < tk with ti − ti−1 ≥ c log g for each i ≥ 1.

Proof. The proof is similar to that of Theorem 2.2. To ensure the com-
plementary components are thick enough, we use slightly contracted flow
boxes.

�

Next we get an upper bound on the measure of those v avoiding some
box B1, . . . , Bm at all the prescribed times.

Lemma 5.8. Fix ε > 0. There exists a constant c with the following prop-
erty. Let B,B1, . . . , Bm ⊂ T 1X each either an η or η/3 flow box. Then

µ
(
{v ∈ B ∩ g−tk+1

B : {gt1v, . . . , gtkv} ∩Bi = ∅ for some i = 1, . . . ,m}
)

≤ (1 + ε)µ(B)2
m∑
i=1

[1− (1− ε)µ(Bi)]
k

for any t1 < · · · < tk+1 with ti − ti−1 ≥ c log g for each i ≥ 2.

Proof. For i = 1, . . . ,m, let

Si = {v ∈ B ∩ g−tk+1
B : {gt1v, . . . , gtkv} ∩Bi = ∅}.
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We have

µ (Si) = µ
(
{v ∈ B ∩ g−tk+1

B : gt1v, . . . , gtkv ∈ T
1X −Bi}

)
(40)

≤ (1 + ε)2µ(B)2 · [1− (1− ε)µ(Bi)]
k , (41)

by Lemma 5.7.
Then by a union bound

µ
(
{v ∈ B ∩ g−tk+1

B : {gt1v, . . . , gtkv} ∩Bi = ∅ for some i = 1, . . . ,m}
)

= µ

(
m⋃
i=1

Si

)

≤
m∑
i=1

µ(Si)

≤
m∑
i=1

(1 + ε)2µ(B)2 · [1− (1− ε)µ(Bi)]
k ,

where in the last line we have used (41).
�

5.3 Completing proof of Theorem 1.4

Proof of Theorem 1.4. Let B := {B1, . . . , BCg} be flow boxes given by Lemma 5.1.
By that lemma, we have N(X,L) − Nfill(X,L) ≤ NB(X,L). We combine
this with Lemma 5.3 applied with these flow boxes, to get

N(X,L)−Nfill(X,L) ≤ NB(X,L) ≤ ε · eL/L.

We then compare this to the estimate of the number of all closed geodesics
N(X,L) given by Theorem 3.1 to conclude the desired result. �

6 Appendix: Anosov Closing Lemma

We use the following two lemmas relating components of B∩g−LB to closed
geodesics of length approximately L passing through B.

Lemma 6.1. For any η sufficiently small (depending on systole bound s0)
the following holds. Let B ⊂ T 1X be an embedded η flow box. For any L let
N(B,L, η) be the number of length η geodesics segments inside of B that lie
on a closed geodesic of length in [L− η, L+ η]. Then

|N(B,L, η)−#comp(B ∩ g−LB)| = O(1).
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Proof. This is a version of the Anosov Closing Lemma. See, for instance,
[KH95, Lemma 20.6.5]. �

We also need the following result, which is similar to part of the bound
above, but counts any closed geodesic intersecting B, even if does not in-
tersect for the full time η (which can happen because our flow boxes do not
behave exactly like Euclidean rectangular boxes).

Lemma 6.2. For any η sufficiently small (depending on systole bound s0)
the following holds. Let B ⊂ T 1X be an embedded η flow box. Suppose that
γ1, γ2 are closed geodesics with period in [L− η, L+ η]. For any L, if v1, v2
are in the same component of B ∩ g−LB and vi is tangent to γi for i = 1, 2,
then γ1 = γ2.

Proof. The components of B ∩ g−LB have width at most e−Lη in the ex-
panding direction. Since v1, v2 are in the same component, for each t ∈ [0, L]
there exists some embedded η flow box that contains gtv1 and gtv2. It fol-
lows that γ1, γ2 are homotopic. Since X is hyperbolic, they must be the
same. �
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