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Abstract

In this note, we solve the “birthday problem” for loops
on random regular graphs. Namely, for fixed d 3≥ , we

prove that on a random d‐regular graph with n vertices,

as n approaches infinity, with high probability:

(i) almost all primitive nonbacktracking loops of length

k n≺ are simple, that is, do not self‐intersect, and
(ii) almost all primitive nonbacktracking loops of

length k n≺ self‐intersect.
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1 | INTRODUCTION

The issue of the number of simple versus nonsimple loops on random regular graphs plays an
important role in controlling their spectral gap [5, 8, 9]. The related study of nonbacktracking
random walk on regular graphs has been pursued in [1, 13, 14] among other papers.

Our interest in this topic arose from consideration of the analogous question for closed
geodesics on Weil–Petersson random hyperbolic surfaces, raised by Lipnowski‐Wright
[12, conjecture 1.2] in their study of spectral gap for these surfaces. There is a fruitful analogy
between large regular graphs and hyperbolic surfaces of high genus (e.g., [6, 7]). Closed
geodesics, as well as simple closed geodesics, on hyperbolic surfaces, are objects of intense
study; their analogs on graphs are nonbacktracking loops.

The shortest nonbacktracking loop on any regular graph is simple, that is, passes through
each vertex at most once. As we consider nonbacktracking loops of length k getting larger,
eventually all of them are nonsimple. At what length k (as a function of n) do the nonsimple
loops start to become more common? The scale at which the transition happens will depend on
the shape of the graph; in this paper, we answer the question for the case of random regular
graphs of fixed degree d 3≥ . Our result is that the transition occurs around the
threshold k n= .
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1.1 | Terminology

We define a walk of length k on a (multi)graph to be a sequence of oriented edges*e e ek1 2 ⋯

with the terminal vertex of ei equal to the initial vertex of ei+1 for i k= 1, …, − 1. We say a walk
is a loop if the terminal vertex of ek is equal to the initial vertex of e1. If the edge sequences of
two loops differ by a cyclic shift, we consider the two loops to be the same. We say a walk is
nonbacktracking if e ei i+1≠ (here ei denotes ei with orientation reversed) for i k= 1, …, − 1. We
say a loop is nonbacktracking if all of the walks associated to that loop are nonbacktracking (in
particular, when a distinguished start vertex is chosen, we must have “nonbacktracking at the
start”).† A walk is said to be simple if the terminal endpoints of the edges are distinct, and a loop
is said to be simple if all (equivalently, any) of the associated walks are simple. We say a loop is
primitive if it is not the repetition of a shorter loop.

Our notion of simple loop coincides with the usual meaning of the term oriented cycle in the
graph theory literature.

1.2 | Model of random regular graphs and notation

Let G d n( , ) be a random d‐regular graph on n vertices, chosen using the configuration model.
One sample from this distribution is as follows. Begin with n vertices, each with d unpaired
half‐edges. At each stage, choose some unpaired half‐edge and pair it with a different unpaired
half‐edge chosen uniformly at random. Repeat until all half‐edges are paired. The resulting
“graph” can have self‐loops and multiple edges between a pair of vertices; nevertheless, we will
abuse terminology and call them graphs.

Given Γ a d‐regular graph let:

• N k(Γ, )simp be the number of simple nonbacktracking loops on Γ of length k,
• N k(Γ, )prim be the number of primitive nonbacktracking loops on Γ of length k.

We use N k( )simp to denote the functions on the set of all d‐regular graphs sending Γ to the
integer N k(Γ, )simp , and we use N k( )prim similarly.

Let [ ]n ⋅ denote the probability of an event depending on a graph Γ drawn from the
distributionG d n( , ), and let [ ]n ⋅ denote the expected value. (Note that these quantities depend
also on the degree d, but we will always think of d as fixed). We will use the shorthand

X k X k[ ( )] [ (Γ, )]n n≔ for X any of the quantities in the list above, and likewise for X[ ]n .

1.3 | Main results

In this paper, A B≺ means that A o B= ( ), and A B~ means lim = 1
A

B
.

*For oriented edges, there is a small subtlety with self‐loops. To define oriented edge, we begin by decomposing each
edge of the graph into two half‐edges, each of which has an incident vertex. An orientation of an edge is then a choice
of an ordering of its two half‐edges. Notice that with this defintion, any edge (including a self‐loop) has exactly two
orientations.
†Note that with our definitions, if e is an oriented edge that is a self‐loop, then the walk ee e⋯ is considered to be
nonbacktracking.

2 | DOZIER and SAPIR



Theorem 1.1 (Low length regime). Take d 3≥ fixed. Suppose k is some function of n
satisfying k n≺ . Fix ϵ > 0. Then

N k N k[ ( ) (1 − ϵ) ( )] 1,n simp prim≥ →

as n → ∞.

Theorem 1.2 (High length regime). Take d 3≥ fixed. Suppose k is some function of n
satisfying k n≻ . Fix ϵ > 0. Then

N k N k[ ( ) ϵ ( )] 1,n simp prim≤ ⋅ →

as n → ∞.

In both theorems above, when d is odd, for there to be any d‐regular graphs on n vertices, n
must be even. Thus in those cases, we take n → ∞ along the even integers.

Remark 1.3. A considerable subtlety is that Theorem 1.1 would not be true if we
replaced N k( )prim by N k( )all , the number of nonbacktracking loops, without the primitive
condition. In particular, it would fail for k a fixed composite integer pq. In fact, in that
case, it is known (by [3]) that N k( )simp and N p( )simp asymptotically have finite positive
mean, and since N k N k N p[ ( )] [ ( )] + [ ( )]n all n simp n simp≥ , we get that N k( )all must be
greater than N k( )simp by a definite factor a positive proportion of the time.

Remark 1.4. The above two theorems also hold if we replace the configuration model
G d n( , ) with the uniform model over all d‐regular graphs, without self‐loops or multiple
edges, on n vertices. These versions can be deduced from the theorems above together
with the result that the probability that a (multi)graph fromG d n( , ) has neither self‐loops
nor multiple edges tends to a positive constant as n → ∞ (see [3] or [4, theorem 2.16]).

1.3.1 | Nonrandom graphs

Note that the analog of Theorem 1.1 for fixed sequences of regular graphs (rather than random
ones) fails. Families of graphs with diameter linear in n provide counter‐examples, since in this
case walks behave like random walk on a line and thus even short walks (and loops) are likely
to self‐intersect.

On the other hand, we do not know if the nonrandom version of Theorem 1.2 holds:

Question 1.5. Let nj be an increasing sequence of positive integers, Γnj a d‐regular
graph on nj vertices, and k some function of n with k n n( ) ≻ . Is it true that for any
fixed ϵ > 0,

N k n N k n(Γ , ( )) < ϵ (Γ , ( ))simp n j prim n jj j
⋅

for all j sufficiently large (depending on ϵ)?

DOZIER and SAPIR | 3



1.4 | Discussion of the proofs

1.4.1 | Heuristic

A random loop of length k on a random graph should behave in some sense like choosing a list
of k vertices uniformly at random from all n vertices and making the loop travel through them
in order. If this were the case, then the solution to the standard “birthday problem” for picking
k birthdays randomly from among n suggests that the transition between all the vertices being
distinct versus having at least one repetition should occur around k n= .

Of course, on a d‐regular graph, a nonbacktracking walk can only be extended by one step
in d − 1 ways, so certainly, not all n vertices are equally likely to come after some given vertex.
However, since we are choosing the graph randomly as well, one can in fact think of the next
vertex along a walk as being randomly selected from the n vertices. This is because we can build
the graph and walk simultaneously, only making choices about the graph when the walk forces
us to. There are, however, two issues with doing this:

(i) it only gives control over expected values of counts; to get asymptotic almost sure (a.a.s.)
control requires additional work,

(ii) it fails if the walk already self‐intersects, since in that case we would not get the necessary
freedom in the choice of next edge to follow.

If our ultimate goal was to study walks rather than loops, neither of these issues would be
problematic. In fact, the technique suggested above easily gives that the transition for a random
nonbacktracking walk on a random graph to be self‐intersecting occurs around k n= .
Conditioning on the walk being a loop makes things considerably harder. Unlike the number of
nonbacktracking walks, the number of nonbacktracking loops depends on the particular graph.
This means that knowing the expected number of simple loops is not enough; we must know
additional information about the distribution of the number of simple loops, and separate
information about the count of primitive loops.

1.5 | Outline of paper

• In Section 2, we compute the expected number of simple loops. In the low length regime
k n≺ , we also bound the second moment of the number of simple loops and then use this
to control the a.a.s. behavior. Our bound on the second moment is the primary novel
ingredient in this paper.

• In Section 3, we study the count of primitive loops. In the very low length regime k n1 4≺ ∕ , we
control the expected value, while for k nlog≻ we control the a.a.s. behavior.

• In Section 4, we combine the results from the previous sections to prove both the main theorems.

2 | COUNTING SIMPLE LOOPS

Estimating expected counts of simple loops, which we do below in Proposition 2.1 and
Proposition 2.2, is well‐understood and quick. The idea is to build the graph and walk
simultaneously. We will also need control of the a.a.s. behavior, so we need to rule out high
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variance. In the low length regime k n1 ≺ ≺ , we estimate the second moment (Proposition
2.3), and then use the second moment method to deduce the a.a.s. behavior (Proposition 2.4).
In the high‐length regime k n≻ , since we are trying to prove an inequality of the form
N k N k(Γ, ) ϵ (Γ, )simp prim≤ for asymptotically almost all Γ, the first‐moment method will suffice.

2.1 | Expected count of simple loops

Proposition 2.1. Let k n≺ . Then

N k
d

k
[ ( )] ~

( − 1)
,n simp

k

as n → ∞.

Proof. The main idea is to build the graph and walk simultaneously. A similar result, with a
similar proof, appears in [5, lemma 4] though the random model they use is somewhat
different. Let p denote the probability that a randomly chosen nonbacktracking walk of length
k on a random regular graph is closed and simple. To compute p, we will consider choosing
the random graph at the same time as the random walk, only making choices about which
half‐edges are paired in the graph when we are forced to. The first factor below is the
probability that the first half‐edge the path follows is paired with a half‐edge that leads to a
different vertex (since there are dn − 1 half‐edges it could be paired with, of which d − 1 are
incident to the start vertex). Continuing in this way, we see that

p
d

dn

d d

dn

d k d

dn k

d

dn k

= 1 −
− 1

− 1
1 −

( − 1) + ( − 2)

− 3
1 −

( − 1) + ( − 2)( − 2)

− (2 − 3)

− 1

− (2 − 1)
.



 



 


 
















⋯

⋅

(1)

Since, a fortiori, k n≺ , we get

p
n n

k

n

d

d n
~ 1 −

1
1 −

2
1 −

− 1 − 1 1
.



 



 


 


 



 


⋯ ⋅

Then using the estimate x x O x1 − = exp(− + ( ))2 for small x repeatedly gives

p
k k

n

d

d n
~ exp

− ( − 1)

2

− 1 1

 



 


⋅ (2)

d

d n
~

− 1 1
,⋅ (3)

where in the last step we have used the assumption that k n≺ .
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Now to compute the desired expected value, we note that every regular graph has
nd d( − 1)k−1 nonbacktracking walks of length k. Each simple loop will be counted k

times in this way (recall that our walks and loops are all counted with orientation). Hence

k N k nd d p

nd d
d

d n

d

[ ( )] = ( − 1)

~ ( − 1)
− 1 1

~( − 1) ,

n simp
k

k

k

−1

−1

 




⋅

⋅

which then gives the desired result. □

Proposition 2.2. Suppose k is some function of n satisfying k n≻ . Then

N k
d

k
[ ( )]

( − 1)
,n simp

k

≺

as n → ∞.

Proof. Let p denote the probability that a randomly chosen nonbacktracking walk of length k
on a random regular graph is closed and simple. We recall the exact formula (1) for p:

p
d

dn

d d

dn

d k d

dn k

d

dn k

= 1 −
− 1

− 1
1 −

( − 1) + ( − 2)

− 3
1 −

( − 1) + ( − 2)( − 2)

− (2 − 3)

− 1

− (2 − 1)
.



 



 


 
















⋯

⋅

Note that the factors in the first line above are decreasing. Hence we can upper bound
each of the factors in the latter half by

d k d

dn k
k n1 −

( − 1) + ( 2 − 1)( − 2)

− ( − 1)
1 − Ω( ).

∕
≤ ∕

(Here f g= Ω( ) means g O f= ( ), and the implicit constant can depend on d. We are
also using that k n≤ ; otherwise, there are no simple walks of length k). Combining these
bounds with the obvious upper bound of 1 for the first terms, and the bound

O n= (1 )
d

dn k

− 1

− (2 − 1)
∕ for the last term (since d 3≥ and k n≤ ) gives

p k n O n(1 − Ω( )) (1 ).k 2−2≤ ∕ ⋅ ∕∕

Next, using the approximation x x O x1 − = exp(− + ( ))2 and the assumption that
k n≻ , we get from the above that

p o
n

= (1)
1
.⋅
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Then, as in the proof of Proposition 2.1, we get

k N k nd d p

nd d o
n

o d

[ ( )] = ( − 1)

= ( − 1) (1)
1
.

= (( − 1) ),

n simp
k

k

k

−1

−1

⋅

⋅ ⋅

which implies the desired result. □

2.2 | Variance of count of simple loops

Proposition 2.3. Let k n1 ≺ ≺ . Then

N k o
d

k
( ) (1 + (1))

( − 1)
,n simp

k
2

2

2







 ≤ ⋅

as n → ∞.

Proof. We consider Γ drawn from the configuration model G d n( , ). Let Ldist denote the
number of ordered pairs γ γ( , )1 2 , where each γi is a simple loop of length k on the graph Γ
with a choice of distinguished point on the loop, and such that γ γ1 2≠ and γ γ1 2≠ (here γ
denotes the loop γ but with orientation reversed).

Since there are exactly nd d( − 1)k−1 nonbacktracking paths of length k, we have

L nd d p[ ] = ( ( − 1) ) ,n dist
k−1 2

where p is the probability for Γ a randomly chosen regular graph and γ1, γ2 randomly
chosen nonbacktracking walks on Γ, that γ γ,1 2 are both simple loops with γ γ1 2≠ , γ γ1 2≠ .
We can write p p p= +1 2, where

• p1 is the probability (under the same choices as above) that γ γ,1 2 are both simple loops
and that the initial vertex of γ2 is not one of the vertices of γ1,

• p2 is the probability that γ γ,1 2 are both simple loops, the initial vertex of γ2 is one of the
vertices of γ1, and γ γ1 2≠ , γ γ1 2≠ .

To bound these probabilities from above, we will again consider choosing the random
graph at the same time as the random walks, only making choices about the graph when
we are forced to.

To bound p1, note that the probability that the last edge of γ1 goes back to its initial

vertex v1 is at most o(1 + (1))
d

d n

− 1 1 , where the o (1) bound on the error uses that k n≺ .

The analogous statement is true for γ2, even conditioning on γ1, since the initial vertex of
γ2 is disjoint from γ1. Hence we get

p o
d

d n
(1 + (1))

− 1 1
.1

2

 


≤ ⋅
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For p2, we get a factor ofO n(1 )∕ from the condition that γ1 is a simple loop (a better bound
is used in the preceding analysis for p1; this is all i.e., needed here). We also get a factor of
O k n( )∕ from the condition that the initial vertex of γ2 coincides with a vertex of γ1. Now if
γ γ( , )1 2 is a pair of simple loops counted in Ldist, there exists a unique edge e of γ2 such that e is
part of neither γ1 nor γ̄1, and such that after γ2 traverses e, it exactly follows either γ1 or γ̄1 until
its final vertex (Figure 1). There are at most k choices of where along γ2 this edge e is, and the
probability that the forward endpoint of e coincides with the appropriate vertex of γ1 isO n(1 )∕ .
Thus we get a further factor of O k n( )∕ . Putting this all together, we find

p O
n

k

n

k

n

o
n

=
1

=
1

,

2

2



 






 




⋅ ⋅

where in the last step, we have used the assumption that k n2 ≺ .
Putting the two estimates together gives

p p p o
d

d n
o
n

o
d

d n

= + (1 + (1))
− 1 1

+
1

(1 + (1))
− 1 1

.

1 2

2

2

2



 


 


 






 




≤ ⋅

≤ ⋅

Now returning to Ldist, we get

L nd d p

nd d o
d

d n

o d

[ ] = ( ( − 1) )

( ( − 1) ) (1 + (1))
− 1 1

(1 + (1)) ( − 1) .

n dist
k

k

k

−1 2

−1 2
2

2



 


≤ ⋅

≤ ⋅

To finish the proof, we combine the above with the term coming from pairs of loops
that are either identical or differ only in orientation. There are k N k(Γ, )simp

2 2 pairs of
loops with distinguished start points. So using Proposition 2.1 we compute:

k N k L k N k L k N k

o d o k d

o d

( ) = [ + 2 ( )] = [ ] + [2 ( )]

(1 + (1)) ( − 1) + 2(1 + (1)) ( − 1)

(1 + (1)) ( − 1) ,

n simp n dist simp n dist n simp

k k

k

2 2 2 2

2

2







⋅ ⋅ ⋅

≤ ⋅ ⋅

≤ ⋅

FIGURE 1 When the initial vertex of γ2 lies on γ1. [Color figure can be viewed at wileyonlinelibrary.com]
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where in the last line we have used the assumption that k1 ≺ . Dividing by k2 gives the
desired result. □

2.3 | Asymptotic almost sure behavior of simple loops

Proposition 2.4. Let k n1 ≺ ≺ . Fix ϵ > 0. Then

N k

d k
lim

( )

( − 1)
− 1 < ϵ = 1.

n
n

simp

k









∕→∞



Remark 2.5. Note that above is false for k a constant, since in that case N k( )simp has a
Poisson distribution with positive variance (3, theorem 2).
Proof. This follows from the second‐moment method (Chebyshev inequality), using the
expected value estimate of Proposition 2.1 and the second‐moment estimate of
Proposition 2.3. □

3 | COUNTING PRIMITIVE LOOPS

When the length is very low (k n1 4≺ ∕ ), we will show that the probability that a
nonbacktracking walk forms two distinct, primitive loops in its induced subgraph is so low
that this probability is still negligible conditioned on the event that the walk is a loop. It follows
that in this regime the expected number of primitive loops (Proposition 3.1) has the same
asymptotics as the expected number of simple loops, computed in the previous section.

When k nlog≻ , we take the standard approach of using the spectral gap for the adjacency
matrix A to control the a.a.s. count of loops (Proposition 3.7). The trace of Ak counts all loops of
length k, without the nonbacktracking condition. Since we are interested in nonbacktracking
loops, we study the related “nonbacktracking matrix” Ã whose eigenvalues can be computed in
terms of those of A.

3.1 | Length k n1 4∕

Proposition 3.1. Let d 3≥ , and let k n1 4≺ ∕ . Then

N k
d

k
[ ( )] ~

( − 1)
n prim

k

as n → ∞.

Proof. We will compute the expected value as follows. On any graph from G d n( , ), the
total number of nonbacktracking walks γ of length k equals

nd d( − 1) ,k−1 (4)
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since there are n choices of starting vertex, then d choices for the first outgoing edge, and
d( − 1) choices for the succeeding outgoing edges (note that if the walk happens to be a
loop, then the resulting loop could potentially backtrack at the starting vertex).

We now consider choosing such a γ randomly, that is, we choose a graph randomly
according to G d n( , ), pick a random start vertex, and then pick a random nonbacktracking
walk starting at that vertex. Combined with (4), to prove the Proposition, it will suffice to
compute the probability pprim that γ is a loop that is primitive and nonbacktracking.

We begin by showing that γ forming multiple loops is unlikely.

Claim 3.2. The probability that the induced graph formed by γ has at least two distinct
primitive loops is O k n( )4 2∕ .

Proof. A similar result appears as [5, lemma 3] though the random model there is
somewhat different. We proceed by building the random graph and the random walk at
the same time. If there are two loops it means that we had at least two “free choices” of
an edge that came back to vertices already on the walk. By free, we mean that we picked
a half‐edge to follow that was unpaired. The probability that the half‐edge that this gets
paired to is incident to one of the vertices already in the walk is O k n k( ( − ))∕ which,

since we are assuming k n1 4≺ ∕ , is O k n( )∕ . There are ( )k2 choices for the two steps at

which the collision occurs. Thus the probability of interest isO k k n( ( ) )2 2∕ , as desired. □

Claim 3.3. Given a nonbacktracking, primitive, nonsimple loop γ on a graph, its
induced subgraph must contain at least two distinct primitive loops.

Proof. Let k be the length of the loop. Choose a starting point v1, and let γ traverse the
vertices v v v v, …, , =k k1 +1 1 in that order. We can choose the starting point such that a
simple loop α is formed by v v v v, , …, =i1 2 1 for some i k1 < < (we use both nonsimple
and nonbacktracking properties here). After vi, the walk may follow this loop α several
times, but since the loop γ is primitive, eventually it must depart from α, say at step j. A
new loop β is then formed somewhere between steps j and k. □

Let ps be the probability that γ is a simple loop. In (3), we showed that when k n≺ ,

p
n

d

d
~
1 − 1

.s

By the two claims above, the probability that γ is a primitive loop that is
nonbacktracking (including at start vertex) and nonsimple is

p O k n o n= ( ) = (1 ).ns
4 2∕ ∕

Combinging these two, we get that the probability that γ is a primitive, nonbacktracking
loop is

p p p
n

d

d
o n

n

d

d
= + ~

1 − 1
+ (1 ) ~

1 − 1
.prim s ns ∕
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We combine this with (4) to compute the expected number of primitive,
nonbacktracking loops of length k, with a distinguished start‐vertex to be

nd d p nd d
n

d

d
d( − 1) ~ ( − 1)

1 − 1
= ( − 1) .k

prim
k k−1 −1⋅ ⋅

There are k choices of distinguished start point along the loop, so if we forget this,
then the quantity goes down by a factor of k, giving the desired result. □

3.2 | Length k log n

3.2.1 | Nonbacktracking matrix

Much of the material in this section is well‐known, but does not appear in the literature in the
exact form that we need, so we give an exposition for the reader's convenience.

Let A be the n n× adjacency matrix of d‐regular graph Γ. Since Γ is undirected, this graph
is symmetric, so A has n real eigenvalues

λ λ λ .n1 2≥ ≥ ⋯ ≥

Since Γ is d‐regular, λ d=1 . Let λ λ λ= max( , )n2    .
Powers of A and associated spectral information can be used to understand counts of walks with

backtracking allowed. Since we are interested in nonbacktracking walks, we consider the related
Markov process that keeps track of edges in a path with orientation. This Markov process is well‐
established in the literature (see, e.g., [1, 2, 13]). We redefine it here for completeness.

The nonbacktracking Markov process Γ̃ is defined as follows. For each edge of Γ, we let each
state of Γ̃ correspond to an edge of Γ with a choice of orientation. In other words, the number of
states of Γ̃ is exactly nd, or twice the number of edges of Γ. Consider two states e e,1 2 of Γ̃ (i.e.,
two edges of Γ with choice of orientation). We make a connection from e1 to e2 if e e,1 2 are not
opposite orientations of the same edge, and the forward endpoint of e1 equals the back endpoint
of e2 (these conditions mean that going from e1 to e2 is a valid move in a nonbacktracking walk).
In particular, if e1 is represents an oriented self‐loop in Γ, then it is connected to itself in Γ̃. And
if two vertices in Γ are joined by multiple edges, then these edges induce a complete bipartite
subgraph in Γ̃. In this way, each vertex of Γ̃ has d − 1 incoming edges and d − 1 outgoing
edges. Observe that there is a bijection between nonbacktracking loops on Γ and all (directed)
loops on Γ̃. We consider the Markov process corresponding to Γ̃. In particular, given a state e1
we think of this process as choosing the next allowable state uniformly at random.

To count nonbacktracking loops, we will study the adjacency matrix Ã of Γ̃. We call Ã the
nonbacktracking matrix associated to the graph Γ. We denote by μ the magnitude of the second
largest number in magnitude among the eigenvalues of Ã (listed with multiplicity).

The following lemma says that if A has spectral gap, then so does Ã.

Lemma 3.4. Let A be the adjacency matrix of any regular graph, and Ã the
corresponding nonbacktracking matrix. For every ϵ > 0, there is some δ > 0 so that if

λ d< − ϵ
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then

μ d δ< ( − 1) − .

Proof. If Γ is not connected, then there is no spectral gap: λ d= . If Γ is connected, it is
well known that the eigenvalues of Ã can be expressed in terms of those of A as

μ μ μ μ, , …, , , 1, …, 1, −1, …, −1 ,n n

nd n nd n

1
+

1
− + −

2− 2−







∕ ∕     

where

μ
λ λ d± − 4( − 1)

2
.i

i i±
2

≔

This was originally shown using Ihara's theorem; see [10, 11]. The statement above
appears as part of [13, proposition 3.1]. It can be proved by explicitly finding the Ã

eigenspaces for ±1 as well as eigenvectors of Ã corresponding to those of A (see [13, first
part of proof of proposition 3.1 and remark 3.4]).

Let f x( ) =
x x d+ − 4( − 1)

2

2

.

Claim 3.5.

μ d f dmax{ − 1 , ( − ϵ)}.≤

(Note that if necessary, we can decrease ϵ so that f d( − ϵ) is real).

Proof. Note that since λ d=1 , we have μ d= − 11
+ and μ = 11

− . So it suffices to show

that the remaining eigenvalues of Ã are all at most d f dmax{ − 1 , ( − ϵ)} in magnitude.
If λ d< 2 − 1 ,i  then both μi

± are nonreal, and have magnitude equal to d − 1 ,
which can be seen by multiplying by the conjugate.

If λ d2 − 1i  ≥ , and i 1≠ , then both μi
± are real. In this case, if λ 0i ≥ , then

μ μ f λ f λ f d0 = ( ) ( ) ( − ϵ),i i i
− +≤ ≤ ≤ ≤

where in the last two inequalities, we have used that f is an increasing function on
d[2 − 1 , )∞ . When λ 0i ≤ , arguing similarly gives μ f d( − ϵ)i

±  ≤ , completing the
proof. □

Applying this claim we get

μ d f d f d f d d f d f d

d d d f d f d

max{ − 1 , ( − ϵ)} ( ) − min{ ( ) − − 1 , ( ) − ( − ϵ)}

= ( − 1) − min{ − 1 − − 1 , ( ) − ( − ϵ)}.

≤ ≤
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Combining this with the fact that f is a strictly increasing function on d[2 − 1 , )∞

gives the existence of δ with the desired property. □

Lemma 3.6. Let Ã be the nonbacktracking matrix for a graph fromG d n( , ), and let μ be
the largest magnitude among the eigenvalues of Ã other than μ1. Then there exists δ > 0

such that

μ d δlim [ < ( − 1) − ] = 1.
n

n
→∞


Proof. Let λ be the quantity for A defined above. It is well known (see e.g., [5, theorem
13]) that there is some ϵ > 0 such that

λ dlim [ < − ϵ] = 1.
n

n
→∞


Then applying Lemma 3.4 to such an A gives a δ such that μ d δ< ( − 1) − . □

Proposition 3.7. Suppose k is some function of n satisfying k nlog≻ . Fix ϵ > 0. Then

N k

d k

( )

( − 1)
− 1 < ϵ 1,n

prim

k









∕
→

as n → ∞.

Proof. The nonbacktracking matrix Ã associated to a d‐regular graph Γ has dimensions
nd nd× . Let m nd= .

Let

μ d μ μ= − 1, , …, ,m1 2

be the eigenvalues of Ã, listed with (algebraic) multiplicity, arranged in order of
decreasing magnitude.

By Lemma 3.6 there exists δ > 0 such that

μ d δ i m< ( − 1) − , for = 2, …, ,i  (5)

with probability tending to 1 as n → ∞.
Now note that the jth diagonal entry of Ãk counts the number of directed walks on Γ̃

that start and end at the jth vertex. We denote by N k( )tr the number of nonbacktracking
walks on Γ that start and end at the same vertex. Then

N k A μ μ μ

d μ μ

d O μ μ

d O m μ

( ) = Trace( ˜ ) = + + +

= ( − 1) + + +

= ( − 1) + ( + + )

= ( − 1) + ( max ).

tr
k k k

m
k

k k
m
k

k k
m
k

k

i
i
k

1 2

2

2

2

   
 

⋯

⋯

⋯

⋅
≥
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By the above spectral gap bound (5) on the μi, we get that, with probability tending to
1 as n → ∞,

N k d O m d δ( ) = ( − 1) + ( (( − 1) − ) ).tr
k k

Recall that m nd= , so when k nlog≻ , the above gives

N k o d( ) = (1 + (1)) ( − 1)tr
k⋅ (6)

with probability tending to 1 as n → ∞.
Now we can express N k( )tr in terms of N k(Γ, )prim . Each loop counted by Ntr has a

period r k , and there are r distinct choices of starting edge. So we have:

N k r N r( ) = (Γ, ).tr

r k

prim


⋅

We isolate N k(Γ, )prim and use the immediate universal inequality N r nd(Γ, )prim
r≤

holding for any r nΓ, , , together with (6) to get, with probability tending to 1 as n → ∞,

k N k N k r N r

N k O r n d

o d O k n d

o d o d

(Γ, ) = ( ) − (Γ, )

= ( ) −

= (1 + (1)) ( − 1) − ( )

= (1 + (1)) ( − 1) − (( − 1) ),

prim tr

r k r k

prim

tr

r k r k

r

k k

k k

,

,

2 2















⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅

⋅

≠

≠

∕

where we have used that k nlog≻ to get the last line. The desired result follows. □

Remark 3.8. When d 5≥ , one can accurately bound the expectation of N k(Γ, )prim for
k nlog≺ using more quantitative information about the eigenvalues of random regular
graphs (namely [8, theorem 3.1]). But these methods do not seem to work for d = 3, 4.

4 | SIMPLE VERSUS PRIMITIVE LOOPS

In this section, we prove the main theorems by combining the results that we've proved about
counting simple and primitive loops in the previous two sections.

4.1 | Low length regime

Proof of Theorem 1.1. We will prove the theorem when the order of growth k lies in one
of three specific ranges: (1) k constant, (2) k n1 1 4≺ ≺ ∕ , (3) n k n nlog ( )≺ ≺ . In
general, k n( ) need not stay in any of these three ranges; however the general case
reduces to these. In fact, to show that the desired limit of probabilities is 1, it suffices to
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show that any subsequence n{ }i has a further subsequence n{ }ij along which the limit is 1.
Given n{ }i , we can always find n{ }ij along which the growth of k falls into one of the three
cases. Hence, by the below, the limit of the probabilities along n{ }ij will be 1.

Case 1: k is constant.

Our proof uses (i) N k N k( ) ( )simp prim≤ , (ii) the integrality of N k N k( ), ( )simp prim , and (iii)
our results on the expectation of N k N k( ), ( )simp prim , in particular that these converge to
the same constant value in this regime.

Since N k N k( ) ( )simp prim≤ , and both are valued in nonnegative integers, we have

N k N k N k N k[ ( )] − [ ( )] [ ( ) ( )] 1.n prim n simp n prim simp≥ ≠ ⋅

By Proposition 2.1 and Proposition 3.1, the quantities N k[ ( )]prim and N k[ ( )]simp

both converge to the constant d k( − 1)k∕ , and hence the left‐hand side of the above tends
to 0 as n → ∞. It follows that

N k N klim [ ( ) ( )] = 0.
n

n simp prim≠
→∞


So for any ϵ > 0, we get that

N k N k N k N k[ ( ) (1 − ϵ) ( )] [ ( ) = ( )] 1,n simp prim n simp prim≥ ≥ → 

as n → ∞, as desired.

Case 2: k n n1 ( ) 1 4≺ ≺ ∕

In previous sections, we have gained control over the expectation of N k( )simp and N k( )prim

in this regime, showing that they have the same asymptotic behavior. And of course, we also
have N k N k( ) ( )simp prim≤ . However, these facts alone are not enough to deduce the desired
result. For instance, we need to rule of the situation in which with probability 1/2,
N k( ) = 1simp and N k( ) = 2prim , and with probability 1/2, both N k( )simp and N k( )prim are
around d k2( − 1)k∕ . Note that in this case, N k N k d k[ ( )], [ ( )] ~ ( − 1)simp prim

k∕ as
k → ∞, but there is a 1/2 chance that the ratio is equal to 2. This type of situation will be ruled
out by our control of the a.a.s. behavior of N k( )simp (which was proved by bounding the second
moment of N k( )simp ).

We begin by defining two random variables

X
N k

d k
Y

N k

d k

(Γ, )

( − 1)
,

(Γ, )

( − 1)
.

simp

k

prim

k
≔

∕
≔

∕

Note that X Y≤ everywhere. Moreover, by our assumptions on k n( ), we have that
k n1 1 4≺ ≺ ∕ . So X[ ] ~ 1 and Y[ ] ~ 1 by Propositions 2.1 and 3.1. Thus,

Y X o[ ] − [ ] = (1). In particular, for any ϵ > 0, for n large enough

Y X Y[ ] − ϵ [ ] [ ].≤ ≤
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So by Lemma 4.1, we get that

X Y( − ϵ ) 1 − ϵ ,n ≥ ≥ (7)

for n large enough.
The above means that X Y, are additively close with high probability, but the desired

statement is about multiplicative closeness (which need not follow from additive
closeness if both X Y, are small). We will achieve this by bounding X (and henceY ) from
below almost surely.

By Proposition 2.4, we have that Y X > 1 2≥ ∕ with probability at least 1 − ϵ for all n
large enough. Hence

Y Y− ϵ > (1 − 2 ϵ )

with probability at least 1 − ϵ for large n.
Combining this with (7) gives that

X Y X Y[ (1 − 2 ϵ ) ] [ − ϵ ] − ϵ 1 − ϵ − ϵ,n n≥ ≥ ≥ ≥ 

when n is sufficiently large. This implies the desired result.

Case 3: n k n nlog ( )≺ ≺

The proof in this case, comes directly from our control of the a.a.s. behavior of both
N k N k( ), ( )simp prim in this regime.

Applying Proposition 2.4 and Proposition 3.7 gives that, for any ϵ > 0, with probability
approaching 1 as n → ∞, we have both

N k d k

N k d k

( ) (1 − ϵ)( − 1) ,

( ) (1 + ϵ)( − 1) .

simp
k

prim
k

≥ ∕

≤ ∕

It follows that

N k N k( )
1 − ϵ

1 + ϵ
( ),simp prim≥ ⋅

with probability approaching 1 as n → ∞. This implies the desired result. □

Below is a version with additive error of the basic probability fact that if one random
variable dominates another and they have the same expectation, then they are equal almost
everywhere.

Lemma 4.1. Let X Y, be random variables (on the same probability space) with X Y≤

everywhere. Suppose that for some ϵ > 0,

X Y[ ] [ ] − ϵ.≥
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Then

X Y[ − ϵ ] 1 − ϵ .≥ ≥

Proof. Applying Markov's inequality to the nonnegative random variable Y X− , and
using that Y X[ − ] ϵ≤ gives

Y X Y X[ − > ϵ ]
1

ϵ
[ − ]

1

ϵ
ϵ = ϵ .≤ ⋅ ≤ ⋅

The desired result follows by considering the complementary event. □

4.2 | High length regime

Proof of Theorem 1.2. In this regime the only input we need is the expected count of
simple loops and the a.a.s. count of primitive loops.

Let

X
N k

d k
Y

N k

d k
=

(Γ, )

( − 1)
, =

(Γ, )

( − 1)
.

simp

k

prim

k∕ ∕

For the expected simple count, by Proposition 2.2,

Xlim [ ] = 0.
n

n
→∞

We now can apply the first‐moment method; by Markov's inequality, we have

X
X

[ ϵ 2]
[ ]

ϵ 2
0,n

n≥ ∕ ≤
∕

→ (8)

as n → ∞.
For the a.a.s. primitive count, by Proposition 3.7, we have

Ylim [1 − ϵ < < 1 + ϵ] = 1.
n

n
→∞
 (9)

Then

N k N k X Y X Y[ ( ) ϵ ( )] = [ ϵ ] [ ϵ 2] + [ 1 2],n simp prim n n n≥ ⋅ ≥ ⋅ ≤ ≥ ∕ ≤ ∕   

and the above goes to 0 as n → ∞, by (8) and (9). □
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