Name: \qquad

Homework 4

1. In the theory of electrical circuits, Ohm's law describes the relationship between the voltage V across a resistor, the electrical current I passing through the resistor, and a quantity R known as the resistance. The law can be written as follows:

$$
V=I R
$$

Usually voltage is measured in volts, current is measured in amperes (amps), and resistance is measured in ohms, where $1 \mathrm{ohm}=1 \mathrm{volt} / \mathrm{amp}$. In a circuit with variable resistance, the quantities V, I, and R might all depend on time.
(a) Take the derivative of Ohm's law to find an equation relating $\frac{d V}{d t}, \frac{d I}{d t}$, and $\frac{d R}{d t}$.
(b) Suppose that the current is increasing at a rate of $0.3 \mathrm{amps} / \mathrm{sec}$, while the resistance is holding steady at 4 ohms. How quickly is the voltage across the resistor increasing?

Now suppose that the voltage across the resistor is held constant at 20 volts, while the resistance is steadily increased at a rate of $0.4 \mathrm{ohms} / \mathrm{sec}$.
(c) What is the current through the resistor when the resistance reaches 10 ohms?
(d) At what rate is the current changing at that time? Is it increasing or decreasing?
2. A spherical snowball with a radius of 2 inches is melting. The volume V and radius r of the snowball are related by the formula:

$$
V=\frac{4}{3} \pi r^{3}
$$

(a) Find a formula for $\frac{d V}{d t}$ in terms of r and $\frac{d r}{d t}$.
(b) Because the snowball is melting, the radius of the snowball is decreasing at a rate of $0.7 \mathrm{in} . /$ hour. How quickly is the volume of the snowball decreasing?
3. Boat A is sailing north away from a dock, while boat B is sailing west towards the same dock:

In the picture above, the variable A represents the distance from boat A to the dock, the variable B represents the distance from boat B to the dock, and the variable L represents the distance between the two boats. By the Pythagorean theorem:

$$
A^{2}+B^{2}=L^{2}
$$

(a) Take the derivative of the above equation to find an equation involving $\frac{d A}{d t}, \frac{d B}{d t}$, and $\frac{d L}{d t}$.
(b) Is $\frac{d A}{d t}$ positive or negative? What about $\frac{d B}{d t}$? Explain.

Suppose that boat A is 30 km north of the dock, and is sailing north at a rate of $10 \mathrm{~km} / \mathrm{hour}$. Meanwhile, boat B is 40 km east of the dock, and is sailing west at a rate of $15 \mathrm{~km} /$ hour.
(c) What is the present distance between the two boats?
(d) What is $\frac{d A}{d t}$? What is $\frac{d B}{d t}$?
(e) How quickly is the distance between the boats changing? Is the distance increasing or decreasing?

