\qquad
Exam 1

1. [8 points] Find a unit-speed parametrization for the curve $r=e^{2 \theta}$.
2. [10 points] In the following figure, find the coordinates of the point P in terms of t.

3. [36 points] The following picture shows the curve $\vec{x}(t)=(2 \sqrt{3} \cos t, \sin 3 t)$.

(a) $[4 \mathbf{~ p t s}]$ Compute the unit tangent vector to this curve at $t=\pi / 3$.
(b) $[8 \mathrm{pts}]$ Find the Cartesian equation of the osculating circle to this curve at the point $(0,-1)$.
(c) [4 pts] Based on the given picture, how many vertices does the curve have? Draw points on the picture showing the approximate positions of these vertices.

The following picture shows the curve $\vec{x}(t)=(2 \sqrt{3} \cos t, \sin 3 t)$.

(d) $[8 \mathrm{pts}]$ Use the picture to make a rough sketch of the curvature function $\kappa_{g}(t)$.

(e) $[4 \mathrm{pts}]$ Evaluate $\int_{\mathcal{C}} \kappa_{g}(s) d s$.
(f) [4 pts] Determine the winding number of this curve around each of the following points: $(3,0),(0,0)$, and $(-3,0)$.
(g) $[\mathbf{4} \mathbf{~ p t s}]$ The value of $\int_{\mathcal{C}} x d y$ is (choose one):
(a) less than -5
(b) between -5 and -1
(c) between -1 and 1
(d) between 1 and 3
(e) between 3 and 5
(f) greater than 5
4. [6 points] Evaluate $\int_{\mathcal{C}} 3 x^{2} \cos \left(y^{2}\right) d x-2 x^{3} y \sin \left(y^{2}\right) d y$, where \mathcal{C} is any curve from the point $(1, \sqrt{\pi})$ to the point $(2,0)$.
5. [8 points] Suppose that a regular parametric curve $\vec{x}(t)$ has curvature $\kappa_{g}(t)=3 t^{2}$ and speed $s^{\prime}(t)=2 t^{3}+1$. Given that $\vec{x}^{\prime}(0)=(0,1)$, find a formula for the velocity $\vec{x}^{\prime}(t)$ as a function of t.
6. [12 points] Use Green's Theorem to evaluate $\iint_{\mathcal{R}} x d A$, where \mathcal{R} is the region bounded by the circle $x^{2}+y^{2}=1$ and the curve $\vec{x}(t)=\left(t^{2},(1-t)^{2}\right)$ shown in the following figure.

7. [$\mathbf{1 4}$ points] A circle of radius $2 / 3$ is rolling counterclockwise around the unit circle $x^{2}+y^{2}=1$. A point P lies on the perimeter of the rolling circle, with initial coordinates (1,0). Find parametric equations for the curve produced by tracing the path of P.

8. [6 points] For a certain differentiable function $f(x)$, the normal line to the graph at each point $(t, f(t))$ passes through the x-axis at the point $(\sinh t, 0)$.

Given that $f(0)=1$, find a formula for f.

