
Solutions to Exam 1 Practice Problems
Math 352, Fall 2014

1. (a) s′(t) =
√
x′(t)2 + y′(t)2 =

√
(1− cos t)2 + (− sin t)2 =

√
1− 2 cos t+ cos2 t+ sin2 t

=
√

2− 2 cos t .

(b) κg(t) =
−x′′(t)y′(t) + y′′(t)x′(t)

s′(t)3
=
−(sin t)(− sin t) + (− cos t)(1− cos t)

(2− 2 cos t)3/2

=
1− cos t

23/2(1− cos t)3/2
=

1

2
√

2− 2 cos t

(c)

∫
C

√
1− y2 ds =

∫ π/2

0

√
1− y(t)2 s′(t) dt =

∫ π/2

0

sin t
√

2− 2 cos t dt

=

[
1

3
(2− 2 cos t)3/2

]π/2
0

=
2
√

2

3

(d)

∫
C
y dx =

∫ π/2

0

y(t)x′(t) dt =

∫ π/2

0

(cos t)(1−cos t) dt =

∫ π/2

0

(cos t−cos2 t) dt

=

∫ π/2

0

(
cos t− 1 + cos(2t)

2

)
=

[
sin t− t

2
− sin(2t)

4

]π/2
0

= 1− π

4

2. The curve C surrounding the shaded region corresponds to −π/2 ≤ t ≤ π/2. Thus

area =

∫
C
−y dx =

∫ π/2

−π/2
−y(t)x′(t) dt =

∫ π/2

−π/2
−(sin3 t cos t)(− sin t) dt

=

∫ π/2

−π/2
sin4 t cos t dt =

[
1

5
sin5 t

]π/2
−π/2

=
2

5

3. Let R be the region inside the curve. By Green’s Theorem,∫
C

(
sin(x2) + 2y

)
dx+ 5x dy =

∫∫
R

(
∂

∂x

[
5x
]
− ∂

∂y

[
sin(x2) + 2y

])
dA

=

∫∫
R

3 dA = 3 area(R) = 3(21) = 63

4. Note that this curve begins at (1, 0) and ends at (0, 2). Note also that

ey =
∂

∂x

[
xey +

y3

3

]
and xey + y2 =

∂

∂y

[
xey +

y3

3

]
.

Then

∫
C
eydx+

(
xey + y2

)
dy =

[
xey +

y3

3

](0,2)
(1,0)

=
8

3
− 1 =

5

3



5. The distance rolled on the large circle must equal the distance rolled on the small circle:

H0,0L

P

P

Θ

The large circle has a circumferance of 32π, so the red arc has a length of 8π. The
length of the red arc on the small circle must be the same. The small circle has a
circumferance of 12π, so the red arc is 2/3 of this circle, or 4π/3 radians. The blue arc
subtends an angle of π/2 radians, and therefore θ = 2π− (4π/3)− (π/2) = π/6. Then

P = (10, 0) + 6(cos π/6, sin π/6) =
(
10 + 3

√
3, 1/2

)

6. (a) We have

s(t) =

∫ √
x′(t)2 + y′(t)2 dt

=

∫ √
(−t2 sin t+ 2t cos t)2 + (t2 cos t+ 2t sin t)2 dt

=

∫ √
t4 sin2 t− 2t3 sin t cos t+ 4t2 cos2 t+ t4 cos2 t+ 2t3 sin t cos t+ 4t2 sin2 t dt

=

∫ √
t4 + 4t2 dt =

∫
t
√
t2 + 4 dt =

(
t2 + 4

)3/2
3

(b) Solving the equation s =
(
t2 + 4

)3/2
/3 for t gives t =

√
(3s)2/3 − 4. Note that

s = 8/3 when t = 0. Therefore, the desired parametrization is((
(3s)2/3 − 4

)
cos
√

(3s)2/3 − 4,
(
(3s)2/3 − 4

)
sin
√

(3s)2/3 − 4

)
for s >

8

3

7. (a) The curve clearly has eight vertices:

A

B

C

D

E

F

G

H



The coordinates for the first two are A = ~x(0) = (1, 0) and B = ~x(π/4) = (3/
√

2, 3/
√

2) ,

and the remaining six are symmetric with these.

(b) Observe that

~x ′(t) = (−2 sin t+ 5 sin 5t, 2 cos t− 5 cos 5t)

and ~x ′′(t) = (−2 cos t+ 25 cos 5t,−2 sin t+ 25 sin 5t).

Vertex A is at t = 0, with

~x ′(0) = (0,−3) and ~x ′′(0) = (23, 0).

Thus κg(0) =
~x ′′ · ~U
(s′)2

=
23

9
at vertex A. The curvature is the same at vertices

C, E, and G.

Vertex B is at t = π/4, with

~x ′(π/4) =
1√
2

(−7, 7) and ~x ′′(π/4) =
1√
2

(−27,−27).

Thus κg(0) =
~x ′′ · ~U
(s′)2

=
27

49
at vertex B. The curvature is the same at vertices

D, F , and H.

(c) Since θ(t) is increasing, we can count the rotation index by finding all the points
for which θ = 0.

The curve makes one full rotation between every pair of these points. As you can

see, the rotation index is 5, and therefore

∫
C
κg ds = 10π .

(d) The following picture shows the winding number of the curve around each of the
five bounded regions.

2

2

2

2

1



It follows that∫
C
x dy = 21.0 + 2(0.9) + 2(0.9) + 2(0.9) + 2(0.9) = 28.2

8. We have

θ(s) =

∫
κg(s) ds =

∫
ds√

1− s2
= sin−1(s) + C.

Since ~x′(0) = (1, 0), we know that θ(0) = 0, so θ(s) = sin−1(s). Then

~x(s) =

∫ (
cos θ(s), sin θ(s)

)
ds =

∫ (√
1− s2, s

)
ds.

The integral of
√

1− s2 is difficult. Substituting s = sinφ gives∫ √
1− s2 ds =

∫
cos2φ dφ =

∫
1 + cos(2φ)

2
dφ =

φ

2
+

sin(2φ)

4
+ C

=
φ

2
+

sinφ cosφ

2
+ C =

sin−1(s)

2
+
s
√

1− s2
2

+ C.

So ~x(s) =

(
sin−1(s) + s

√
1− s2

2
,
s2

2

)
+ ~C. Since ~x(0) = (0, 0), it follows that

~C = (0, 0) so ~x(s) =

(
sin−1(s) + s

√
1− s2

2
,
s2

2

)

9. The equation for L(t) is y = (− cot t)x+ cos t, so L(t) and L(t+ h) intersect when(
− cot(t+ h)

)
x+ cos(t+ h) = (− cot t)x+ cos t.

Solving for x gives

x =
cos(t+ h)− cos t

cot(t+ h)− cot t
.

We can now use L’Hôpital’s rule to take the limit as h→ 0:

x = lim
h→0

cos(t+ h)− cos t

cot(t+ h)− cot t
= lim

h→0

− sin(t+ h)

−csc2(t+ h)
= sin3 t.

Pugging this into the formula for L(t) gives y = cos3 t. Thus ~x(t) =
(
sin3 t, cos3 t

)
10. (a) The tangent vector is ~T = (4/5, 3/5), so the normal vector is ~U = (−3/5, 4/5).

The osculating circle has a radius of 2, so it is centered at (2, 2)+2~U = (4/5, 18/5).

Thus, the equation is (x− 4/5)2 + (y − 18/5)2 = 4



(b) We know that θ′(t) =
dθ

dt
=

dθ

ds

ds

dt
= κg(t) s

′(t). Then θ′(0) = κg(0) s′(0) =

(1/2)(5) = 5/2

(c) ~x ′′ = (s′)2 κg ~U + s′′ ~V = (5)2(1/2)(−3/5, 4/5) + (1)(−3/5, 4/5) = (−8.1, 10.8)

11. The vector ~w =
1√
5

(2,−1) points along the axis of the second parabola, and the vector

~v =
1√
5

(−1,−2) is 90◦ clockwise from this. Then the second parabola is given by

~x(t) = t ~v + t2 ~w =
1√
5

(
2t2 − t, −t2 − 2t

)

12. Since κg(t) = 1, this curve must be a circle (or arc of a circle) of radius 1. Since
~x(0) = (1, 0) and ~x ′(0) = (0, 1), it is in fact the unit circle centered at the origin.
Thus, the parameterization looks like

~x(t) =
(
cos f(t), sin f(t)

)
for some function f(t). It’s easy to see (either intuitively or by doing a calculation),
that s′(t) = f ′(t), so

f(t) =

∫
s′(t) dt =

∫
(1 + t2) dt = t+

t3

3
+ C.

Since ~x(0) = (1, 0), we can assume that f(0) = 0, and hence C = 0. Thus

~x(t) =

(
cos

(
t+

t3

3

)
, sin

(
t+

t3

3

))


