Solutions to Exam 1 Practice Problems

Math 352, Fall 2014

1. (a) $s^{\prime}(t)=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}=\sqrt{(1-\cos t)^{2}+(-\sin t)^{2}}=\sqrt{1-2 \cos t+\cos ^{2} t+\sin ^{2} t}$

$$
=\sqrt{2-2 \cos t} \text {. }
$$

(b) $\kappa_{g}(t)=\frac{-x^{\prime \prime}(t) y^{\prime}(t)+y^{\prime \prime}(t) x^{\prime}(t)}{s^{\prime}(t)^{3}}=\frac{-(\sin t)(-\sin t)+(-\cos t)(1-\cos t)}{(2-2 \cos t)^{3 / 2}}$

$$
=\frac{1-\cos t}{2^{3 / 2}(1-\cos t)^{3 / 2}}=\frac{1}{2 \sqrt{2-2 \cos t}}
$$

(c) $\int_{\mathcal{C}} \sqrt{1-y^{2}} d s=\int_{0}^{\pi / 2} \sqrt{1-y(t)^{2}} s^{\prime}(t) d t=\int_{0}^{\pi / 2} \sin t \sqrt{2-2 \cos t} d t$

$$
=\left[\frac{1}{3}(2-2 \cos t)^{3 / 2}\right]_{0}^{\pi / 2}=\frac{2 \sqrt{2}}{3}
$$

(d) $\int_{\mathcal{C}} y d x=\int_{0}^{\pi / 2} y(t) x^{\prime}(t) d t=\int_{0}^{\pi / 2}(\cos t)(1-\cos t) d t=\int_{0}^{\pi / 2}\left(\cos t-\cos ^{2} t\right) d t$

$$
=\int_{0}^{\pi / 2}\left(\cos t-\frac{1+\cos (2 t)}{2}\right)=\left[\sin t-\frac{t}{2}-\frac{\sin (2 t)}{4}\right]_{0}^{\pi / 2}=1-\frac{\pi}{4}
$$

2. The curve \mathcal{C} surrounding the shaded region corresponds to $-\pi / 2 \leq t \leq \pi / 2$. Thus

$$
\begin{aligned}
& \text { area }=\int_{\mathcal{C}}-y d x=\int_{-\pi / 2}^{\pi / 2}-y(t) x^{\prime}(t) d t=\int_{-\pi / 2}^{\pi / 2}-\left(\sin ^{3} t \cos t\right)(-\sin t) d t \\
& =\int_{-\pi / 2}^{\pi / 2} \sin ^{4} t \cos t d t=\left[\frac{1}{5} \sin ^{5} t\right]_{-\pi / 2}^{\pi / 2}=\frac{2}{5}
\end{aligned}
$$

3. Let \mathcal{R} be the region inside the curve. By Green's Theorem,

$$
\begin{aligned}
& \int_{\mathcal{C}}\left(\sin \left(x^{2}\right)+2 y\right) d x+5 x d y=\iint_{\mathcal{R}}\left(\frac{\partial}{\partial x}[5 x]-\frac{\partial}{\partial y}\left[\sin \left(x^{2}\right)+2 y\right]\right) d A \\
& =\iint_{\mathcal{R}} 3 d A=3 \operatorname{area}(\mathcal{R})=3(21)=63
\end{aligned}
$$

4. Note that this curve begins at $(1,0)$ and ends at $(0,2)$. Note also that

$$
e^{y}=\frac{\partial}{\partial x}\left[x e^{y}+\frac{y^{3}}{3}\right] \quad \text { and } \quad x e^{y}+y^{2}=\frac{\partial}{\partial y}\left[x e^{y}+\frac{y^{3}}{3}\right] .
$$

Then $\int_{\mathcal{C}} e^{y} d x+\left(x e^{y}+y^{2}\right) d y=\left[x e^{y}+\frac{y^{3}}{3}\right]_{(1,0)}^{(0,2)}=\frac{8}{3}-1=\frac{5}{3}$
5. The distance rolled on the large circle must equal the distance rolled on the small circle:

The large circle has a circumferance of 32π, so the red arc has a length of 8π. The length of the red arc on the small circle must be the same. The small circle has a circumferance of 12π, so the red arc is $2 / 3$ of this circle, or $4 \pi / 3$ radians. The blue arc subtends an angle of $\pi / 2$ radians, and therefore $\theta=2 \pi-(4 \pi / 3)-(\pi / 2)=\pi / 6$. Then

$$
P=(10,0)+6(\cos \pi / 6, \sin \pi / 6)=(10+3 \sqrt{3}, 1 / 2)
$$

6. (a) We have

$$
\begin{aligned}
& s(t)=\int \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\
& =\int \sqrt{\left(-t^{2} \sin t+2 t \cos t\right)^{2}+\left(t^{2} \cos t+2 t \sin t\right)^{2}} d t \\
& =\int \sqrt{t^{4} \sin ^{2} t-2 t^{3} \sin t \cos t+4 t^{2} \cos ^{2} t+t^{4} \cos ^{2} t+2 t^{3} \sin t \cos t+4 t^{2} \sin ^{2} t} d t \\
& =\int \sqrt{t^{4}+4 t^{2}} d t=\int t \sqrt{t^{2}+4} d t=\frac{\left(t^{2}+4\right)^{3 / 2}}{3}
\end{aligned}
$$

(b) Solving the equation $s=\left(t^{2}+4\right)^{3 / 2} / 3$ for t gives $t=\sqrt{(3 s)^{2 / 3}-4}$. Note that $s=8 / 3$ when $t=0$. Therefore, the desired parametrization is

$$
\left(\left((3 s)^{2 / 3}-4\right) \cos \sqrt{(3 s)^{2 / 3}-4},\left((3 s)^{2 / 3}-4\right) \sin \sqrt{(3 s)^{2 / 3}-4}\right) \quad \text { for } s>\frac{8}{3}
$$

7. (a) The curve clearly has eight vertices:

The coordinates for the first two are $A=\vec{x}(0)=(1,0)$ and $B=\vec{x}(\pi / 4)=(3 / \sqrt{2}, 3 / \sqrt{2})$, and the remaining six are symmetric with these.
(b) Observe that

$$
\begin{aligned}
& \vec{x}^{\prime}(t)
\end{aligned}=(-2 \sin t+5 \sin 5 t, 2 \cos t-5 \cos 5 t), ~ \begin{aligned}
& \text { and } \\
& \vec{x}^{\prime \prime}(t)
\end{aligned}=(-2 \cos t+25 \cos 5 t,-2 \sin t+25 \sin 5 t) .
$$

Vertex A is at $t=0$, with

$$
\vec{x}^{\prime}(0)=(0,-3) \quad \text { and } \quad \vec{x}^{\prime \prime}(0)=(23,0)
$$

Thus $\kappa_{g}(0)=\frac{\vec{x}^{\prime \prime} \cdot \vec{U}}{\left(s^{\prime}\right)^{2}}=\frac{23}{9}$ at vertex A. The curvature is the same at vertices C, E, and G.

Vertex B is at $t=\pi / 4$, with

$$
\vec{x}^{\prime}(\pi / 4)=\frac{1}{\sqrt{2}}(-7,7) \quad \text { and } \quad \vec{x}^{\prime \prime}(\pi / 4)=\frac{1}{\sqrt{2}}(-27,-27)
$$

Thus $\kappa_{g}(0)=\frac{\vec{x}^{\prime \prime} \cdot \vec{U}}{\left(s^{\prime}\right)^{2}}=\frac{27}{49}$ at vertex B. The curvature is the same at vertices D, F, and H.
(c) Since $\theta(t)$ is increasing, we can count the rotation index by finding all the points for which $\theta=0$.

The curve makes one full rotation between every pair of these points. As you can see, the rotation index is 5 , and therefore $\int_{\mathcal{C}} \kappa_{g} d s=10 \pi$.
(d) The following picture shows the winding number of the curve around each of the five bounded regions.

It follows that

$$
\int_{\mathcal{C}} x d y=21.0+2(0.9)+2(0.9)+2(0.9)+2(0.9)=28.2
$$

8. We have

$$
\theta(s)=\int \kappa_{g}(s) d s=\int \frac{d s}{\sqrt{1-s^{2}}}=\sin ^{-1}(s)+C
$$

Since $\vec{x}^{\prime}(0)=(1,0)$, we know that $\theta(0)=0$, so $\theta(s)=\sin ^{-1}(s)$. Then

$$
\vec{x}(s)=\int(\cos \theta(s), \sin \theta(s)) d s=\int\left(\sqrt{1-s^{2}}, s\right) d s
$$

The integral of $\sqrt{1-s^{2}}$ is difficult. Substituting $s=\sin \phi$ gives

$$
\begin{aligned}
\int \sqrt{1-s^{2}} d s=\int \cos ^{2} \phi d \phi & =\int \frac{1+\cos (2 \phi)}{2} d \phi
\end{aligned}=\frac{\phi}{2}+\frac{\sin (2 \phi)}{4}+C .
$$

So $\vec{x}(s)=\left(\frac{\sin ^{-1}(s)+s \sqrt{1-s^{2}}}{2}, \frac{s^{2}}{2}\right)+\vec{C}$. Since $\vec{x}(0)=(0,0)$, it follows that $\vec{C}=(0,0)$ so $\vec{x}(s)=\left(\frac{\sin ^{-1}(s)+s \sqrt{1-s^{2}}}{2}, \frac{s^{2}}{2}\right)$
9. The equation for $L(t)$ is $y=(-\cot t) x+\cos t$, so $L(t)$ and $L(t+h)$ intersect when

$$
(-\cot (t+h)) x+\cos (t+h)=(-\cot t) x+\cos t .
$$

Solving for x gives

$$
x=\frac{\cos (t+h)-\cos t}{\cot (t+h)-\cot t}
$$

We can now use L'Hôpital's rule to take the limit as $h \rightarrow 0$:

$$
x=\lim _{h \rightarrow 0} \frac{\cos (t+h)-\cos t}{\cot (t+h)-\cot t}=\lim _{h \rightarrow 0} \frac{-\sin (t+h)}{-\csc ^{2}(t+h)}=\sin ^{3} t .
$$

Pugging this into the formula for $L(t)$ gives $y=\cos ^{3} t$. Thus $\vec{x}(t)=\left(\sin ^{3} t, \cos ^{3} t\right)$
10. (a) The tangent vector is $\vec{T}=(4 / 5,3 / 5)$, so the normal vector is $\vec{U}=(-3 / 5,4 / 5)$. The osculating circle has a radius of 2 , so it is centered at $(2,2)+2 \vec{U}=(4 / 5,18 / 5)$. Thus, the equation is $(x-4 / 5)^{2}+(y-18 / 5)^{2}=4$
(b) We know that $\theta^{\prime}(t)=\frac{d \theta}{d t}=\frac{d \theta}{d s} \frac{d s}{d t}=\kappa_{g}(t) s^{\prime}(t)$. Then $\theta^{\prime}(0)=\kappa_{g}(0) s^{\prime}(0)=$ $(1 / 2)(5)=5 / 2$
(c) $\vec{x}^{\prime \prime}=\left(s^{\prime}\right)^{2} \kappa_{g} \vec{U}+s^{\prime \prime} \vec{V}=(5)^{2}(1 / 2)(-3 / 5,4 / 5)+(1)(-3 / 5,4 / 5)=(-8.1,10.8)$
11. The vector $\vec{w}=\frac{1}{\sqrt{5}}(2,-1)$ points along the axis of the second parabola, and the vector $\vec{v}=\frac{1}{\sqrt{5}}(-1,-2)$ is 90° clockwise from this. Then the second parabola is given by

$$
\vec{x}(t)=t \vec{v}+t^{2} \vec{w}=\frac{1}{\sqrt{5}}\left(2 t^{2}-t,-t^{2}-2 t\right)
$$

12. Since $\kappa_{g}(t)=1$, this curve must be a circle (or arc of a circle) of radius 1 . Since $\vec{x}(0)=(1,0)$ and $\vec{x}^{\prime}(0)=(0,1)$, it is in fact the unit circle centered at the origin. Thus, the parameterization looks like

$$
\vec{x}(t)=(\cos f(t), \sin f(t))
$$

for some function $f(t)$. It's easy to see (either intuitively or by doing a calculation), that $s^{\prime}(t)=f^{\prime}(t)$, so

$$
f(t)=\int s^{\prime}(t) d t=\int\left(1+t^{2}\right) d t=t+\frac{t^{3}}{3}+C
$$

Since $\vec{x}(0)=(1,0)$, we can assume that $f(0)=0$, and hence $C=0$. Thus

$$
\vec{x}(t)=\left(\cos \left(t+\frac{t^{3}}{3}\right), \sin \left(t+\frac{t^{3}}{3}\right)\right)
$$

