Exam 1 Practice Problems

Math 352, Fall 2014

1. Let \mathcal{C} be the cycloid $\vec{x}(t)=(t-\sin t, \cos t)$ for $0 \leq t \leq \pi / 2$.
(a) Compute the speed function $s^{\prime}(t)$ for this parametrization.
(b) Compute the curvature $\kappa_{g}(t)$.
(c) Evaluate $\int_{\mathcal{C}} \sqrt{1-y^{2}} d s$.
(d) Evaluate $\int_{\mathcal{C}} y d x$.
2. The following figure shows the curve $\vec{x}(t)=\left(\cos t, \sin ^{3} t \cos t\right)$.

Find the area of the shaded region.
3. Evaluate $\int_{\mathcal{C}}\left(\sin \left(x^{2}\right)+2 y\right) d x+5 x d y$, where \mathcal{C} is the closed curve shown in the following figure.

4. Evaluate $\int_{\mathcal{C}} e^{y} d x+\left(x e^{y}+y^{2}\right) d y$, where \mathcal{C} is the curve

$$
\vec{x}(t)=\left((1-t) e^{\sqrt{t}}, 2 \sin \left(\pi t^{2} / 2\right)\right), \quad 0 \leq t \leq 1
$$

5. A circle of radius 6 is rolling inside a large circle of radius 16 .

The large circle is centered at $(0,0)$, and the rolling circle is initially centered $(0,-10)$. Let P be the point on the rolling circle with initial coordinates $(-6,-10)$. Find the coordinates of P when the center of the rolling circle reaches the point $(10,0)$.
6. Let \mathcal{C} be the curve $\vec{x}(t)=\left(t^{2} \cos t, t^{2} \sin t\right)$ for $t>0$.
(a) Find an arc length function $s(t)$ for this curve.
(b) Find a unit-speed parametrization for this curve. Make sure to indicate the allowed values for the new parameter.
7. Let \mathcal{C} be the curve $\vec{x}(t)=(2 \cos t-\cos 5 t, 2 \sin t-\sin 5 t)$, as shown in the following figure.

(a) Based on the figure, how many vertices does \mathcal{C} have? Find the coordinates for each vertex.
(b) Determine the curvature of \mathcal{C} at each of its vertices.
(c) What is the value of $\int_{\mathcal{C}} \kappa_{g}(s) d s$?
(d) The complement $\mathbb{R}^{2}-\mathcal{C}$ has one unbounded component, one component with an area of approximately 21.0 , and four components with areas of approximately 0.9 each. Use this information to estimate the value of $\int_{\mathcal{C}} x d y$.
8. Find a unit-speed parametric curve $\vec{x}(s)$ (for $-1<s<1$) such that

$$
\vec{x}(0)=(0,0), \quad \vec{x}^{\prime}(0)=(1,0), \quad \text { and } \quad \kappa_{g}(s)=\frac{1}{\sqrt{1-s^{2}}}
$$

9. For $0 \leq t \leq \pi / 2$, let $L(t)$ be the line segment from $(0, \cos t)$ to $(\sin t, 0)$, and let \mathcal{R} be the union of all such lines, as shown in the figure below

Find parametric equations for the top curve of \mathcal{R}.
10. A regular parametric curve $\vec{x}(t)$ satisfies the conditions

$$
\vec{x}(0)=(2,2), \quad \vec{x}^{\prime}(0)=(4,3), \quad s^{\prime \prime}(0)=1, \quad \text { and } \quad \kappa_{g}(0)=1 / 2,
$$

where $s(t)$ is an arc length parameter, and $\kappa_{q}(t)$ is the curvature at time t.
(a) Find the equation of the osculating circle to the curve at $t=0$.
(b) Find $\theta^{\prime}(0)$, where $\theta(t)$ denotes the direction of the unit tangent vector at time t.
(c) Find the value of $\vec{x}^{\prime \prime}(0)$.
11. The following picture shows two identical parabolas that are tangent at the point $(1,1)$.

The first parabola is $y=x^{2}$, and the second parabola has a vertex at $(1,1)$. Find parametric equations for the second parabola.
12. A regular parametric curve $\vec{x}(t)$ satisfies the initial conditions

$$
\vec{x}(0)=(1,0) \quad \text { and } \quad \vec{x}^{\prime}(0)=(0,1) .
$$

In addition,

$$
s^{\prime}(t)=1+t^{2}, \quad \text { and } \quad \kappa_{g}(t)=1
$$

for all t, where $s(t)$ denotes an arc length parameter, and $\kappa_{g}(t)$ denotes the curvature. Use this information to find the formula for $\vec{x}(t)$.

