Exam 1 Practice Problems

Math 352, Fall 2014

1. Let C be the cycloid $\vec{x}(t) = (t - \sin t, \cos t)$ for $0 \le t \le \pi/2$.

- (a) Compute the speed function s'(t) for this parametrization.
- (b) Compute the curvature $\kappa_g(t)$.
- (c) Evaluate $\int_{\mathcal{C}} \sqrt{1-y^2} \, ds$. (d) Evaluate $\int_{\mathcal{C}} y \, dx$.
- 2. The following figure shows the curve $\vec{x}(t) = (\cos t, \sin^3 t \cos t)$.

Find the area of the shaded region.

3. Evaluate $\int_{\mathcal{C}} (\sin(x^2) + 2y) dx + 5x dy$, where \mathcal{C} is the closed curve shown in the following figure.

1									
6							-		
0									
5									
4									
4		1							
3		<u> </u>		- 1	`				
2									
1						\rightarrow			
						-			
0) '	1 1	2 3	3 4	1 (5 6	5 7	7 8	39
,	,			, .	•	, (, ,		פינ

4. Evaluate
$$\int_{\mathcal{C}} e^y dx + (xe^y + y^2) dy$$
, where \mathcal{C} is the curve
 $\vec{x}(t) = \left((1-t)e^{\sqrt{t}}, 2\sin(\pi t^2/2)\right), \quad 0 \le t \le 1.$

5. A circle of radius 6 is rolling inside a large circle of radius 16.

The large circle is centered at (0, 0), and the rolling circle is initially centered (0, -10). Let P be the point on the rolling circle with initial coordinates (-6, -10). Find the coordinates of P when the center of the rolling circle reaches the point (10, 0).

- 6. Let C be the curve $\vec{x}(t) = (t^2 \cos t, t^2 \sin t)$ for t > 0.
 - (a) Find an arc length function s(t) for this curve.
 - (b) Find a unit-speed parametrization for this curve. Make sure to indicate the allowed values for the new parameter.
- 7. Let C be the curve $\vec{x}(t) = (2\cos t \cos 5t, 2\sin t \sin 5t)$, as shown in the following figure.

- (a) Based on the figure, how many vertices does C have? Find the coordinates for each vertex.
- (b) Determine the curvature of \mathcal{C} at each of its vertices.
- (c) What is the value of $\int_{\mathcal{C}} \kappa_g(s) \, ds$?
- (d) The complement $\mathbb{R}^2 \mathcal{C}$ has one unbounded component, one component with an area of approximately 21.0, and four components with areas of approximately 0.9 each. Use this information to estimate the value of $\int_{\mathcal{C}} x \, dy$.
- 8. Find a unit-speed parametric curve $\vec{x}(s)$ (for -1 < s < 1) such that

$$\vec{x}(0) = (0,0), \qquad \vec{x}'(0) = (1,0), \qquad \text{and} \qquad \kappa_g(s) = \frac{1}{\sqrt{1-s^2}}.$$

9. For $0 \le t \le \pi/2$, let L(t) be the line segment from $(0, \cos t)$ to $(\sin t, 0)$, and let \mathcal{R} be the union of all such lines, as shown in the figure below

Find parametric equations for the top curve of \mathcal{R} .

10. A regular parametric curve $\vec{x}(t)$ satisfies the conditions

$$\vec{x}(0) = (2,2), \qquad \vec{x}'(0) = (4,3), \qquad s''(0) = 1, \qquad \text{and} \qquad \kappa_g(0) = 1/2,$$

where s(t) is an arc length parameter, and $\kappa_g(t)$ is the curvature at time t.

- (a) Find the equation of the osculating circle to the curve at t = 0.
- (b) Find $\theta'(0)$, where $\theta(t)$ denotes the direction of the unit tangent vector at time t.
- (c) Find the value of $\vec{x}''(0)$.
- 11. The following picture shows two identical parabolas that are tangent at the point (1, 1).

The first parabola is $y = x^2$, and the second parabola has a vertex at (1,1). Find parametric equations for the second parabola.

12. A regular parametric curve $\vec{x}(t)$ satisfies the initial conditions

$$\vec{x}(0) = (1,0)$$
 and $\vec{x}'(0) = (0,1).$

In addition,

$$s'(t) = 1 + t^2$$
, and $\kappa_g(t) = 1$,

for all t, where s(t) denotes an arc length parameter, and $\kappa_g(t)$ denotes the curvature. Use this information to find the formula for $\vec{x}(t)$.