Exam 1

1. [8 points] Find a unit-speed parametrization for the curve $r = e^{2\theta}$.

$$\vec{\chi}(t) = (e^{2t}\cos t, e^{2t}\sin t)$$

$$\vec{\chi}'(t) = e^{2t}(-\sin t, \cos t) + 2e^{2t}(\cos t, \sin t)$$

$$||\vec{\chi}'(t)|| = \sqrt{(e^{2t})^2 + (2e^{2t})^2} = \sqrt{5}e^{2t}$$

$$S(t) = \int \sqrt{5}e^{2t} dt = \frac{\sqrt{5}}{2}e^{2t}$$

$$t = \frac{1}{2}\log(\frac{2s}{\sqrt{5}})$$

$$\left(\frac{2s}{\sqrt{5}}\cos\left(\frac{1}{2}\log\left(\frac{2s}{\sqrt{5}}\right)\right), \frac{2s}{\sqrt{5}}\sin\left(\frac{1}{2}\log\left(\frac{2s}{\sqrt{5}}\right)\right)\right)$$
 $S>0$

2. [10 points] In the following figure, find the coordinates of the point P in terms of t.

$$\vec{v} = (t, \cosh t - 1)$$

 $\vec{v} \cdot \vec{T} = t \operatorname{sech} t + (\cosh t - 1) \tanh t$
 $= t \operatorname{sech} t + \sinh t - \tanh t$

$$P = (0,1) + (\vec{v} \cdot \vec{T})\vec{T}$$

$$= (0,1) + (t \operatorname{sech} t + \operatorname{sinh} t - t \operatorname{anh} t)(\operatorname{sech} t, t \operatorname{anh} t)$$

$$= (t \operatorname{sech}^2 t + t \operatorname{anh} t - \operatorname{sech} t \operatorname{tanh} t,$$

$$t \operatorname{sech} t \operatorname{tanh} t + \operatorname{sech}^2 t + \operatorname{sinh} t \operatorname{tanh} t)$$

3. [36 points] The following picture shows the curve $\vec{x}(t) = (2\sqrt{3}\cos t, \sin 3t)$.

(a) [4 pts] Compute the unit tangent vector to this curve at $t = \pi/3$.

$$\vec{x}'(t) = (-2\sqrt{3} \sin t, 3\cos 3t)$$

 $\vec{x}'(\pi/3) = (-3, -3)$
 $\vec{T}(\pi/3) = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$

(b) [8 pts] Find the Cartesian equation of the osculating circle to this curve at the point (0, -1).

$$\vec{x}'(\pi/2) = (-2\sqrt{3}, 0) \qquad S'(\pi/2) = 2\sqrt{3}$$

$$\vec{x}''(t) = (-2\sqrt{3}\cos t, -9\sin 3t)$$

$$\vec{x}''(\pi/2) = (0, 9) \qquad \vec{x}(\pi/2) = (0, -1)$$

$$K_g = \frac{\vec{x}'' \cdot \vec{u}}{S'(t)^2} = \frac{-9}{(2\sqrt{3})^2} = -\frac{3}{4} \Rightarrow \Gamma = \frac{4}{3}$$

$$\boxed{\chi^2 + (y - \frac{1}{3})^2 = \frac{16}{9}}$$

(c) [4 pts] Based on the given picture, how many vertices does the curve have? Draw points on the picture showing the approximate positions of these vertices.

The following picture shows the curve $\vec{x}(t) = (2\sqrt{3}\cos t, \sin 3t)$.

(d) [8 pts] Use the picture to make a rough sketch of the curvature function $\kappa_g(t)$.

(e) [4 pts] Evaluate $\int_{\mathcal{C}} \kappa_g(s) ds$.

$$= 2n \times 1$$

(f) [4 pts] Determine the winding number of this curve around each of the following points: (3,0), (0,0), and (-3,0).

- (g) [4 pts] The value of $\int_{\mathcal{C}} x \, dy$ is (choose one):
 - (a) less than -5
- (b) between -5 and -1
- It's O, actually. (c) between -1 and 1

- (d) between 1 and 3
- (e) between 3 and 5
- (f) greater than 5

4. [6 points] Evaluate $\int_{\mathcal{C}} 3x^2 \cos(y^2) dx - 2x^3 y \sin(y^2) dy$, where \mathcal{C} is any curve from the point $(1, \sqrt{\pi})$ to the point (2, 0).

$$3x^{2}\cos(y^{2}) = \frac{\partial}{\partial x} \left[x^{3}\cos(y^{2}) \right]$$

$$-2x^{3}y \sin(y^{2}) = \frac{\partial}{\partial y} \left[x^{3}\cos(y^{2}) \right]$$

$$\left[x^{3}\cos(y^{2}) \right]_{(1,\sqrt{n})}^{(2,0)} = 8 - (-1) = 9$$

5. [8 points] Suppose that a regular parametric curve $\vec{x}(t)$ has curvature $\kappa_g(t) = 3t^2$ and speed $s'(t) = 2t^3 + 1$. Given that $\vec{x}'(0) = (0, 1)$, find a formula for the velocity $\vec{x}'(t)$ as a function of t.

$$\begin{array}{ll}
\Theta(t) = \int K_g \, ds = \int K_g(t) \, s'(t) \, dt \\
\vec{x}'(0) = (0,1) &= \int 3t^2 \, (2t^3 + 1) \, dt \\
so \, \Theta(0) = \pi/2 &= \int (6t^5 + 3t^2) \, dt \\
so \, C = \pi/2 &= t^6 + t^3 + C \\
\vec{x}'(t) = s'(t) \big(\cos \Theta(t), \sin \Theta(t) \big) \\
&= (2t^3 + 1) \big(\cos (t^6 + t^3 + \pi), \sin (t^6 + t^3 + \pi) \big) \\
&= [2t^3 + 1) \big(-\sin (t^6 + t^3), \cos (t^6 + t^3) \big)
\end{array}$$

6. [12 points] Use Green's Theorem to evaluate $\iint_{\mathcal{R}} x \, dA$, where \mathcal{R} is the region bounded by the circle $x^2 + y^2 = 1$ and the curve $\vec{x}(t) = (t^2, (1-t)^2)$ shown in the following figure.

$$=$$
 $\frac{3}{10}$

7. [14 points] A circle of radius 2/3 is rolling counterclockwise around the unit circle $x^2 + y^2 = 1$. A point P lies on the perimeter of the rolling circle, with initial coordinates (1,0). Find parametric equations for the curve produced by tracing the path of P.

ρ

The point P starts on the left of the small circle and rotates counterclockwise.

So $P = \frac{5}{3}(\cos\theta, \sin\theta) - \frac{2}{3}(\cos\phi, \sin\phi)$

But what is ϕ ? It should be a multiple of Θ .

Very When $\Theta = \frac{2\pi}{3}$, half the smaller circle has been used, so $\phi = \frac{5\pi}{3}$.

Thus, $\phi = \frac{5}{2} \Theta$.

So
$$P = \frac{5}{3} (\cos \theta, \sin \theta) - \frac{2}{3} (\cos \frac{5}{2}\theta, \sin \frac{5}{2}\theta)$$

8. [6 points] For a certain differentiable function f(x), the normal line to the graph at each point (t, f(t)) passes through the x-axis at the point $(\sinh t, 0)$.

Given that f(0) = 1, find a formula for f.

$$Slope = -\frac{1}{f'(t)} = \frac{f(t) - 0}{t - \sinh t}$$

Differential Equation:

$$-\frac{1}{y'} = \frac{y}{t-\sinh t}$$

$$yy' = \sinh t - t$$

$$\int y dy = \int (\sinh t - t) dt$$

$$\frac{1}{2}y^2 = \cosh t - \frac{1}{2}t^2 + C$$

$$y^2 = 2\cosh t - t^2 - 1$$

$$f(t) = \sqrt{2\cosh t - t^2 - 1}$$