\qquad
Exam 2

1. [12 points] Let C be the space curve $\vec{x}(t)=(\cos 2 t, \sin 3 t, \sin 4 t)$. Compute the curvature of C at the point $(1,0,0)$.
2. [14 points] Evaluate $\iint_{S} z d A$, where S is the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ in the range $0<z<3$.
3. [12 points] Find a constant k so that

$$
\vec{X}(u, v)=(k \sqrt{u} \cos v, k \sqrt{u} \sin v, k \sqrt{u})
$$

is an equiareal parametrization of the cone $z=\sqrt{x^{2}+y^{2}}$.
4. [14 points] The paraboloid $z=x^{2}+y^{2}$ is rotated slightly so that its axis is the line $x=y=z$, with the vertex of the paraboloid staying fixed at $(0,0,0)$. Find parametric equations for the resulting surface.
5. [18 points] On a unit-speed space curve, $\vec{T}^{\prime}(0)=(2,0,2)$ and $\vec{T}^{\prime \prime}(0)=(9,7,1)$. What is $\kappa^{\prime}(0)$?
6. [15 points] Let P be the plane in \mathbb{R}^{4} parameterized by

$$
\vec{X}(u, v)=(u+5 v, u-v, u+5 v, u+7 v)
$$

Find a parametrization for the unit circle on P centered at the origin.
7. [15 points] Let $\vec{X}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the function

$$
\vec{X}(u, v)=\left(u v, u^{2}+9 v^{2}, u^{2}+3 v^{3}\right)
$$

Find all critical points of \vec{X}.

