Solutions to Exam 2 Practice Problems

Math 352, Fall 2014

Parameterizing Space Curves

1. After the rotation, the circle will still be centered at the origin, but will be in the plane $y=x$. The unit vectors $\vec{u}_{1}=\frac{1}{\sqrt{2}}(1,1,0)$ and $\vec{u}_{2}=(0,0,1)$ are orthogonal and parallel to this plane, so the circle is

$$
\vec{x}(t)=(\cos t) \vec{u}_{1}+(\sin t) \vec{u}_{2}=\frac{\cos t}{\sqrt{2}}(1,1,0)+\sin t(0,0,1)
$$

2. The point $\vec{P}=(t, \cosh t, 0)$ lies on the given catenary, and the unit normal vector to the given plane is $\vec{n}=\frac{1}{\sqrt{10}}(0,1,-3)$. Since the plane goes through the origin, all we have to do is project \vec{P} onto \vec{n} :

$$
\vec{v}=(\vec{P} \cdot \vec{n}) \vec{n}=\frac{1}{10}((t, \cosh t, 0) \cdot(0,1,-3))(0,1,-3)=\frac{\cosh t}{10}(0,1,-3) .
$$

(Note how we handled the radical.) Then a point on the reflection is given by

$$
\vec{P}+2 \vec{v}=(t, \cosh t, 0)+\frac{\cosh t}{5}(0,1,-3)
$$

3. This is just $\vec{x}(t)=(\cos t)(2,4,4)+(\sin t)(2,1,-2)$
4. The unit vectors $\vec{u}_{1}=\frac{1}{\sqrt{5}}(1,2,0)$ and $\vec{u}_{2}=(0,0,1)$ are orthogonal and parallel to this plane. Then the circle is

$$
\vec{x}(t)=(1,2,1)+(\cos t) \vec{u}_{1}+(\sin t) \vec{u}_{2}=(1,2,1)+\frac{\cos t}{\sqrt{5}}(1,2,0)+(\sin t)(0,0,1)
$$

5. The vector $(1,0,0)$ rotates to $\vec{u}_{1}=\left(\frac{\sqrt{3}}{2}, 0,-\frac{1}{2}\right)$, while the unit vector $\vec{u}_{2}=(0,1,0)$ isn't affected by the rotation. Then the curve is
$\vec{x}(t)=\left(1-\frac{\sqrt{3}}{2}, 0, \frac{1}{2}\right)+t \vec{u}_{1}+t^{2} \vec{u}_{2}=\left(1-\frac{\sqrt{3}}{2}, 0, \frac{1}{2}\right)+t\left(\frac{\sqrt{3}}{2}, 0,-\frac{1}{2}\right)+t^{2}(0,0,1)$
which can be simplified to $\left(1,0, t^{2}\right)+\frac{t-1}{2}(\sqrt{3}, 0,-1)$

Geometry of Space Curves

6. Note first that

$$
\vec{x}^{\prime}(t)=\left(2 t+1, \cos t, e^{t}\right) \quad \text { and } \quad \vec{x}^{\prime \prime}(t)=\left(2,-\sin t, e^{t}\right)
$$

so

$$
\vec{x}^{\prime}(0)=(1,1,1) \quad \text { and } \quad \vec{x}^{\prime \prime}(0)=(2,0,1) .
$$

Then $\vec{T}(0)=\frac{\vec{x}^{\prime}(0)}{\left\|\vec{x}^{\prime}(0)\right\|}=\frac{1}{\sqrt{3}}(1,1,1)$. Furthermore, the normal component of acceleration is

$$
\vec{x}^{\prime \prime}-\left(\vec{x}^{\prime \prime} \cdot \vec{T}\right) \vec{T}=(2,0,1)-\frac{1}{3}((2,0,1) \cdot(1,1,1))(1,1,1)=(1,-1,0)
$$

so $\vec{P}(0)=\frac{1}{\sqrt{2}}(1,-1,0)$. Finally,

$$
\vec{B}(0)=\vec{T}(0) \times \vec{P}(0)=\frac{1}{\sqrt{6}}\left|\begin{array}{ccc}
\vec{e}_{1} & \vec{e}_{2} & \overrightarrow{e_{3}} \\
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right|=\frac{1}{\sqrt{6}}(1,1,-2)
$$

7. Recall that

$$
\vec{x}^{\prime \prime}=s^{\prime \prime} \vec{T}+\left(s^{\prime}\right)^{2} \kappa \vec{P}
$$

We can get \vec{T} by subtracting off the \vec{P} component and then dividing by $s^{\prime \prime}$:

$$
\vec{T}=\frac{\vec{x}^{\prime \prime}-\left(\vec{x}^{\prime \prime} \cdot \vec{P}\right) \vec{P}}{s^{\prime \prime}}=\frac{(5,2,-4)-\frac{1}{9}((5,2,-4) \cdot(2,2,-1))(2,2,-1)}{-3}=\frac{1}{3}(-1,2,2)
$$

8. Since the curve is unit-speed, $\vec{P}^{\prime}=-\kappa \vec{T}+\tau \vec{B}$, so $\vec{P}^{\prime} \times \vec{B}=\kappa \vec{P}$. Then

$$
\vec{P}=\frac{\vec{P}^{\prime} \times \vec{B}}{\left\|\vec{P}^{\prime} \times \vec{B}\right\|}=\frac{1}{\sqrt{34}}(-5,0,3)
$$

9. (a) The osculating circle has a radius of $1 / \kappa=6$, and is centered at $\vec{c}=\vec{p}+6 \vec{P}=$ $(7,4,-3)$, so the parametrization is

$$
\vec{c}+(6 \cos t) \vec{T}+(6 \sin t) \vec{P}=(7,4,-3)+3 \sqrt{2} \cos t(1,0,1)+2 \sin t(2,1,-2)
$$

(b) The normal vector to the osculating plane is

$$
\vec{B}=\vec{T} \times \vec{P}=\frac{1}{3 \sqrt{2}}\left|\begin{array}{ccc}
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\
1 & 0 & 1 \\
2 & 1 & -2
\end{array}\right|=\frac{1}{3 \sqrt{2}}(-1,4,1)
$$

The plane must go through the point $(3,2,1)$, so the equation is $-x+4 y+z=6$
10. (Note: This problem originally had a typo. The correct value of \vec{P}^{\prime} is $(-1,-9,1)$) The curve isn't unit-speed, so we must be careful using the Frenet-Serret formulas. We have that

$$
\vec{P}^{\prime}=s^{\prime} \frac{d P}{d s}=s^{\prime}(-\kappa \vec{T}+\tau \vec{B})=-s^{\prime} \kappa \vec{T}+s^{\prime} \tau \vec{B}
$$

From $\vec{x}^{\prime}(0)$, we know that $\vec{T}(0)=\frac{1}{\sqrt{2}}(0,1,-1)$ and $s^{\prime}(0)=\sqrt{2}$, so

$$
\kappa(0)=\frac{\vec{P}^{\prime} \cdot \vec{T}}{-s^{\prime}}=\frac{(-1,-9,1) \cdot \frac{1}{\sqrt{2}}(0,1,-1)}{-\sqrt{2}}=5
$$

11. This one's tricky. Since the torsion is zero, the curve must be planar. Since the curvature is 1 , the curve must be a unit circle. (You should definitely have gotten at least this far in the problem. It's ok if you didn't get the next part.) Since the acceleration of a unit circle is always the negative of the radial vector, the center is at $\vec{x}(0)+\vec{x}^{\prime \prime}(0)=(3,0,0)$, and it seems that

$$
\vec{x}(t)=(3,0,0)+(\cos t)(-1,0,0)+(\sin t)(0,0,1)
$$

Thus $\vec{x}(\pi / 2)=(3,0,1)$

Parameterizations of Surfaces

12. (a) (Note: There was originally a typo in this part. The catenoid should be given by the equation $r=\cosh z$.)

$$
\vec{X}(u, v)=(\cosh u \cos v, \cosh u \sin v, u)
$$

(b) $\vec{X}(u, v)=(u, 3 \cos v, 3 \sin v)$
(c) $\vec{X}(u, v)=(3 \cos u \cos v, 2 \sin u \cos v, 5 \sin v)$
(d) We have $r=5+2 \cos u, z=1+2 \sin u$, and $\theta=v$, so the parameterization is $\vec{X}(u, v)=((5+2 \cos u) \cos v,(5+2 \cos u) \sin v, 1+2 \sin u)$
(e) $\vec{X}(u, v)=\left(u, v, v^{2}+1\right)$
(f) This is the surface $r^{2}-z^{2}=4$. One method is to let $z=u, r=\sqrt{4+u^{2}}$, and $\theta=v$, giving

$$
\vec{X}(u, v)=\left(\sqrt{4+u^{2}} \cos v, \sqrt{4+u^{2}} \sin v, u\right)
$$

Another method is to use $r=2 \cosh u, z=2 \sinh u$, and $\theta=v$, which gives

$$
\vec{X}(u, v)=(2 \cosh u \cos v, 2 \cosh u \sin v, 2 \sinh u)
$$

(g) One possibility is simply $\vec{X}(u, v)=\left(u, u^{2}+v^{2}+2, v\right)$. Another possibility is to use something like cylindrical coordinates, giving a parameterization such as $\vec{X}(u, v)=\left(u \cos v, u^{2}+2, u \sin v\right)$.
13. The unit vector $\vec{u}_{1}=\frac{1}{\sqrt{3}}(1,1,1)$ goes in the direction of the line. To parameterize the cylinder, we need two more perpendicular unit vectors. We can just make up one of them, say $\vec{u}_{2}=\frac{1}{\sqrt{2}}(1,-1,0)$, and taking the cross product gives the third vector:

$$
\vec{u}_{3}=\vec{u}_{1} \times \vec{u}_{2}=\frac{1}{\sqrt{6}}\left|\begin{array}{ccc}
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right|=\frac{1}{\sqrt{6}}(1,1,-2)
$$

(Alternatively, we probably could have guessed this vector.) Then the cylinder is

$$
\begin{aligned}
\vec{X}(u, v) & =u \vec{u}_{1}+(2 \cos v) \vec{u}_{2}+(2 \sin v) \overrightarrow{u_{3}} \\
& =\frac{u}{\sqrt{3}}(1,1,1)+\sqrt{2} \cos v(1,-1,0)+\frac{\sqrt{2} \sin v}{\sqrt{3}}(1,1,-2)
\end{aligned}
$$

14. At time t, the rod is at $z=3 t$ and $\theta=2 t+\frac{\pi}{2}$. If we let $r=u$ and $t=v$, we get

$$
\vec{X}(u, v)=\left(u \cos \left(2 v+\frac{\pi}{2}\right), u \sin \left(2 v+\frac{\pi}{2}\right), 3 v\right)=(-u \sin 2 v, u \cos 2 v, 3 v)
$$

15. We have
$\vec{X}_{u}(u, v)=\left(2 u^{-1 / 2} \cos v, 2 u^{-1 / 2} \sin v, 1\right) \quad$ and $\quad \vec{X}_{v}(u, v)=(-\sqrt{u} \sin v, \sqrt{u} \cos v, 0)$.
The given point corresponds to $(u, v)=(2,3 \pi / 4)$, so

$$
\vec{X}_{u}=(-1 / 4,1 / 4,1) \quad \text { and } \quad \vec{X}_{v}=(-1,-1,0)
$$

Taking the cross product gives a normal vector

$$
\vec{X}_{u} \times \vec{X}_{v}=\frac{1}{4}\left|\begin{array}{ccc}
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\
-1 & 1 & 4 \\
-1 & -1 & 0
\end{array}\right|=(1,-1,1 / 2)
$$

Parametrizations in Higher Dimensions

16. There are several possibilities, such as

$$
\vec{X}(u, v, w)=(2+3 \cos u \cos v \cos w, 3 \sin u \cos v \cos w, 3 \sin v \cos w, 3 \sin w)
$$

or

$$
\vec{X}(u, v, w)=(2+3 \cos u \cos w, 3 \sin u \cos w, 3 \cos v \sin w, 3 \sin v \sin w)
$$

17. (a) The normal vector to the plane is $(1,1,2,2)$. It's easy to make up two vectors perpendicular to this, e.g. $\vec{u}_{1}=\sqrt{\frac{1}{\sqrt{2}}(1,-1,0,0)}$ and $\vec{u}_{2}=\sqrt{\frac{1}{\sqrt{2}}(0,0,1,-1)}$. There are several different ways to find the third one, one of which is to use the version of cross product in \mathbb{R}^{4} :

$$
\begin{aligned}
& \qquad\left|\begin{array}{cccc}
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} & \vec{e}_{4} \\
1 & 1 & 2 & 2 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right|=(-4,-4,2,2) \\
& \text { so } \overrightarrow{u_{3}}=\frac{1}{\sqrt{10}}(-2,-2,1,1)
\end{aligned}
$$

(b) We use spherical coordinates with the three vectors:

$$
\begin{aligned}
& \vec{X}(u, v)=(1,2,0,0)+\frac{5 \cos u \sin v}{\sqrt{2}}(1,-1,0,0) \\
& \quad+\frac{5 \sin u \sin v}{\sqrt{2}}(0,0,1,-1)+\frac{5 \cos v}{\sqrt{10}}(-2,-2,1,1)
\end{aligned}
$$

18. It looks like $\left(x_{1}, x_{2}\right)$ can be any unit vector in \mathbb{R}^{2}, say $(\cos u$, $\sin u)$. Then $\left(x_{3}, x_{4}\right)$ must be perpendicular to $\left(x_{1}, x_{2}\right)$, which means it's a multiple of $(-\sin u, \cos u)$. Thus

$$
\vec{X}(u, v)=(\cos u, \sin u,-v \sin u, v \cos u)
$$

19. The unit normal to the hyperplane is $\vec{n}=\frac{1}{2}(1,-1,1,-1)$. The point $(9,0,0,0)$ lies on the hyperplane, so let $\vec{v}=(9,0,0,0)-(1,0,0,0)=(8,0,0,0)$. Then the reflection is $(1,0,0,0)$ plus twice the projection of \vec{v} onto \vec{n} :

$$
(1,0,0,0)+2(\vec{v} \cdot \vec{n}) \vec{n}=(1,0,0,0)+2(2,-2,2,-2)=(5,-4,4,-4)
$$

20. Let $u=x_{1}{ }^{2}+x_{2}{ }^{2}=x_{3}{ }^{2}+x_{4}{ }^{2}$, let v be the angle of the point $\left(x_{1}, x_{2}\right)$, and let w be the angle of the point $\left(x_{3}, x_{4}\right)$. Then we get

$$
\vec{X}(u, v, w)=(u \cos v, u \sin v, u \cos w, u \sin w)
$$

Surface Integrals

21. We can parameterize this as $\vec{X}(u, v)=\left(u \cos v, u \sin v, u^{2}\right)$ with domain $0<u<1$ and $0<v<2 \pi$. Then \vec{X}_{u} and \vec{X}_{v} will be perpendicular, so $\left\|\vec{X}_{u} \times \vec{X}_{v}\right\|=\left\|\vec{X}_{u}\right\|\left\|\vec{X}_{v}\right\|=\|(\cos v, \sin v, 2 u)\|\|(-u \sin v, u \cos v, 0)\|=u \sqrt{1+4 u^{2}}$.

So the area is

$$
\int_{0}^{2 \pi} \int_{0}^{1} u \sqrt{1+4 u^{2}} d u d v=2 \pi\left[\frac{1}{12}\left(1+4 u^{2}\right)^{3 / 2}\right]_{0}^{1}=\frac{(5 \sqrt{5}-1) \pi}{6}
$$

22. We can parameterize this as $\vec{X}(u, v)=(u \cos v, u \sin v, v)$ for $0<u<1$ and $0<v<\pi$. Then \vec{X}_{u} and \vec{X}_{v} will be perpendicular, so

$$
\left\|\vec{X}_{u} \times \vec{X}_{v}\right\|=\left\|\vec{X}_{u}\right\|\left\|\vec{X}_{v}\right\|=\|(\cos v, \sin v, 0)\|\|(-u \sin v, u \cos v, 1)\|=\sqrt{1+u^{2}}
$$

Then the integral is

$$
\begin{aligned}
\int_{0}^{\pi} \int_{0}^{1} y \| \vec{X}_{u} \times & \vec{X}_{v} \| d u d v=\int_{0}^{\pi} \int_{0}^{1}(u \sin v) \sqrt{1+u^{2}} d u d v \\
& =\int_{0}^{\pi} \sin v d v \int_{0}^{1} u \sqrt{1+u^{2}} d u=2\left[\frac{1}{3}\left(1+u^{2}\right)^{3 / 2}\right]_{0}^{1}=\frac{4 \sqrt{2}-2}{3}
\end{aligned}
$$

23. We can parameterize this as $\vec{X}(u, v)=\left(u, v, e^{u} \sin v\right)$ for $0<u<1$ and $0<v<\pi$. Then

$$
\vec{X}_{u} \times \vec{X}_{v}=\left|\begin{array}{ccc}
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\
1 & 0 & e^{u} \sin v \\
0 & 1 & e^{u} \cos v
\end{array}\right|=\left(-e^{u} \sin v,-e^{u} \cos v, 1\right)
$$

so $\left\|\vec{X}_{u} \times \vec{X}_{v}\right\|=\sqrt{1+e^{2 u}}$. Then

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{1} z^{2}\left\|\vec{X}_{u} \times \vec{X}_{v}\right\| d u d v=\int_{0}^{\pi} \int_{0}^{1}\left(e^{2 u} \sin ^{2} v\right) \sqrt{1+e^{2 u}} d u d v \\
= & \int_{0}^{\pi} \sin ^{2} v d v \int_{0}^{1} e^{2 u} \sqrt{1+e^{2 u}} d u=\frac{\pi}{2}\left[\frac{1}{3}\left(1+e^{2 u}\right)^{3 / 2}\right]_{0}^{1}=\frac{\pi\left(\left(1+e^{2}\right)^{3 / 2}-2 \sqrt{2}\right)}{6}
\end{aligned}
$$

24. We can parameterize this as $\vec{X}(u, v)=\left(u \cos v, u \sin v, u^{2}\right)$ with domain $0<u<2$ and $0<v<2 \pi$. Then \vec{X}_{u} and \vec{X}_{v} will be perpendicular, so

$$
\left\|\vec{X}_{u} \times \vec{X}_{v}\right\|=\left\|\vec{X}_{u}\right\|\left\|\vec{X}_{v}\right\|=\|(\cos v, \sin v, 2 u)\|\|(-u \sin v, u \cos v, 0)\|=u \sqrt{1+4 u^{2}}
$$

Then the integral is

$$
\int_{0}^{\pi} \int_{0}^{2} \sqrt{1+4 z}\left\|\vec{X}_{u} \times \vec{X}_{v}\right\| d u d v=\int_{0}^{\pi} \int_{0}^{1} u\left(1+4 u^{2}\right) d u d v=\pi\left[\frac{u^{2}}{2}+u^{4}\right]_{0}^{2}=18 \pi
$$

25. We can parameterize this as $\vec{X}(u, v)=\left(u, v, u^{2}\right)$ for $0<u<1$ and $0<v<3$. Then

$$
\left\|\vec{X}_{u} \times \vec{X}_{v}\right\|=\|(1,0,2 u) \times(0,1,0)\|=\sqrt{1+4 u^{2}}
$$

so the integral is

$$
\begin{aligned}
\int_{0}^{3} \int_{0}^{1} x y \| \vec{X}_{u} & \times \vec{X}_{v} \| d u d v=\int_{0}^{3} \int_{0}^{1} u v \sqrt{1+4 u^{2}} d u d v \\
& =\int_{0}^{3} v d v \int_{0}^{1} u \sqrt{1+4 u^{2}} d u=\frac{9}{2}\left[\frac{1}{12}\left(1+4 u^{2}\right)^{3 / 2}\right]_{0}^{1}=\frac{15 \sqrt{5}-3}{8}
\end{aligned}
$$

26. This is the surface $r=e^{z}$, so we can parameterize this as $\vec{X}(u, v)=\left(e^{u} \cos v, e^{u} \sin v, u\right)$ for $0<u<1$ and $0<v<2 \pi$. Then \vec{X}_{u} and \vec{X}_{v} will be perpendicular, so

$$
\left\|\vec{X}_{u} \times \vec{X}_{v}\right\|=\left\|\vec{X}_{u}\right\|\left\|\vec{X}_{v}\right\|=\left\|\left(e^{u} \cos v, e^{u} \sin v, 1\right)\right\|\left\|\left(-e^{u} \sin v, e^{u} \cos v, 0\right)\right\|=e^{u} \sqrt{1+e^{2 u}}
$$

Then the integral is

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{1} r\left\|\vec{X}_{u} \times \vec{X}_{v}\right\| d u d v= & \int_{0}^{2 \pi} \int_{0}^{1} e^{2 u} \sqrt{1+e^{2 u}} d u d v \\
& =2 \pi\left[\frac{1}{3}\left(1+e^{2 u}\right)^{3 / 2}\right]_{0}^{1}=\frac{2 \pi\left(\left(1+e^{2}\right)^{3 / 2}-2 \sqrt{2}\right)}{3}
\end{aligned}
$$

Types of Parameterizations

27. (a) We have $\vec{X}_{u}=(-\sin u, 0, \cos u)$ and $\vec{X}_{v}=(0,1,0)$, which are perpendicular unit vectors, so this parameterization is both conformal and equiareal, i.e. an isometry .
(b) We have $\vec{X}_{u}=(\sinh u \cos v, \sinh u \sin v, 1)$ and $\vec{X}_{v}=(-\cosh u \sin v, \cosh u \cos v, 0)$. These vectors are perpendicular, with $\left\|\vec{X}_{u}\right\|=\| \vec{X}_{v} \mid=\cosh u$, so this parameterization is conformal.
(c) We have $\vec{X}_{u}=(1,0,1)$ and $\vec{X}_{v}=(0,2 / 3,1 / 3)$. These aren't perpendicular, but

$$
\left\|\vec{X}_{u} \times \vec{X}_{v}\right\|=\|(-2 / 3,-1 / 3,2 / 3)\|=1
$$

so this parameterization is equiareal.
(d) We have $\vec{X}_{u}=(\cos v, \sin v, 2 u)$ and $(-u \sin v, u \cos v, 0)$. These vectors are perpendicular, but their lengths are $\left\|\vec{X}_{u}\right\|=\sqrt{1+4 u^{2}}$ and $\left\|\vec{X}_{v}\right\|=u$, so this parameterization is neither conformal nor equiareal.
(e) We have $\vec{X}_{u}=(10 u, 6 v, 8 v)$ and $\vec{X}_{v}=(-10 v, 6 u, 8 u)$. These vectors are perpendicular, with $\left\|\vec{X}_{u}\right\|=\|\vec{X}\|_{v}=10 \sqrt{u^{2}+v^{2}}$, so this parameterization is conformal.
28. We have $\vec{X}_{u}=\left(k e^{k u} \cos v, k e^{k u} \sin v, k e^{k u}\right)$ and $\vec{X}_{v}=\left(-e^{k u} \sin v, e^{k u} \cos v, 0\right)$. These vectors are always perpendicular, with

$$
\left\|\vec{X}_{u}\right\|=k \sqrt{2} e^{k u} \quad \text { and } \quad\left\|\vec{X}_{v}\right\|=e^{k u}
$$

which will have the same length when $k=1 / \sqrt{2}$.
29. We have $\vec{X}_{u}=(-2 k \sin k u, 2 k \cos k u, 0)$ and $\vec{X}_{v}=(0,0,3)$. These are always perpendicular, with

$$
\left\|\vec{X}_{u} \times \vec{X}_{v}\right\|=\left\|\vec{X}_{u}\right\|\left\|\vec{X}_{v}\right\|=(2 k)(3)=6 k
$$

Thus, this will be equiareal when $k=1 / 6$.

