Solutions to Exam 2 Practice Problems

Math 352, Fall 2014

Parameterizing Space Curves

1.

. This is just | Z(t) = (cost)(2,4,4) + (sint)(2,1, —2)

After the rotation, the circle will still be centered at the origin, but will be in the plane

1
y = x. The unit vectors 47 = —(1,1,0) and @y = (0,0, 1) are orthogonal and parallel

V2

to this plane, so the circle is

- o . 4 cost )

Z(t) = (cost)uy + (sint)iy = |—=(1,1,0) +sint(0,0,1)

V2

The point P= (t,cosht,0) lies on the given catenary, and the unit normal vector to
the given plane is 7 = \/—1_0(0, 1,—3). Since the plane goes through the origin, all we
have to do is project P onto 7:

- 1 ht

¥ = (P = o ((tcosht,0)-(0,1,-8))(0,1,-3) = Colso (0,1,-3).

(Note how we handled the radical.) Then a point on the reflection is given by

cosht

P+ 27 = |(t,cosht,0) + (0,1,-3)

1
The unit vectors u; = %(1, 2,0) and 1y = (0,0, 1) are orthogonal and parallel to this

plane. Then the circle is

t
F(t) = (1,2,1) + (cost)d@; + (sint)idy = |(1,2,1) + %(1,2,0) + (sint)(0,0,1)
. V3 1 . . B
The vector (1,0,0) rotates to u; = > 0, —35 ] while the unit vector @, = (0,1,0)

isn’t affected by the rotation. Then the curve is

3 1 3 1 3 1
Z(t) = (1—£,0,—>+tﬁ1+t2ﬁg = (1—£,0,—>+t(i,o,——>+t2(0,0,1)

2 2 2 2 2 2

t—1
which can be simplified to | (1,0, %) + T(\/i 0,—1)




Geometry of Space Curves
6. Note first that

Z'(t) = (2t +1,cost,e) and  Z"(t) = (2,—sint,ée").

S0
z'(0) = (1,1,1) and  Z"(0) = (2,0,1).
- z'(0) 1
Then T(0) = — = |—=(1,1,1)| Furthermore, the normal component of
1z (0)]] V3

acceleration is

" — (@ TT = (2,0,1)—%((2,0,1)-(1,1,1))(1,1,1) = (1,-1,0)

_ 1
so|P(0) = —=(1,—1,0)|. Finally,
V2
. . . 1 gl 52 6_:;, 1
B(0) = T(0)x P0) = —|1 1 1| =|—=(1,1,-2)
V6l 1 0 V6

7. Recall that . .
f” — S//T + (SI)QHJP

We can get T by subtracting off the P component and then dividing by s”:

. 21 _ (7. P\P 5,2,—4) — 1((5,2,-4) - (2,2,-1))(2,2, -1 1
7 o— x (ZL‘ ) _ ( ) 9(( ) ( ))< ) — g(_17272)

s" -3

8. Since the curve is unit-speed, P'=—xT+ 7B, so P’ x B = kP. Then

P'x B 1
—(-5,0,3)

ﬁ _- e =
|P’" x B V34

9. (a) The osculating circle has a radius of 1/k = 6, and is centered at & = + 6P =
(7,4,—3), so the parametrization is

Z+ (6cost)T + (6sint)P = |(7,4,—3) + 3v2cost (1,0,1) + 2sint (2,1, —2)

(b) The normal vector to the osculating plane is

—

1 |@

= ——11
3\/52

& & |
0 1] = —=(-1,4,1
0 3\/5( )

oL

B =Tx

The plane must go through the point (3,2, 1), so the equation is ’ —r+4y+2=206




10. (Note: This problem originally had a typo. The correct value of P’ is (-1,-9,1).)
The curve isn’t unit-speed, so we must be careful using the Frenet-Serret formulas. We
have that

Brf (-1,-9,1)- £(0,1,-1)
O - — = 5
0 - 22 L

11. This one’s tricky. Since the torsion is zero, the curve must be planar. Since the
curvature is 1, the curve must be a unit circle. (You should definitely have gotten
at least this far in the problem. It’s ok if you didn’t get the next part.) Since the
acceleration of a unit circle is always the negative of the radial vector, the center is at
Z(0) +2"(0) = (3,0,0), and it seems that

Z(t) = (3,0,0) + (cost)(—1,0,0) + (sint)(0,0,1).

Thus Z(7/2) ={(3,0,1)

Parameterizations of Surfaces

12. (a) (Note: There was originally a typo in this part. The catenoid should be given
by the equation r = cosh z.)

—

X (u,v) = (coshu cosv, coshusinv, u)

—

(b) | X (u,v) = (u,3cosv,3sinv)

—

(¢) | X (u,v) = (3cosucosv,2sinucosv,5sinv)

(d) We have r = 5+ 2cosu, z = 1 + 2sinu, and § = v, so the parameterization is

X(u,v) = ((5+2cosu) cosv, (5+ 2cosu)sinv, 1 + 2sinu)

—

(e) | X (u,v) = (u,v,0v2+1)

(f) This is the surface r* — 22 = 4. One method is to let z = u, 7 = V4 + u?, and
0 = v, giving

X(u,v) = (\/ZH—u2 cosv, V4 + u? sinwv, u)

Another method is to use r = 2 coshu, z = 2sinhu, and 6 = v, which gives

—

X (u,v) = (2coshucosv, 2coshusinv, 2sinhu)




(g) One possibility is simply ‘X’(u,v) = (u,u® +v? + 2,v) ‘ Another possibility is
to use something like cylindrical coordinates, giving a parameterization such as

X (u,v) = (uwcosv,u® + 2, usinv)|.

1
13. The unit vector u; = ﬁﬂ’ 1,1) goes in the direction of the line. To parameterize the

cylinder, we need two more perpendicular unit vectors. We can just make up one of
1

V2

them, say s = (1,—1,0), and taking the cross product gives the third vector:
1 €1 € €3
173 = 1_1:1 XUy = — |1 1 1| = —(171,—2)

\/61—10 V6

(Alternatively, we probably could have guessed this vector.) Then the cylinder is

—
—

X(u,v) = uiy + (2cosv) iy + (2sinv)uj

u
= |—(1,1,1) + V2 cosv (1,—1,0) +
LY (1,-1,0)

\/§ sin v

73 (1,1,-2)

14. At time ¢, the rod is at z = 3t and 0 = 2t—|—g. If we let r = u and t = v, we get

X(u,v) = (u Ccos <2U + g) , usin <QU + g) ,3v> = | (—usin 2v, u cos 2v, 3v)

15. We have
Xu(u,v) = (QU_I/QCOSU,QU_I/QSHIU,1) and Xv(u,v) = (—\/ﬂsinv,\/ﬂcosv,O).
The given point corresponds to (u,v) = (2,37/4), so

X, = (=1/4,1/4,1)  and X, = (~1,-1,0).

Taking the cross product gives a normal vector

L. 4]a e s
Xux X, = 2|1 1 4) =[(1,-11/2)
-1 -1 0

Parametrizations in Higher Dimensions

16. There are several possibilities, such as

—

X(u,v,w) = (24 3cosucosvcosw, 3sinucosvcosw, 3sinv cosw, 3sinw)

or

—

X(u,v,w) = (24 3cosucosw, 3sinucosw, 3cosvsinw, 3sinvsinw)




17. (a) The normal vector to the plane is (1,1,2,2). It’s easy to make up two vectors

1 1
—(1,-1,0,0)|and iy =| —=(0,0,1,—1) |. There
V2 V2

are several different ways to find the third one, one of which is to use the version
of cross product in R*:

perpendicular to this, e.g. u; =

€1 € €3 €4
11 2 2
1 =1 0 0 - (_4a _4a272>
0 0 1 -1
1
sous =|——(—2,-2,1,1)
V10

(b) We use spherical coordinates with the three vectors:

Hcosusinv

V2

Hsin usin v Hcosv

/2 (0,0,1,—1)+W

X(u,v) = (1,2,0,0) + (1,-1,0,0)

(—2,-2,1,1)

18. Tt looks like (z1,r2) can be any unit vector in R?, say (cosu,sinu). Then (z3,z,) must
be perpendicular to (x1,x2), which means it’s a multiple of (— sinw, cosu). Thus

X(u,v) = |(cosu,sinu, —vsinu, v cosu)

19. The unit normal to the hyperplane is 7 = (1, —1,1, —1). The point (9,0, 0,0) lies on
the hyperplane, so let ¥ = (9,0,0,0) — (1,0,0,0) = (8,0,0,0). Then the reflection is
(1,0,0,0) plus twice the projection of ¥ onto 7:

(1,0,0,0) + 2( - )it = (1,0,0,0) +2(2,—2,2,—2) = |(5,—4,4,—4)

20. Let u = 212 + 192 = 232 + 242, let v be the angle of the point (1, z»), and let w be the
angle of the point (z3,z4). Then we get

—

X (u,v,w) = (ucosv,usinv, ucosw, usin w)

Surface Integrals

21. We can parameterize this as X (u,v) = (ucos v, usinv, u?) with domain 0 < u < 1 and
0 <v < 2m. Then X, and X, will be perpendicular, so

1Xu x Xoll = [IXull 1 Xl = [[(cosv,sinv, 2u)|| |(—usinv,ucosv,0)| = uv/T+4u,



So the area is

2r pl 1 1 -1
/ / uV1+4u?dudv = 27 [E(l —|—4u2)3/1 = (5\/57)7?
o Jo 0

22. We can parameterize this as X (u,v) = (ucosv,usinv,v) for 0 <u < 1and 0 < v < 7.
Then X and X will be perpendicular, so

1Xu x Xl = [IXull 1X]l = [[(cosv,sinw, 0)[| [(—usinv, ucosv, 1)|| = V1+u?

Then the integral is

T rl T pl
// Y| Xu x X,|| dudv = //(usinv)\/1+u2dudv
0 Jo

1 P42 -2
= / smvdv/ uV1+u2du = [3( +u)3/2] — \/_T
0

23. We can parameterize this as X (u,v) = (u,v,e*sinv) for 0 < v < 1 and 0 < v < 7.
Then

€1 6 €
1 0 e'sinv| = (—e“sinv,—e"cosv,1)
0 1 e“coswv

so || Xu % X,| = V1 + e2*. Then

—

Xux)zv =

// 2| X, x Xo||dudv = // “sin®v) V1 + e du dv

(1 )P - 2v2)
- 6

1
= / sin vdv/ U1+ e2udy = 3 |:3<1_|_€2u>3/2:|

24. We can parameterize this as X (u,v) = (ucos v, usin v, u?) with domain 0 < u < 2 and
0 <wv < 2. Then X, and X, will be perpendicular, so

1Xu > Kol = X IXull = [I(cosv,sinw, 2u)|[|(~usinv, ucosv,0)|| = uv/T+4u,

Then the integral is

T 2 m rl 2 2
/ / V1442 | X, x X,/ dudv = / / u(l+4u?) dudv = 7T|:u— +u4} = 187
0 Jo 0 Jo

2 0

25. We can parameterize this as X (u,v) = (u,v,u?) for 0 < u <1 and 0 < v < 3. Then

1Xu x Xl = [1(1,0,2u) x (0, 1,0)[| = v1+4u?



so the integral is

3 1 3 1
// xy|| Xy x X,|| dudv = / uv V1 4+ 4u? dudv
0 Jo 0 Jo

3 1 1
911 15v5 -3
= / vdv/ w1+ 42 du = —{12(1+4u )3/2} _ _\/;
0 0 0

26. This is the surface 7 = €, so we can parameterize this as X (u,v) = (e*cosv, e*sinv, u)
for 0 <u<1and 0 <wv < 2. Then X, and X, will be perpendicular, so

1 Xux X, = [ Xull 1 Xoll = [[(€“cosv,e®sinv, 1)|| [|[(—e*sinv, e* cosv,0)|| = e“v/1+ 2.

Then the integral is

//THX x X,| dudv = // “V1+ e dudv

b 2m (14 €22 - 2v2)
0 3

1
= 27 {g(l + 62“)3/2}

Types of Parameterizations

27. (a) We have X, = (—sinu,0,cosu) and X, = (0,1,0), which are perpendicular unit
vectors, so this parameterization is ’ both conformal and equiareal, i.e. an isometry ‘

(b) We have X, = (sinh u cos v, sinh usinv, 1) and X, = (— cosh usin v, cosh u cos v, 0).
These vectors are perpendicular, with || X, || = || X,| = coshu, so this parameteri-

zation is | conformal |.

(c) We have X, = (1,0,1) and X, = (0,2/3,1/3). These aren’t perpendicular, but
[ Xu x Xo| = [(=2/3,-1/3,2/3)|| = 1

so this parameterization is |equiareal |.

(d) We have X, = (cosv,sinv,2u) and (—usinv, ucosv,0). These vectors are per-
pendicular, but their lengths are || X, || = v/1 + 4u? and ||.X,|| = u, so this param-
eterization is ’neither conformal nor equiareal ‘

(e) We have X, = (10u, 6v,80) and X, = (=100, 6u, 8u). These vectors are perpen-

dicular, with || X,|| = || X ||, = 10v/u% + 02, so this parameterization is .

28. We have X, = (ke* cos v, ke sinv, keF") and X, = (—e"sinv, e cosv,0). These
vectors are always perpendicular, with

X = kv2e  and || X,| =™

which will have the same length when [k = 1/v/2|.




29. We have X, = (—2ksin ku, 2k cos ku, 0) and X, = (0,0,3). These are always perpen-

dicular, with . . . .
[ Xu x Xof| = [[Xul[ [[Xo]l = (2F)(3) = OF.

Thus, this will be equiareal when |k = 1/6|.




