
Solutions to Exam 2 Practice Problems

Math 352, Fall 2014

Parameterizing Space Curves

1. After the rotation, the circle will still be centered at the origin, but will be in the plane

y = x. The unit vectors ~u1 =
1√
2

(1, 1, 0) and ~u2 = (0, 0, 1) are orthogonal and parallel

to this plane, so the circle is

~x(t) = (cos t)~u1 + (sin t)~u2 =
cos t√

2
(1, 1, 0) + sin t (0, 0, 1)

2. The point ~P = (t, cosh t, 0) lies on the given catenary, and the unit normal vector to

the given plane is ~n =
1√
10

(0, 1,−3). Since the plane goes through the origin, all we

have to do is project ~P onto ~n:

~v = (~P · ~n)~n =
1

10

(
(t, cosh t, 0) · (0, 1,−3)

)
(0, 1,−3) =

cosh t

10
(0, 1,−3).

(Note how we handled the radical.) Then a point on the reflection is given by

~P + 2~v = (t, cosh t, 0) +
cosh t

5
(0, 1,−3)

3. This is just ~x(t) = (cos t)(2, 4, 4) + (sin t)(2, 1,−2)

4. The unit vectors ~u1 =
1√
5

(1, 2, 0) and ~u2 = (0, 0, 1) are orthogonal and parallel to this

plane. Then the circle is

~x(t) = (1, 2, 1) + (cos t)~u1 + (sin t)~u2 = (1, 2, 1) +
cos t√

5
(1, 2, 0) + (sin t)(0, 0, 1)

5. The vector (1, 0, 0) rotates to ~u1 =

(√
3

2
, 0,−1

2

)
, while the unit vector ~u2 = (0, 1, 0)

isn’t affected by the rotation. Then the curve is

~x(t) =

(
1−
√

3

2
, 0,

1

2

)
+ t~u1 + t2~u2 =

(
1−
√

3

2
, 0,

1

2

)
+ t

(√
3

2
, 0,−1

2

)
+ t2(0, 0, 1)

which can be simplified to (1, 0, t2) +
t− 1

2

(√
3, 0,−1

)



Geometry of Space Curves

6. Note first that

~x ′(t) = (2t+ 1, cos t, et) and ~x ′′(t) = (2,− sin t, et).

so
~x ′(0) = (1, 1, 1) and ~x ′′(0) = (2, 0, 1).

Then ~T (0) =
~x ′(0)

‖~x ′(0)‖
=

1√
3

(1, 1, 1) . Furthermore, the normal component of

acceleration is

~x ′′ − (~x ′′ · ~T )~T = (2, 0, 1)− 1

3

(
(2, 0, 1) · (1, 1, 1)

)
(1, 1, 1) = (1,−1, 0)

so ~P (0) =
1√
2

(1,−1, 0) . Finally,

~B(0) = ~T (0)× ~P (0) =
1√
6

∣∣∣∣∣∣
~e1 ~e2 ~e3
1 1 1
1 −1 0

∣∣∣∣∣∣ =
1√
6

(1, 1,−2)

7. Recall that
~x ′′ = s′′ ~T + (s′)2κ ~P

We can get ~T by subtracting off the ~P component and then dividing by s′′:

~T =
~x ′′ − (~x ′′ · ~P )~P

s′′
=

(5, 2,−4)− 1
9

(
(5, 2,−4) · (2, 2,−1)

)
(2, 2,−1)

−3
=

1

3
(−1, 2, 2)

8. Since the curve is unit-speed, ~P ′ = −κ~T + τ ~B, so ~P ′ × ~B = κ~P . Then

~P =
~P ′ × ~B

‖~P ′ × ~B‖
=

1√
34

(−5, 0, 3)

9. (a) The osculating circle has a radius of 1/κ = 6, and is centered at ~c = ~p + 6~P =
(7, 4,−3), so the parametrization is

~c+ (6 cos t)~T + (6 sin t)~P = (7, 4,−3) + 3
√

2 cos t (1, 0, 1) + 2 sin t (2, 1,−2)

(b) The normal vector to the osculating plane is

~B = ~T × ~P =
1

3
√

2

∣∣∣∣∣∣
~e1 ~e2 ~e3
1 0 1
2 1 −2

∣∣∣∣∣∣ =
1

3
√

2
(−1, 4, 1)

The plane must go through the point (3, 2, 1), so the equation is −x+ 4y + z = 6



10. (Note: This problem originally had a typo. The correct value of ~P ′ is (−1,−9, 1).)
The curve isn’t unit-speed, so we must be careful using the Frenet-Serret formulas. We
have that

~P ′ = s′
dP

ds
= s′(−κ~T + τ ~B) = −s′κ ~T + s′τ ~B.

From ~x ′(0), we know that ~T (0) =
1√
2

(0, 1,−1) and s′(0) =
√

2, so

κ(0) =
~P ′ · ~T
−s′

=
(−1,−9, 1) · 1√

2
(0, 1,−1)

−
√

2
= 5

11. This one’s tricky. Since the torsion is zero, the curve must be planar. Since the
curvature is 1, the curve must be a unit circle. (You should definitely have gotten
at least this far in the problem. It’s ok if you didn’t get the next part.) Since the
acceleration of a unit circle is always the negative of the radial vector, the center is at
~x(0) + ~x ′′(0) = (3, 0, 0), and it seems that

~x(t) = (3, 0, 0) + (cos t)(−1, 0, 0) + (sin t)(0, 0, 1).

Thus ~x(π/2) = (3, 0, 1)

Parameterizations of Surfaces

12. (a) (Note: There was originally a typo in this part. The catenoid should be given
by the equation r = cosh z.)

~X(u, v) = (coshu cos v, coshu sin v, u)

(b) ~X(u, v) = (u, 3 cos v, 3 sin v)

(c) ~X(u, v) = (3 cosu cos v, 2 sinu cos v, 5 sin v)

(d) We have r = 5 + 2 cosu, z = 1 + 2 sinu, and θ = v, so the parameterization is

~X(u, v) =
(
(5 + 2 cosu) cos v, (5 + 2 cosu) sin v, 1 + 2 sinu

)
(e) ~X(u, v) = (u, v, v2 + 1)

(f) This is the surface r2 − z2 = 4. One method is to let z = u, r =
√

4 + u2, and
θ = v, giving

~X(u, v) =
(√

4 + u2 cos v,
√

4 + u2 sin v, u
)

Another method is to use r = 2 coshu, z = 2 sinhu, and θ = v, which gives

~X(u, v) = (2 coshu cos v, 2 coshu sin v, 2 sinhu)



(g) One possibility is simply ~X(u, v) = (u, u2 + v2 + 2, v) . Another possibility is

to use something like cylindrical coordinates, giving a parameterization such as

~X(u, v) = (u cos v, u2 + 2, u sin v) .

13. The unit vector ~u1 =
1√
3

(1, 1, 1) goes in the direction of the line. To parameterize the

cylinder, we need two more perpendicular unit vectors. We can just make up one of

them, say ~u2 =
1√
2

(1,−1, 0), and taking the cross product gives the third vector:

~u3 = ~u1 × ~u2 =
1√
6

∣∣∣∣∣∣
~e1 ~e2 ~e3
1 1 1
1 −1 0

∣∣∣∣∣∣ =
1√
6

(1, 1,−2)

(Alternatively, we probably could have guessed this vector.) Then the cylinder is

~X(u, v) = u~u1 + (2 cos v) ~u2 + (2 sin v) ~u3

=
u√
3

(1, 1, 1) +
√

2 cos v (1,−1, 0) +

√
2 sin v√

3
(1, 1,−2)

14. At time t, the rod is at z = 3t and θ = 2t+
π

2
. If we let r = u and t = v, we get

~X(u, v) =
(
u cos

(
2v +

π

2

)
, u sin

(
2v +

π

2

)
, 3v
)

= (−u sin 2v, u cos 2v, 3v)

15. We have

~Xu(u, v) =
(
2u−1/2 cos v, 2u−1/2 sin v, 1

)
and ~Xv(u, v) =

(
−
√
u sin v,

√
u cos v, 0

)
.

The given point corresponds to (u, v) = (2, 3π/4), so

~Xu = (−1/4, 1/4, 1) and ~Xv =
(
−1,−1, 0

)
.

Taking the cross product gives a normal vector

~Xu × ~Xv =
1

4

∣∣∣∣∣∣
~e1 ~e2 ~e3
−1 1 4
−1 −1 0

∣∣∣∣∣∣ = (1,−1, 1/2)

Parametrizations in Higher Dimensions

16. There are several possibilities, such as

~X(u, v, w) = (2 + 3 cosu cos v cosw, 3 sinu cos v cosw, 3 sin v cosw, 3 sinw)

or
~X(u, v, w) = (2 + 3 cosu cosw, 3 sinu cosw, 3 cos v sinw, 3 sin v sinw)



17. (a) The normal vector to the plane is (1, 1, 2, 2). It’s easy to make up two vectors

perpendicular to this, e.g. ~u1 =
1√
2

(1,−1, 0, 0) and ~u2 =
1√
2

(0, 0, 1,−1) . There

are several different ways to find the third one, one of which is to use the version
of cross product in R4: ∣∣∣∣∣∣∣∣

~e1 ~e2 ~e3 ~e4
1 1 2 2
1 −1 0 0
0 0 1 −1

∣∣∣∣∣∣∣∣ = (−4,−4, 2, 2)

so ~u3 =
1√
10

(−2,−2, 1, 1)

(b) We use spherical coordinates with the three vectors:

~X(u, v) = (1, 2, 0, 0) +
5 cosu sin v√

2
(1,−1, 0, 0)

+
5 sinu sin v√

2
(0, 0, 1,−1) +

5 cos v√
10

(−2,−2, 1, 1)

18. It looks like (x1, x2) can be any unit vector in R2, say (cosu, sinu). Then (x3, x4) must
be perpendicular to (x1, x2), which means it’s a multiple of (− sinu, cosu). Thus

~X(u, v) = (cosu, sinu,−v sinu, v cosu)

19. The unit normal to the hyperplane is ~n = 1
2
(1,−1, 1,−1). The point (9, 0, 0, 0) lies on

the hyperplane, so let ~v = (9, 0, 0, 0) − (1, 0, 0, 0) = (8, 0, 0, 0). Then the reflection is
(1, 0, 0, 0) plus twice the projection of ~v onto ~n:

(1, 0, 0, 0) + 2(~v · ~n)~n = (1, 0, 0, 0) + 2(2,−2, 2,−2) = (5,−4, 4,−4)

20. Let u = x1
2 + x2

2 = x3
2 + x4

2, let v be the angle of the point (x1, x2), and let w be the
angle of the point (x3, x4). Then we get

~X(u, v, w) = (u cos v, u sin v, u cosw, u sinw)

Surface Integrals

21. We can parameterize this as ~X(u, v) = (u cos v, u sin v, u2) with domain 0 < u < 1 and

0 < v < 2π. Then ~Xu and ~Xv will be perpendicular, so

‖ ~Xu × ~Xv‖ = ‖ ~Xu‖ ‖ ~Xv‖ = ‖(cos v, sin v, 2u)‖ ‖(−u sin v, u cos v, 0)‖ = u
√

1 + 4u2.



So the area is∫ 2π

0

∫ 1

0

u
√

1 + 4u2 du dv = 2π

[
1

12
(1 + 4u2)3/2

]1
0

=
(5
√

5− 1)π

6

22. We can parameterize this as ~X(u, v) = (u cos v, u sin v, v) for 0 < u < 1 and 0 < v < π.

Then ~Xu and ~Xv will be perpendicular, so

‖ ~Xu × ~Xv‖ = ‖ ~Xu‖ ‖ ~Xv‖ = ‖(cos v, sin v, 0)‖ ‖(−u sin v, u cos v, 1)‖ =
√

1 + u2

Then the integral is∫ π

0

∫ 1

0

y‖ ~Xu × ~Xv‖ du dv =

∫ π

0

∫ 1

0

(u sin v)
√

1 + u2 du dv

=

∫ π

0

sin v dv

∫ 1

0

u
√

1 + u2 du = 2

[
1

3
(1 + u2)3/2

]1
0

=
4
√

2− 2

3

23. We can parameterize this as ~X(u, v) = (u, v, eu sin v) for 0 < u < 1 and 0 < v < π.
Then

~Xu × ~Xv =

∣∣∣∣∣∣
~e1 ~e2 ~e3
1 0 eu sin v
0 1 eu cos v

∣∣∣∣∣∣ = (−eu sin v,−eu cos v, 1)

so ‖ ~Xu × ~Xv‖ =
√

1 + e2u. Then∫ π

0

∫ 1

0

z2‖ ~Xu × ~Xv‖ du dv =

∫ π

0

∫ 1

0

(
e2u sin2v

)√
1 + e2u du dv

=

∫ π

0

sin2v dv

∫ 1

0

e2u
√

1 + e2u du =
π

2

[
1

3
(1 + e2u)3/2

]1
0

=
π
(
(1 + e2)3/2 − 2

√
2
)

6

24. We can parameterize this as ~X(u, v) = (u cos v, u sin v, u2) with domain 0 < u < 2 and

0 < v < 2π. Then ~Xu and ~Xv will be perpendicular, so

‖ ~Xu × ~Xv‖ = ‖ ~Xu‖ ‖ ~Xv‖ = ‖(cos v, sin v, 2u)‖ ‖(−u sin v, u cos v, 0)‖ = u
√

1 + 4u2.

Then the integral is∫ π

0

∫ 2

0

√
1 + 4z ‖ ~Xu × ~Xv‖ du dv =

∫ π

0

∫ 1

0

u(1 + 4u2) du dv = π

[
u2

2
+ u4

]2
0

= 18π

25. We can parameterize this as ~X(u, v) = (u, v, u2) for 0 < u < 1 and 0 < v < 3. Then

‖ ~Xu × ~Xv‖ = ‖(1, 0, 2u)× (0, 1, 0)‖ =
√

1 + 4u2



so the integral is∫ 3

0

∫ 1

0

xy‖ ~Xu × ~Xv‖ du dv =

∫ 3

0

∫ 1

0

uv
√

1 + 4u2 du dv

=

∫ 3

0

v dv

∫ 1

0

u
√

1 + 4u2 du =
9

2

[
1

12
(1 + 4u2)3/2

]1
0

=
15
√

5− 3

8

26. This is the surface r = ez, so we can parameterize this as ~X(u, v) = (eu cos v, eu sin v, u)

for 0 < u < 1 and 0 < v < 2π. Then ~Xu and ~Xv will be perpendicular, so

‖ ~Xu× ~Xv‖ = ‖ ~Xu‖ ‖ ~Xv‖ = ‖(eu cos v, eu sin v, 1)‖ ‖(−eu sin v, eu cos v, 0)‖ = eu
√

1 + e2u.

Then the integral is∫ 2π

0

∫ 1

0

r‖ ~Xu × ~Xv‖ du dv =

∫ 2π

0

∫ 1

0

e2u
√

1 + e2u du dv

= 2π

[
1

3
(1 + e2u)3/2

]1
0

=
2π
(
(1 + e2)3/2 − 2

√
2
)

3

Types of Parameterizations

27. (a) We have ~Xu = (− sinu, 0, cosu) and ~Xv = (0, 1, 0), which are perpendicular unit

vectors, so this parameterization is both conformal and equiareal, i.e. an isometry .

(b) We have ~Xu = (sinhu cos v, sinhu sin v, 1) and ~Xv = (− coshu sin v, coshu cos v, 0).

These vectors are perpendicular, with ‖ ~Xu‖ = ‖ ~Xv| = coshu, so this parameteri-

zation is conformal .

(c) We have ~Xu = (1, 0, 1) and ~Xv = (0, 2/3, 1/3). These aren’t perpendicular, but

‖ ~Xu × ~Xv‖ = ‖(−2/3,−1/3, 2/3)‖ = 1

so this parameterization is equiareal .

(d) We have ~Xu = (cos v, sin v, 2u) and (−u sin v, u cos v, 0). These vectors are per-

pendicular, but their lengths are ‖ ~Xu‖ =
√

1 + 4u2 and ‖ ~Xv‖ = u, so this param-

eterization is neither conformal nor equiareal .

(e) We have ~Xu = (10u, 6v, 8v) and ~Xv = (−10v, 6u, 8u). These vectors are perpen-

dicular, with ‖ ~Xu‖ = ‖ ~X‖v = 10
√
u2 + v2, so this parameterization is conformal .

28. We have ~Xu =
(
keku cos v, keku sin v, keku

)
and ~Xv =

(
−eku sin v, eku cos v, 0

)
. These

vectors are always perpendicular, with

‖ ~Xu‖ = k
√

2 eku and ‖ ~Xv‖ = eku

which will have the same length when k = 1/
√

2 .



29. We have ~Xu = (−2k sin ku, 2k cos ku, 0) and ~Xv = (0, 0, 3). These are always perpen-
dicular, with

‖ ~Xu × ~Xv‖ = ‖ ~Xu‖ ‖ ~Xv‖ = (2k)(3) = 6k.

Thus, this will be equiareal when k = 1/6 .


