Exam 2 Practice Problems

Math 352, Fall 2014

Parameterizing Space Curves

- 1. The unit circle in the xy-plane is rotated 90° around the line y = x. Find parametric equations for the resulting space curve.
- 2. The catenary $y = \cosh x$ in the xy-plane is reflected across the plane y = 3z. Find parametric equations for the resulting curve.
- 3. Find parametric equations for the ellipse whose minor axis has endpoints (2, 4, 4) and (-2, -4, -4) and whose minor axis has endpoints (2, 1, -2) and (-2, -1, 2).
- 4. Find parametric equations for the unit circle centered at (1, 2, 1) that lies in the plane y = 2x.
- 5. The parabola $y = x^2$ in the *xy*-plane is rotated 30° around the line x = 1, with the vertex of the parabola moving to the point $\left(1 \frac{\sqrt{3}}{2}, 0, \frac{1}{2}\right)$. Find parametric equations for the resulting space curve.

Geometry of Space Curves

- 6. Let $\vec{x} \colon \mathbb{R} \to \mathbb{R}^3$ be the curve $\vec{x}(t) = (t^2 + t, \sin t, e^t)$. Compute the Frenet vectors \vec{T} , \vec{P} , and \vec{B} at the point (0, 0, 1).
- 7. On a space curve $\vec{x}(t)$, suppose that

$$\vec{x}''(0) = (5, 2, -4), \quad s''(0) = -3, \quad \text{and} \quad \vec{P}(0) = \frac{1}{3}(2, 2, -1).$$

Compute $\vec{T}(0)$.

- 8. On a unit-speed space curve $\vec{x}(t)$, suppose that $\vec{P}'(0) = (3, 4, 5)$ and $\vec{B}(0) = (0, 1, 0)$. Compute $\vec{P}(0)$.
- 9. Let $\vec{x}(t)$ be a space curve that goes through the point $\vec{p} = (3, 2, 1)$, and suppose that the tangent vector at \vec{p} is $\frac{1}{\sqrt{2}}(1, 0, 1)$, the principle normal vector at \vec{p} is $\frac{1}{3}(2, 1, -2)$, and the curvature at \vec{p} is 1/6.
 - (a) Find parametric equations for the osculating circle at the point \vec{P} .
 - (b) Find a Cartesian equation for the osculating plane at the point \vec{P} .
- 10. On a space curve $\vec{x}(t)$, suppose that $\vec{x}'(0) = (0, 1, -1)$ and $\vec{P}'(0) = (-1, -9, 1)$. Compute $\kappa(0)$.

11. A unit-speed curve $\vec{x} \colon \mathbb{R} \to \mathbb{R}^3$ has constant curvature 1 and constant torsion 0. Given that $\vec{x}(0) = (2, 0, 0), \ \vec{x}'(0) = (0, 0, 1), \ \text{and} \ \vec{x}''(0) = (1, 0, 0), \ \text{compute} \ \vec{x}(\pi/2).$

Parameterizations of Surfaces

- 12. Find parameterizations for the following surfaces:
 - (a) The catenoid $r = \cosh z$.
 - (b) The cylinder centered along the x-axis with a radius of 3.
 - (c) The ellipsoid $\left(\frac{x}{3}\right)^2 + \left(\frac{y}{2}\right)^2 + \left(\frac{z}{5}\right)^2 = 1.$
 - (d) The torus $(r-5)^2 + (z-1)^2 = 4$.
 - (e) The parabolic cylinder $z = y^2 + 1$.
 - (f) The hyperboloid $x^2 + y^2 z^2 = 4$.
 - (g) The paraboloid $y = x^2 + z^2 + 2$.
- 13. Find parametric equations for the cylinder of radius 2 whose axis is the line x = y = z.
- 14. A long rod initially lies along the *y*-axis. The rod begins rotating counterclockwise (around the *z*-axis) at a rate of 2 rad/sec while simultaneously moving in the *z*-direction at a rate of 3 units/sec. Find parametric equations for the surface traced out by the rod.
- 15. Let S be the surface parameterized by $\vec{X}(u, v) = (\sqrt{u} \cos v, \sqrt{u} \sin v, u)$. Find a normal vector to S at the point (-1, 1, 2).

Parametrizations in Higher Dimensions

16. Find a parametrization of the 3-sphere in \mathbb{R}^4 defined by the equation

$$(x_1 - 2)^2 + x_2^2 + x_3^2 + x_4^2 = 9.$$

- 17. Let H be the hyperplane $x_1 + x_2 + 2x_3 + 2x_4 = 3$ in \mathbb{R}^4 .
 - (a) Find three orthogonal unit vectors that are parallel to H.
 - (b) Find a parameterization $\vec{X}(u, v)$ for the sphere of radius 5 in *H* centered at the point (1, 2, 0, 0).
- 18. Let S be the surface in \mathbb{R}^4 defined by the equations

$$x_1^2 + x_2^2 = 1$$
 and $x_1x_3 + x_2x_4 = 0$.

Find a parametrization of S.

19. Find the reflection of the point (1, 0, 0, 0) across the hyperplane $x_1 - x_2 + x_3 - x_4 = 9$.

20. Find a parametrization of the 3-manifold in \mathbb{R}^4 defined by the equation

$$x_1^2 + x_2^2 = x_3^2 + x_4^2.$$

Surface Integrals

- 21. Let S be the portion of the paraboloid $z = x^2 + y^2$ lying below the plane z = 1. Find the surface area of S.
- 22. Compute $\iint_S y \, dA$, where S is the portion or the helicoid $z = \theta$ satisfying 0 < r < 1and $0 < \theta < \pi$.
- 23. Compute $\iint_S z^2 dA$, where S is the portion of the surface $z = e^x \sin y$ satisfying 0 < x < 1 and $0 < y < \pi$.
- 24. Evaluate $\iint_S \sqrt{1+4z} \, dA$, where S be the portion of the paraboloid $z = x^2 + y^2$ lying below the plane z = 4.
- 25. Evaluate $\iint_S xy \, dA$, where S is the portion of the surface $z = x^2$ for which 0 < x < 1 and 0 < y < 3.

26. Let S be the surface $z = \ln(r)$ in the range 0 < z < 1. Evaluate $\iint_S r \, dA$.

Types of Parameterizations

- 27. Determine whether each of the following parameterizations is equiareal, conformal, both, or neither.
 - (a) $\vec{X}(u,v) = (\cos u, v, \sin u)$
 - (b) $\vec{X}(u,v) = (\cosh u \cos v, \cosh u \sin v, u)$
 - (c) $\vec{X}(u,v) = (u, \frac{2}{3}v, u + \frac{1}{3}v)$
 - (d) $\vec{X}(u,v) = (u \cos v, u \sin v, u^2)$
 - (e) $\vec{X}(u,v) = (5u^2 5v^2, 6uv, 8uv)$
- 28. Find a constant k so that

$$\vec{X}(u,v) = \left(e^{ku}\cos v, e^{ku}\sin v, e^{ku}\right)$$

is a conformal parametrization of the cone $z = \sqrt{x^2 + y^2}$.

29. Find a constant k so that

$$\vec{X}(u,v) = (2\cos ku, 2\sin ku, 3v)$$

is an equiareal parametrization of the cylinder $x^2 + y^2 = 4$.