Exam 2 Practice Problems

Math 352, Fall 2014

Parameterizing Space Curves

1. The unit circle in the $x y$-plane is rotated 90° around the line $y=x$. Find parametric equations for the resulting space curve.
2. The catenary $y=\cosh x$ in the $x y$-plane is reflected across the plane $y=3 z$. Find parametric equations for the resulting curve.
3. Find parametric equations for the ellipse whose minor axis has endpoints $(2,4,4)$ and $(-2,-4,-4)$ and whose minor axis has endpoints $(2,1,-2)$ and $(-2,-1,2)$.
4. Find parametric equations for the unit circle centered at $(1,2,1)$ that lies in the plane $y=2 x$.
5. The parabola $y=x^{2}$ in the $x y$-plane is rotated 30° around the line $x=1$, with the vertex of the parabola moving to the point $\left(1-\frac{\sqrt{3}}{2}, 0, \frac{1}{2}\right)$. Find parametric equations for the resulting space curve.

Geometry of Space Curves

6. Let $\vec{x}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be the curve $\vec{x}(t)=\left(t^{2}+t, \sin t, e^{t}\right)$. Compute the Frenet vectors \vec{T}, \vec{P}, and \vec{B} at the point $(0,0,1)$.
7. On a space curve $\vec{x}(t)$, suppose that

$$
\vec{x}^{\prime \prime}(0)=(5,2,-4), \quad s^{\prime \prime}(0)=-3, \quad \text { and } \quad \vec{P}(0)=\frac{1}{3}(2,2,-1)
$$

Compute $\vec{T}(0)$.
8. On a unit-speed space curve $\vec{x}(t)$, suppose that $\vec{P}^{\prime}(0)=(3,4,5)$ and $\vec{B}(0)=(0,1,0)$. Compute $\vec{P}(0)$.
9. Let $\vec{x}(t)$ be a space curve that goes through the point $\vec{p}=(3,2,1)$, and suppose that the tangent vector at \vec{p} is $\frac{1}{\sqrt{2}}(1,0,1)$, the principle normal vector at \vec{p} is $\frac{1}{3}(2,1,-2)$, and the curvature at \vec{p} is $1 / 6$.
(a) Find parametric equations for the osculating circle at the point \vec{P}.
(b) Find a Cartesian equation for the osculating plane at the point \vec{P}.
10. On a space curve $\vec{x}(t)$, suppose that $\vec{x}^{\prime}(0)=(0,1,-1)$ and $\vec{P}^{\prime}(0)=(-1,-9,1)$. Compute $\kappa(0)$.
11. A unit-speed curve $\vec{x}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ has constant curvature 1 and constant torsion 0 . Given that $\vec{x}(0)=(2,0,0), \vec{x}^{\prime}(0)=(0,0,1)$, and $\vec{x}^{\prime \prime}(0)=(1,0,0)$, compute $\vec{x}(\pi / 2)$.

Parameterizations of Surfaces

12. Find parameterizations for the following surfaces:
(a) The catenoid $r=\cosh z$.
(b) The cylinder centered along the x-axis with a radius of 3 .
(c) The ellipsoid $\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{2}\right)^{2}+\left(\frac{z}{5}\right)^{2}=1$.
(d) The torus $(r-5)^{2}+(z-1)^{2}=4$.
(e) The parabolic cylinder $z=y^{2}+1$.
(f) The hyperboloid $x^{2}+y^{2}-z^{2}=4$.
(g) The paraboloid $y=x^{2}+z^{2}+2$.
13. Find parametric equations for the cylinder of radius 2 whose axis is the line $x=y=z$.
14. A long rod initially lies along the y-axis. The rod begins rotating counterclockwise (around the z-axis) at a rate of $2 \mathrm{rad} / \mathrm{sec}$ while simultaneously moving in the z-direction at a rate of 3 units $/ \mathrm{sec}$. Find parametric equations for the surface traced out by the rod.
15. Let S be the surface parameterized by $\vec{X}(u, v)=(\sqrt{u} \cos v, \sqrt{u} \sin v, u)$. Find a normal vector to S at the point $(-1,1,2)$.

Parametrizations in Higher Dimensions

16. Find a parametrization of the 3 -sphere in \mathbb{R}^{4} defined by the equation

$$
\left(x_{1}-2\right)^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=9 .
$$

17. Let H be the hyperplane $x_{1}+x_{2}+2 x_{3}+2 x_{4}=3$ in \mathbb{R}^{4}.
(a) Find three orthogonal unit vectors that are parallel to H.
(b) Find a parameterization $\vec{X}(u, v)$ for the sphere of radius 5 in H centered at the point (1, 2, 0, 0).
18. Let S be the surface in \mathbb{R}^{4} defined by the equations

$$
x_{1}^{2}+x_{2}^{2}=1 \quad \text { and } \quad x_{1} x_{3}+x_{2} x_{4}=0
$$

Find a parametrization of S.
19. Find the reflection of the point $(1,0,0,0)$ across the hyperplane $x_{1}-x_{2}+x_{3}-x_{4}=9$.
20. Find a parametrization of the 3 -manifold in \mathbb{R}^{4} defined by the equation

$$
x_{1}{ }^{2}+x_{2}{ }^{2}=x_{3}{ }^{2}+x_{4}{ }^{2} .
$$

Surface Integrals

21. Let S be the portion of the paraboloid $z=x^{2}+y^{2}$ lying below the plane $z=1$. Find the surface area of S.
22. Compute $\iint_{S} y d A$, where S is the portion or the helicoid $z=\theta$ satisfying $0<r<1$ and $0<\theta<\pi$.
23. Compute $\iint_{S} z^{2} d A$, where S is the portion of the surface $z=e^{x} \sin y$ satisfying $0<x<1$ and $0<y<\pi$.
24. Evaluate $\iint_{S} \sqrt{1+4 z} d A$, where S be the portion of the paraboloid $z=x^{2}+y^{2}$ lying below the plane $z=4$.
25. Evaluate $\iint_{S} x y d A$, where S is the portion of the surface $z=x^{2}$ for which $0<x<1$ and $0<y<3$.
26. Let S be the surface $z=\ln (r)$ in the range $0<z<1$. Evaluate $\iint_{S} r d A$.

Types of Parameterizations

27. Determine whether each of the following parameterizations is equiareal, conformal, both, or neither.
(a) $\vec{X}(u, v)=(\cos u, v, \sin u)$
(b) $\vec{X}(u, v)=(\cosh u \cos v, \cosh u \sin v, u)$
(c) $\vec{X}(u, v)=\left(u, \frac{2}{3} v, u+\frac{1}{3} v\right)$
(d) $\vec{X}(u, v)=\left(u \cos v, u \sin v, u^{2}\right)$
(e) $\vec{X}(u, v)=\left(5 u^{2}-5 v^{2}, 6 u v, 8 u v\right)$
28. Find a constant k so that

$$
\vec{X}(u, v)=\left(e^{k u} \cos v, e^{k u} \sin v, e^{k u}\right)
$$

is a conformal parametrization of the cone $z=\sqrt{x^{2}+y^{2}}$.
29. Find a constant k so that

$$
\vec{X}(u, v)=(2 \cos k u, 2 \sin k u, 3 v)
$$

is an equiareal parametrization of the cylinder $x^{2}+y^{2}=4$.

