Name:_____

Math 352 Final Exam

1. [10 points] Let C be the plane curve $y = e^x$. Find the Cartesian equation for the osculating circle to C at the point (0, 1).

2. [14 points] Let $\vec{X}(u,v)$ be a surface parametrization (where $0 < u < \pi/2$), and suppose that the corresponding first fundamental form is

$$g(u,v) = \begin{bmatrix} \sec u & \tan u \\ \tan u & \sec u \end{bmatrix}.$$

(a) [8 pts] Find a formula for the angle between the u and v coordinate lines at the point $\vec{X}(u, v)$. Your final answer should not involve any trigonometric functions.

(b) [6 pts] Is the parametrization $\vec{X}(u, v)$ conformal, equiareal, both, or neither?

- 3. [24 points (8 pts each)] Find the principle curvatures of the given surface at the given point.
 - (a) The surface $z = 4xy + 3y^2$, with upward-pointing normal vectors, at the point (0, 0, 0).

(b) The surface $r = 3z^2 + 2$, with outward-pointing normal vectors, at the point (2, 0, 0).

(c) The surface $(r-2)^2 + z^2 = 2$, with outward-pointing normal vectors, at the point (3, 0, 1).

- 4. [12 points)] Let S_1 be the cone $z = \sqrt{x^2 + y^2}$, let S_2 be the cone $z = 7\sqrt{x^2 + y^2}$, and let $f: S_1 \to S_2$ be the map f(x, y, z) = (2x, 2y, 14z).
 - (a) [6 pts] Find $df_p(0, 1, 0)$ and $df_p(1, 0, 1)$, where p is the point (t, 0, t).

(b) [6 pts] Let \mathcal{R} be a region on S_1 with area 4. What is the area of the corresponding region $f(\mathcal{R})$ on S_2 ?

- 5. [14 points] Let C be the helix $\vec{x}(t) = (3\cos t, 3\sin t, 4t)$.
 - (a) [8 pts] Find formulas for the Frenet vectors $\vec{T}(t)$, $\vec{P}(t)$, and $\vec{B}(t)$.

(b) [6 pts] Determine the curvature κ and torsion τ of this helix.

6. [12 points] Let C be the curve $z = e^{-x}$ (x > 0) in the xz-plane, and let S be the surface obtained by rotating the curve C around the x-axis, oriented with normal vectors pointing outwards.

(a) [6 pts] Find the image of S under the Gauss map. Express your answer as one or more inequalities defining a region on the unit sphere.

(b) **[6 pts]** Use your answer to part (a) to compute $\iint_S K dA$, where K is the Gaussian curvature of S.

7. [14 points] A unit circle is rolling counterclockwise on the inside of the circle $x^2 + y^2 = 9$. A point P lies on the perimeter of the rolling circle, with initial coordinates (3,0). Find parametric equations for the curve produced by tracing the path of P.

