# Solutions to Final Exam Practice Problems 

Math 352, Fall 2014

1. We have $\vec{X}_{u}=(\cos v, \sin v, v)$ and $\vec{X}_{v}=(-u \sin v, u \cos v, u)$, so

$$
g(u, v)=\left[\begin{array}{cc}
\vec{X}_{u} \cdot \vec{X}_{u} & \vec{X}_{u} \cdot \vec{X}_{v} \\
\vec{X}_{v} \cdot \vec{X}_{u} & \vec{X}_{v} \cdot \vec{X}_{v}
\end{array}\right]=\left[\begin{array}{cc}
1+v^{2} & u v \\
u v & 2 u^{2}
\end{array}\right]
$$

2. (a) $\int_{0}^{3} \sqrt{\vec{x}^{\prime}(t)^{T} g(\vec{x}(t)) \vec{x}^{\prime}(t)} d t=\int_{0}^{3} \sqrt{\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{cc}t+1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]} d t$ $=\int_{0}^{3} \sqrt{t+1} d t=\left[\frac{2}{3}(t+1)^{3 / 2}\right]_{0}^{3}=\frac{14}{3}$
(b) $\int_{0}^{4} \int_{0}^{4} \sqrt{\operatorname{det}(g(u, v))} d u d v=\int_{0}^{4} \int_{0}^{4} \sqrt{u} d u d v=4\left[\frac{2}{3} u^{3 / 2}\right]_{0}^{4}=\frac{64}{3}$
3. (a) Let $\vec{x}(t)=(0,1, t)$, and note that $\vec{x}(4)=p$ and $\vec{x}^{\prime}(4)=(0,0,1)$. The image of $\vec{x}(t)$ on the paraboloid is the curve

$$
\vec{y}(t)=f(\vec{x}(t))=(0, \sqrt{t}, t)
$$

Then $d f_{p}(0,0,1)=\vec{y}^{\prime}(4)=(0,1 / 4,1)$.

For the other vector, let $\vec{x}(t)=(\sin t, \cos t, 4)$. Then $\vec{x}(0)=p$ and $\vec{x}^{\prime}(0)=(1,0,0)$. The image of $\vec{x}(t)$ on the paraboloid is the curve

$$
\vec{y}(t)=f(\vec{x}(t))=(2 \sin t, 2 \cos t, 4) .
$$

Then $d f_{p}(1,0,0)=\vec{y}^{\prime}(0)=(2,0,0)$.
(b) The Jacobian is $\frac{\|(0,1 / 4,1) \times(2,0,0)\|}{\|(0,0,1) \times(1,0,0)\|}=\frac{\|(0,1 / 4,1)\|\|(2,0,0)\|}{1}=\frac{\sqrt{17}}{2}$
4. Observe that $\vec{X}(u, v)=(\cos u, \sin u, v)$ is a parametrization of the cylinder. Consider the function

$$
\vec{F}(u, v)=f(\vec{X}(u, v))=\left(e^{k v} \cos u, e^{k v} \sin u, e^{k v}\right)
$$

We can compute $\vec{X}_{u}=(-\sin u, \cos u, 0), \vec{X}_{v}=(0,0,1), \vec{F}_{u}=e^{k v}(-\sin u, \cos u, 0)$, and $\vec{F}_{v}=k e^{k v}(\cos u, \sin u, 1)$. Then

$$
\left[\begin{array}{cc}
\vec{X}_{u} \cdot \vec{X}_{u} & \vec{X}_{u} \cdot \vec{X}_{v} \\
\vec{X}_{v} \cdot \vec{X}_{u} & \vec{X}_{v} \cdot \vec{X}_{v}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
\vec{F}_{u} \cdot \vec{F}_{u} & \vec{F}_{u} \cdot \vec{F}_{v} \\
\vec{F}_{v} \cdot \vec{F}_{u} & \vec{F}_{v} \cdot \vec{F}_{v}
\end{array}\right]=\left[\begin{array}{cc}
e^{2 k v} & 0 \\
0 & 2 k^{2} e^{2 k v}
\end{array}\right]
$$

The map is conformal if and only if the second matrix is a scalar multiple of the first. This occurs if and only if $2 k^{2}=1$, so $k=1 / \sqrt{2}$ (or $k=-1 / \sqrt{2}$ ).
5. (a) Let $f(x, y)=\cos (3 x)+6 \sin (x y)$. We have

$$
\frac{\partial f}{\partial x}=-3 \sin (3 x)+6 y \sin (x y) \quad \text { and } \quad \frac{\partial f}{\partial y}=6 x \cos (x y)
$$

so $\frac{\partial f}{\partial x}(0,0)=\frac{\partial f}{\partial y}(0,0)=0$. Thus $(0,0)$ is a critical point for $f$, so we can compute the curvatures using the Hessian.

Observe that

$$
H f(x, y)=\left[\begin{array}{cc}
-9 \cos (3 x)-6 y^{2} \sin (x y) & 6 \cos (x y)-6 x y \sin (x y) \\
6 \cos (x y)-6 x y \sin (x y) & -6 x^{2} \sin (x y)
\end{array}\right]
$$

so $H f(0,0)=\left[\begin{array}{cc}-9 & 6 \\ 6 & 0\end{array}\right]$. The eigenvalues of this are -12 and 3 .
(b) The Gaussian curvature is -36 , and the mean curvature is $-9 / 2$.
6. (a) At $(2,0,0)$, both the initial $\operatorname{arc} A$ and the horizontal circle of radius 2 are geodesics, so the principle curvatures are $-1 / 5$ and $-1 / 2$.
(b) At $(1,0,3)$, the initial arc $A$ is a geodesic, so one of the principle curvatures is $-1 / 5$. However, the horizontal circle of radius 1 is not a geodesic. In particular, this circle has $\vec{P}=(-1,0,0)$, and the normal vector is $\vec{N}=(4 / 5,0,3 / 5)$ (parallel to the radius of the large circle), so $\kappa_{n}=\kappa \vec{P} \cdot \vec{N}=(1)(-4 / 5)=-4 / 5$. Thus, the principle curvatures are $-1 / 5$ and $-4 / 5$.
(c) The normal vectors at the "endpoints" would be (3/5, 0, 4/5) and (3/5, 0, -4/5), so the image of $S$ under the Gauss map is the region $-4 / 5<z<4 / 5$ on the unit sphere.
(d) We just need to find the area of the region $-4 / 5<z<4 / 5$ of the unit sphere.

SOLUTION 1: This region can parameterized by

$$
\vec{X}(u, v)=(\cos u \cos v, \sin u \cos v, \sin v)
$$

for $0<u<2 \pi$ and $-\sin ^{-1}(4 / 5)<z<\sin ^{-1}(4 / 5)$. Then
$\vec{X}_{u}=(-\sin u \cos v, \cos u \cos v, 0) \quad$ and $\quad \vec{X}_{v}=(-\cos u \sin v,-\sin u \sin v, \cos v)$
so

$$
\left\|\vec{X}_{u} \times \vec{X}_{v}\right\|=\left\|\vec{X}_{u}\right\|\left\|\vec{X}_{v}\right\|=\cos v
$$

so

$$
\iint_{S} K d A=\int_{-\sin ^{-1}(4 / 5)}^{\sin ^{-1}(4 / 5)} \int_{0}^{2 \pi} \cos v d u d v=2 \pi[\sin v]_{-\sin ^{-1}(4 / 5)}^{\sin ^{-1}(4 / 5)}=\frac{16 \pi}{5}
$$

SOLUTION 2: Recall that Archimedes' map (projecting the sphere horizontally outwards to the cylinder) is area-preserving. The image of the given region is a cylinder with radius 1 and height $8 / 5$, so the area is $(8 / 5)(2 \pi)=\frac{16 \pi}{5}$.
7. (a) The curve $r=2+\cos z$ on the $r z$-plane is shown below


This curve will be a geodesic on the resulting surface, and its curvature at (3, 0, 0) is 1 . The horizontal circle at $z=0$ is also a geodesic, with a curvature of $1 / 3$. These are curving away from the normal vector, so the principle curvatures at $(3,0,0)$ are -1 and $-1 / 3$.
(b) Again, the curve shown above is a geodesic, and its curvature at $(2,0, \pi / 2)$ is 0 . The horizontal circle at $z=\pi / 2$ has a curvature of $1 / 2$, but it is not a geodesic. Its principle normal vector is $\vec{P}=(-1,0,0)$, and the normal vector to the surface is $\vec{N}=\frac{1}{\sqrt{2}}(1,0,1)$, so the normal curvature is $\kappa \vec{P} \cdot \vec{N}=-\frac{1}{2 \sqrt{2}}$. Thus, the principle curvatures are 0 and $-\frac{1}{2 \sqrt{2}}$.
(c) The Gaussian curvature will be positive for $-\pi / 2<z<\pi / 2$.
8. (a) Clearly $\vec{T}=(0,1,0)$. The parabola $y=\frac{2}{3} x^{2}$ has slope $4 / 3$ at the point $(1,2 / 3)$. Therefore, $\vec{U}=(-3 / 5,0,-4 / 5)$ and $\vec{N}=(-4 / 5,0,3 / 5)$.
(b) The curvature of $\vec{x}(t)$ is $\kappa=1$, and the principle normal vector is $\vec{P}=(-1,0,0)$. Therefore, the normal curvature is $\kappa_{n}=\kappa \vec{P} \cdot \vec{N}=4 / 5$ and the geodesic curvature is $\kappa_{g} n=\kappa \vec{P} \cdot \vec{U}=3 / 5$.
(c) The image of this portion of the surface under the Gauss map is the region $z>3 / 5$ on the unit sphere. Using techniques similar to the solution of problem 6(d) above, the area of this portion of the sphere is $4 \pi / 5$.

