Final Exam Practice Problems

Math 352, Fall 2014

- 1. Let $\vec{X}(u,v) = (u \cos v, u \sin v, uv)$. Compute the matrix for the corresponding first fundamental form.
- 2. Let $\vec{X}(u, v)$ be a surface parametrization, and suppose that the corresponding first fundamental form is

$$g(u,v) = \begin{bmatrix} u+v & \sqrt{v} \\ \sqrt{v} & 1 \end{bmatrix}.$$

- (a) Let $\vec{x}(t) = (t, 1)$ be a curve on the *uv*-plane, and let $\vec{y}(t) = \vec{X}(\vec{x}(t))$ be the corresponding curve on the surface. Compute the length of $\vec{y}(t)$ for 0 < t < 3.
- (b) Let \mathcal{R} be the region in the *uv*-plane defined by 0 < u < 4 and 0 < v < 4, and let $\vec{X}(\mathcal{R})$ be the corresponding region on the surface. Find the area of $\vec{X}(\mathcal{R})$.
- 3. Let C be the portion of the cylinder $x^2 + y^2 = 1$ lying above the xy-plane, let P be the paraboloid $z = x^2 + y^2$, and let $f: C \to P$ be the map

$$f(x, y, z) = (x\sqrt{z}, y\sqrt{z}, z).$$

- (a) Compute $df_p(0,0,1)$ and $df_p(1,0,0)$, where p is the point (0,1,4).
- (b) Compute the Jacobian of f at the point (0, 1, 4).
- 4. Let S_1 be the cylinder $x^2 + y^2 = 1$ for z > 0, let S_2 be the cone $z = \sqrt{x^2 + y^2}$, and let $f: S_1 \to S_2$ be the map

$$f(x, y, z) = \left(xe^{kz}, ye^{kz}, e^{kz}\right)$$

where k is a constant. Find a value of k for which f is conformal.

- 5. Let S be the surface $z = \cos(3x) + 6\sin(xy)$, oriented so that normal vectors point upwards.
 - (a) Compute the principle curvatures of S at the point (0, 0, 1).
 - (b) Compute the Gaussian curvature and mean curvature of S at this point.

6. Let C be a circle of radius 5 that contains the points (0, 0, 4) and (0, 0, -4), and let A be the (open) minor arc of C between these points. Let S be the surface obtained by rotating the arc A around the z-axis, oriented so that normal vectors point outwards.

Note that the surface S does not include the cusp points (0, 0, 4) and (0, 0, -4).

- (a) Find the principle curvatures of S at the point (2,0,0).
- (b) Find the principle curvatures of S at the point (1, 0, 3).
- (c) Find the image of S under the Gauss map. Express your answer as one or more inequalities defining a region on the unit sphere.
- (d) Use your answer to part (c) to evaluate $\iint_S K dA$, where K is the Gaussian curvature of S.
- 7. Let S be the surface $r = 2 + \cos z$ for $-\pi < z < \pi$, oriented with normal vectors pointing outwards.
 - (a) Find the principle curvatures of S at the point (3, 0, 0).
 - (b) Find the principle curvatures of S at the point $(2, 0, \pi/2)$.
 - (c) For what values of z in the range $-\pi < z < \pi$ is the Gaussian curvature of S positive?
- 8. Let P be the paraboloid $z = \frac{2}{3}(x^2 + y^2)$, oriented so that the normal vectors point **inwards**, and consider the curve on this surface defined by $\vec{x}(t) = (\cos t, \sin t, 2/3)$.
 - (a) Find the vectors $\{\vec{N}, \vec{T}, \vec{U}\}$ of the Darboux frame for \vec{x} at the point (1, 0, 2/3).
 - (b) Find the normal curvature κ_n and geodesic curvature κ_g of \vec{x} at the point (1, 0, 2/3).
 - (c) Use the Gauss map to compute $\iint_{\mathcal{R}} K \, dA$, where \mathcal{R} is the portion of the surface for which z < 2/3.