Final Exam

1. [10 points] Let C be the plane curve $y=e^{x}$. Find the Cartesian equation for the osculating circle to C at the point $(0,1)$.

$$
\begin{aligned}
& \vec{x}(t)=\left(t, e^{t}\right) \quad \vec{x}(0)=(0,1) \\
& \vec{x}^{\prime}(t)=\left(1, e^{t}\right) \quad \vec{x}^{\prime}(0)=(1,1) \\
& \vec{x}^{\prime \prime}(t)=\left(0, e^{t}\right) \quad \vec{x}^{\prime \prime}(0)=(0,1) \\
& \vec{u}=\text { unit } \\
& a_{\perp}=(0,1) \cdot \vec{u}=\frac{1}{\sqrt{2}}(-1,1) \\
& a_{+}=k v^{2} \\
& \frac{1}{\sqrt{2}}=k(\sqrt{2})^{2} \\
& k=\frac{1}{2 \sqrt{2}} \Rightarrow r=2 \sqrt{2} \\
& \text { center }=(0,1)+(-2,2) \\
& =(-2,3) \\
& (x+2)^{2}+(y-3)^{2}=8
\end{aligned}
$$

2. [14 points] Let $\vec{X}(u, v)$ be a surface parametrization (where $0<u<\pi / 2$), and suppose that the corresponding first fundamental form is

$$
g(u, v)=\left[\begin{array}{cc}
\sec u & \tan u \\
\tan u & \sec u
\end{array}\right]
$$

(a) $[8 \mathrm{pts}]$ Find a formula for the angle between the u and v coordinate lines at the point $\vec{X}(u, v)$. Your final answer should not involve any trigonometric functions.

$$
\cos \theta=\frac{\vec{x}_{u} \cdot \vec{x}_{v}}{\left\|\vec{x}_{u}\right\|\left\|\vec{x}_{v}\right\|}=\frac{\tan u}{\sqrt{\sec u \sqrt{\sec u}}=\sin u \text {. } n=\sin }=
$$

$$
\theta=\frac{\pi}{2}-u
$$

(b) $[6 \mathbf{p t s}]$ Is the parametrization $\vec{X}(u, v)$ conformal, equiareal, both, or neither?

$$
\begin{aligned}
& \text { not conformal } \\
& \sqrt{\operatorname{det} g}=\sqrt{\sec ^{2} u-\tan ^{2} u}=\sqrt{1}=1 \\
& \text { equiareal }
\end{aligned}
$$

3. [24 points (8 pts each)] Find the principle curvatures of the given surface at the given point.
(a) The surface $z=4 x y+3 y^{2}$, with upward-pointing normal vectors, at the point $(0,0,0)$.

$$
\left.\left.\begin{array}{l}
\frac{\partial z}{\partial x}=4 y \quad \frac{\partial z}{\partial y}=4 x+6 y \quad(0,0) \text { is a } \\
\text { critical point }
\end{array}\right] \begin{array}{ll}
0 & 4 \\
4 & 6
\end{array}\right] \begin{aligned}
& \lambda_{1}+\lambda_{2}=6 \\
& \lambda_{1} \lambda_{2}=-16
\end{aligned} \begin{aligned}
& -2 \text { and } 8
\end{aligned}
$$

(b) The surface $r=3 z^{2}+2$, with outward-pointing normal vectors, at the point $(2,0,0)$.

$$
6,-1 / 2
$$

(c) The surface $(r-2)^{2}+z^{2}=2$, with outward-pointing normal vectors, at the point $(3,0,1)$.

$$
\begin{aligned}
& \vec{P}=(-1,0,0) \\
& \vec{N}=\frac{1}{\sqrt{2}}(1,0,1)
\end{aligned}
$$

$$
\vec{P} \cdot \vec{N}=-\frac{1}{\sqrt{2}}
$$

$$
-\frac{1}{\sqrt{2}} \text { and }-\frac{1}{3 \sqrt{2}}
$$

$$
\begin{aligned}
K_{n} & =K(\vec{P} \cdot \vec{N}) \\
& =\frac{1}{3}\left(-\frac{1}{\sqrt{2}}\right) \\
& =-\frac{1}{3 \sqrt{2}}
\end{aligned}
$$

4. [12 points)] Let S_{1} be the cone $z=\sqrt{x^{2}+y^{2}}$, let S_{2} be the cone $z=7 \sqrt{x^{2}+y^{2}}$, and let $f: S_{1} \rightarrow S_{2}$ be the map $f(x, y, z)=(2 x, 2 y, 14 z)$.
(a) $[6 \mathbf{p t s}]$ Find $d f_{p}(0,1,0)$ and $d f_{p}(1,0,1)$, where p is the point $(t, 0, t)$.

(b) [6 pts] Let \mathcal{R} be a region on S_{1} with area 4 . What is the area of the corresponding region $f(\mathcal{R})$ on S_{2} ?

$$
\begin{aligned}
\frac{\|(0,2,0) \times(2,0,14)\|}{\|(0,1,0) \times(1,0,1)\|} & =\frac{\|(0,2,0)\|\|(2,0,14)\|}{\|(0,1,0)\|\|(1,0,1)\|} \\
& =\frac{(2)(\sqrt{200})}{(1)(\sqrt{2})}=20
\end{aligned}
$$

$$
(20)(4)=80
$$

5. [14 points] Let C be the helix $\vec{x}(t)=(3 \cos t, 3 \sin t, 4 t)$.
(a) $[8 \mathrm{pts}]$ Find formulas for the Frenet vectors $\vec{T}(t), \vec{P}(t)$, and $\vec{B}(t)$.

$$
\begin{aligned}
& \vec{x}^{\prime}(t)=(-3 \sin t, 3 \cos t, 4) \quad s^{\prime}(t)=5 \\
& \vec{T}(t)=\left(-\frac{3}{5} \sin t, \frac{3}{5} \cos t, \frac{4}{5}\right) \\
& \frac{d \vec{T}}{d t}=s^{\prime} k \vec{P} \\
& \left(-\frac{3}{5} \cos t,-\frac{3}{5} \sin t, 0\right)=s^{\prime} k \vec{P} \\
& \vec{P}(t)=(-\cos t,-\sin t, 0) \\
& \vec{B}=\vec{T} \times \vec{P}=\frac{1}{5} \left\lvert\, \begin{array}{ccc}
\hat{\jmath} & \hat{\jmath} \sin t & 3 \cos t \\
-\cos t & -\sin t & 0
\end{array}\right. \\
& \vec{B}(t)=\left(\frac{4}{5} \sin t,-\frac{4}{5} \cos t, \frac{3}{5}\right)
\end{aligned}
$$

(b) [6 pts] Determine the curvature κ and torsion τ of this helix.

$$
\begin{aligned}
& s^{\prime} k=\frac{3}{5} \quad s^{\prime}=5, \text { so } k=\frac{3}{25} \\
& \frac{d \vec{B}}{d t}=-s^{\prime} T \vec{P} \\
& \hat{f} \\
& \left(\frac{4}{5} \cos t, \frac{4}{5} \sin t, 0\right) \quad-s^{\prime} T=-\frac{4}{5} \\
& T=\frac{4}{25}
\end{aligned}
$$

6. [12 points] Let C be the curve $z=e^{-x}(x>0)$ in the $x z$-plane, and let S be the surface obtained by rotating the curve C around the x-axis, oriented with normal vectors pointing outwards.

(a) [$\mathbf{6} \mathbf{~ p t s}$] Find the image of S under the Gauss map. Express your answer as one or more inequalities defining a region on the unit sphere.

$$
0<x<\frac{1}{\sqrt{2}}
$$

(b) [6 pts] Use your answer to part (a) to compute $\iint_{S} K d A$, where K is the Gaussian curvature of S.

$$
\begin{aligned}
& \text { area }=(2 \pi)\left(\frac{1}{\sqrt{2}}\right)=\pi \sqrt{2} \\
& \text { But } K \text { is negative, so }-\pi \sqrt{2}
\end{aligned}
$$

7. [14 points] A unit circle is rolling counterclockwise on the inside of the circle $x^{2}+y^{2}=9$. A point P lies on the perimeter of the rolling circle, with initial coordinates $(3,0)$. Find parametric equations for the curve produced by tracing the path of P.

$$
\vec{x}(t)=(2 \cos t+\cos 2 t, 2 \sin t-\sin 2 t)
$$

