Math 352

Final Exam

Name: SOLU-HON

1. [10 points] Let C be the plane curve y = e*. Find the Cartesian equation for the osculating
circle to C' at the point (0, 1).
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2. [14 points] Let X (u,v) be a surface parametrization (where 0 < u < 7/2), and suppose that
the corresponding first fundamental form is
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(a) [8 pts] Find a formula for the angle between the u and v coordinate lines at the point X (u, v).
Your final answer should not involve any trigonometric functions.
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(b) [6 pts] Is the parametrization X (u,v) conformal, equiareal, both, or neither?
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3. [24 points (8 pts each)] Find the principle curvatures of the given surface at the given point

(a) The surface z = 4xy + 3y?, with upward-pointing normal vectors, at the point (0, 0,0).
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(b) The surface r = 322 + 2, with outward-pointing normal vectors, at the point (2,0, 0).
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(c) The surface (r — 2)? + 22 = 2, with outward-pointing normal vectors, at the point (3,0, 1).
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4. [12 points)] Let S; be the cone z = /a2 + y?, let Sy be the cone z = 7/2? + y2, and let
f: 81— S, be the map f(z,y,z2) = (2x,2y, 142).

(a) [6 pts] Find df,(0,1,0) and df,(1,0, 1), where p is the point (¢,0,1).
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(b) [6 pts] Let R be a region on S; with area 4. What is the area of the corresponding region
f(R) on Sy?
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5. [14 points] Let C be the helix Z(t) = (3cost, 3sint, 4t).

(a) [8 pts] Find formulas for the Frenet vectors T'(t), P(t), and B(t).
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(b) [6 pts] Determine the curvature x and torsion 7 of this helix.
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6. [12 points] Let C be the curve z = e™* (x > 0) in the zz-plane, and let S be the surface obtained
by rotating the curve C' around the x-axis, oriented with normal vectors pointing outwards.

(a) [6 pts] Find the image of S under the Gauss map. Express your answer as one or more
inequalities defining a region on the unit sphere.
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(b) [6 pts] Use your answer to part (a) to compute / /s K dA, where K is the Gaussian curvature

of S.
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7. [14 points] A unit circle is rolling counterclockwise on the inside of the circle 22 + y* = 9. A
point P lies on the perimeter of the rolling circle, with initial coordinates (3,0). Find parametric
equations for the curve produced by tracing the path of P.
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