
Complex Dynamics

So far, we have learned about two main branches of dynamical systems:

1. One-dimensional dynamics is the study of dynamical systems whose state
spaces are subsets of the real line. This was the subject of chapters 1 and 3 in
the textbook.

2. Multidimensional dynamics is the study of dynamical systems whose state
spaces are subset of Rn for some n > 1. This was the subject of chapters 2
and 5 in the textbook.

However, there is a third major branch of dynamical systems that the book does not
discuss in much detail:

3. Complex dynamics is the study of dynamical systems whose state spaces are
subsets of the complex plane C (or more generally Cn for n ≥ 1).

Complex dynamics was one of the original motivations for the study of fractal geom-
etry, and it includes some of the most famous fractals in mathematics—the Julia sets
and the Mandelbrot set.

This first set of notes introduces some of the basic concepts in complex dynamics,
beginning with a brief review of complex numbers. Julia sets and the Mandelbrot set
will be covered in a later set of notes.

1. Complex Numbers

We assume some basic familiarity with the complex number system. Recall that a
complex number is a number of the form

a + bi,
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where a and b are real numbers, and i is a square root of −1. The set of all complex
numbers is denoted C.

If z is a complex number, we will let Re(z) denote the real part of z, and Im(z)
denote the imaginary part of z. For example,

Re(−3 + 4i) = −3 and Im(−3 + 4i) = 4.

Note then that
z = Re(z) + i Im(z)

for any complex number z.
The four operations of arithmetic extend to the complex numbers in a natural

way. For example, we can add any two complex numbers by collecting like terms:

(2 + 3i) + (6 + 2i) = 8 + 5i.

To multiply complex numbers, we use the distributive law, together with the rule
that i2 = −1:

(2 + 3i)(6 + 2i) = 12 + 4i+ 18i+ 6i2

= 12 + 4i+ 18i− 6

= 6 + 22i.

Division of complex numbers is slightly more difficult. Given a fraction,

2 + i

3 + 2i
,

we multiply the top and bottom by the complex conjugate of the denominator:

(2 + i)(3− 2i)

(3 + 2i)(3− 2i)
.

The denominator is now real, which allows us to simplify:

2 + i

3 + 2i
=

(2 + i)(3− 2i)

(3 + 2i)(3− 2i)
=

8− i
13

=
8

13
− 1

13
i.

Euler’s Formula

Using Taylor series, it is possible to extend many of the functions from calculus to
the complex numbers. We will concentrate on the exponential function:

Definition: Complex Exponential
The exponential function exp: C→ C is defined by the formula

exp(z) =
∞∑
n=0

zn

n!
= 1 + z +

1

2!
z2 +

1

3!
z3 +

1

4!
z4 + · · ·
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If z is a complex number, then exp(z) is sometimes denoted ez. Note, however,
that complex exponentiation is not defined in general. For example, expressions like
(−i)1/2 or (1 + i)1+i have no single, well-defined meaning.

The following theorem is one of the most famous in all of mathematics:

Theorem 1 Euler’s Formula

If θ ∈ R, then
eiθ = cos θ + i sin θ.

PROOF By the definition of the complex exponential, we have

eiθ = 1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
+

(iθ)7

7!
+ · · · .

Expanding the powers of i gives

eiθ = 1 + θi − θ2

2!
− θ3

3!
i +

θ4

4!
+
θ5

5!
i − θ6

6!
− θ7

7!
i + · · · .

Since θ is real, we conclude that

Re
(
eiθ
)

= 1 − θ2

2!
+
θ4

4!
− θ6

6!
+ · · · .

The series on the right is the Taylor series for cos θ, and therefore Re
(
eiθ
)

= cos θ.
Similarly,

Im
(
eiθ
)

= θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · · ,

which is the Taylor series for sin θ. �

When θ = π, Euler’s formula reduces to

eiπ = −1

This famous equation relating the constants e, i, and pi is known as Euler’s identity
or Euler’s magic formula.

The Complex Plane

In the same way that R can the thought of geometrically as the “real line”, we can
think of the complex numbers C as forming a complex plane. Any complex number
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(a) (b)

Figure 1: (a) The complex plane (b) The sum of complex numbers

a+bi corresponds to a point on this plane, namely the point with horizontal coordinate
a and vertical coordinate b, as shown in Figure 1a.

Using the complex plane, addition of complex numbers has the same geometric
meaning as addition of vectors in R2. Specifically, if z and z′ are complex numbers,
then the points 0, z, z′, and z + z′ form a parallelogram on the complex plane, as
shown in Figure 1b.

There is also a nice geometric interpretation of multiplication, but it requires
polar coordinates. As with points on the xy plane, we can represent any point on
the complex plane using polar coordinates (r, θ), where r is the distance to the origin
and θ is the angle from the positive real axis. For a complex number, the radius and
angle have special names:

Definition: Modulus and Argument
Let z be a complex number, corresponding to a point on the complex plane. Then:

1. The distance from z to the origin is called the modulus or absolute value
of z, and is denoted |z|.

2. The angle θ from z to the positive real axis is called the argument of z, and
is denoted arg(z).

The modulus and argument of complex number are illustrated in Figure 2a. By
the Pythagorean Theorem, the modulus of a complex number can be found by the
formula

|a+ bi| =
√
a2 + b2

and the argument can be found using trigonometry. Conversely, if the modulus and
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(a) (b)

Figure 2: (a) The modulus and argument of z (b) The geometric meaning of reiθ

argument of a complex number are known, then the rectangular coordinates of the
number are given by the formula

z = (r cos θ) + (r sin θ)i = reiθ

where r = |z| and θ = arg(z) (see Figure 2b). To summarize, we now have two ways
of representing a complex number:

1. In rectangular coordinates, every complex number can be expressed as a + bi,
where a, b ∈ R.

2. In polar coordinates, every complex number can be expressed as reiθ, where
r ∈ [0,∞) and θ ∈ [0, 2π).

The following theorem gives a geometric interpretation of complex multiplication
using polar coordinates:

Theorem 2 Multiplication in Polar Coordinates

If r, s ∈ [0,∞) and θ, φ ∈ R, then(
reiθ
)(
seiφ

)
= (rs)ei(θ+φ)

PROOF Though this may look obvious, we have not proven that ex+y = exey when
x and y are complex. Therefore, we must prove this formula using trigonometric
identities.
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Recall that

reiθ = (r cos θ) + (r sin θ) i and seiφ = (s cosφ) + (s sinφ) i.

Multiplying these gives(
reiθ
)(
seiφ

)
= rs(cos θ cosφ− sin θ sinφ) + rs(cos θ sinφ+ sin θ cosφ) i.

The terms in parentheses are the sum-of-angle formulas for cosine and sine. Thus,
the above formula simplifies to(

reiθ
)(
seiφ

)
= rs cos(θ + φ) + rs sin(θ + φ) i = (rs)ei(θ+φ). �

In terms of modulus and argument, the above formula theorem says that

|zw| = |z| |w| and arg(zw) = arg(z) + arg(w)

for any two complex numbers z and w.
Using induction, Theorem 2 can be extended to larger products and powers, yield-

ing the following formulas:(
r1e

iθ1
)
· · ·
(
rne

iθn
)

= (r1 · · · rn)ei(θ1+···+θn) and
(
reiθ
)n

= rneinθ.

EXAMPLE 1 Compute (1− i)6.
SOLUTION Observe that |1− i| =

√
12 + 12 =

√
2 and arg(1− i) = 3π/4. Then

(1− i)6 =
(√

2 ei(3π/4)
)6

=
(√

2
)6
ei(18π/4) = 23eiπ/2 = 8i. �

EXAMPLE 2 Find a complex number z for which z4 = −1.

SOLUTION Let z = reiθ. Then

z4 =
(
reiθ
)4

= r4ei(4θ).

Since −1 = eiπ, we need

r4 = 1 and 4θ ∼= π (mod 2π).

One possible solution is r = 1 and θ = π/4, so

z = eiπ/4 = cos
π

4
+ i sin

π

4
=

1 + i√
2
. �
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EXAMPLE 3 Multiple Angle Formulas
Suppose we wish to find trigonometric formulas for cos(3θ) and sin(3θ). This is fairly
easy using complex numbers. Observe that:

cos(3θ) + i sin(3θ) = ei(3θ) =
(
eiθ
)3

= (cos θ + i sin θ)3.

Expanding the expression on the right yields

cos(3θ) + i sin(3θ) = cos3 θ + i cos2 θ sin θ − cos θ sin2 θ − i sin3 θ

so

cos(3θ) = cos3 θ − cos θ sin2 θ and sin(3θ) = cos2 θ sin θ − sin3 θ.

For higher multiples of θ, we can combine this technique with the Binomial The-
orem to derive explicit formulas for cos(nθ) and sin(nθ). In general, the formulas are
finite sums of the following forms:

cos(nθ) = cosn θ −
(
n

2

)
cosn−2 θ sin2 θ +

(
n

4

)
cosn−4 θ sin4 θ − · · ·

sin(nθ) =

(
n

1

)
cosn−1 θ sin θ −

(
n

3

)
cosn−3 θ sin3 θ +

(
n

5

)
cosn−5 θ sin5 θ − · · · .

For example,

cos(5θ) = cos5 θ −
(

5

2

)
cos3 θ sin2 θ +

(
5

4

)
cos θ sin4 θ

= cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ �

Complex Polynomials

A complex polynomial is any polynomial whose coefficients are complex numbers.
For example, the function f : C→ C defined by

f(z) = (1 + i)z3 + 5z2 +

(
−1

2
+

√
3

2
i

)
z + (4i− 1)

is a complex polynomial of degree three.
For the following theorem, recall that a root of a complex polynomial f is a

complex number p for which f(p) = 0.
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Re

Im

Figure 3: The five 5th roots of unity.

Theorem 3 Fundamental Theorem of Algebra

Let f : C→ C be a complex polynomial of degree d > 0. Then f can be written
in the form

f(z) = a(z − r1)(z − r2) · · · (z − rd),

where a 6= 0 and r1, . . . , rd are complex constants. In particular, f has at least
one complex root.

EXAMPLE 4 Roots Of Unity
Consider the polynomial

f(z) = zn − 1

where n ∈ {2, 3, 4, . . .}. Any root of this polynomial must satisfy the equation

zn = 1.

That is, it must be an nth root of the number 1.
According to the Fundamental Theorem of Algebra, we can factor this polynomial

into linear factors
zn − 1 = (z − ω1)(z − ω2) · · · (z − ωn).

The corresponding roots ω1, . . . , ωn are called the nth roots of unity. In polar
coordinates, these roots can be written

ω1 = ei(2π/n), ω2 = ei(4π/n), . . . , ωk = ei(2kπ/n), . . . , ωn = 1.

Note that (
ei(2kπ/n)

)n
= ei(2kπ) = 1,

so these are in fact nth roots of 1. Geometrically, the roots ω1, . . . , ωn correspond to
n equally spaced points around the unit circle, as shown in Figure 3. �
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Re

Im

Re

Im

Figure 4: The image of a quarter-circle in the first quadrant under the map f(z) = z2.
The unit circle has been highlighted.

2. Complex Maps

A complex map is any continuous function from the complex plane to itself. If f is
a complex map, then we can iterate f to obtain a complex dynamical system.

EXAMPLE 5 Multiplication by a Constant
Let f : C→ C be the map f(z) = cz, where c is a complex constant. If we let c = aeiφ

and z = reθ, this map can be written

f
(
reiθ
)

= (ar)ei(θ+φ).

That is, f stretches the complex plane by a factor of a, and rotates the plane coun-
terclockwise through an angle of φ.

The map f always has a fixed point at 0. If a < 1, then this fixed point is
attracting, and every orbit spirals in towards the fixed point. If a > 1, then 0 is
repelling, and every orbit spirals out toward infinity. When a = 1, the map is simply
a rotation, with each orbit traveling along a circle centered at the origin. �

EXAMPLE 6 Complex Squaring
Let f : C→ C be the map f(z) = z2. In polar coordinates, this map can be written

f
(
reiθ
)

= r2ei(2θ).

That is, f squares the radius of any complex number, and doubles the angle.
The effect of f on the first quadrant is shown in Figure 4. Geometrically, f maps

the first quadrant onto the upper half plane, doubling the angles between radial lines.
The second quadrant would map onto the lower half plane, the third onto the upper
half plane again, and the fourth onto the lower half plane. �
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Complex Derivatives

We now define the derivative of a complex map:

Definition: Complex Derivative/Holomorphic Map
Let f : C→ C be a complex map. The derivative of f is the function f ′ : C→ C
defined by

f ′(z) = lim
h→0

f(z + h)− f(z)

h
,

where h is a complex number. If the derivative f ′(z) exists for all z ∈ C, then f is
said to be holomorphic.

This definition is algebraically identical to the standard definition of the deriva-
tive for a function of a real variable. As a result, all of the usual differentiation
rules—including the power rule, the product rule, and the chain rule—can be used
for holomorphic maps.

EXAMPLE 7 Let f : C→ C be the map

f(z) = iz2 + (3 + i)z + 5.

Then f is holomorphic, with

f ′(z) = 2iz + (3 + i).

More generally, any polynomial function f : C → C is holomorphic, with f ′ being a
polynomial of smaller degree. �

Recall that for a differentiable function f : R → R, the derivative f ′(x) can be
interpreted as the factor by which f stretches the line at the point x. This follows
from the formula

∆f ≈ f ′(x) ·∆x.
where ∆x is the difference between two points in the domain, and ∆f is the difference
between corresponding points in the range.

A similar formula holds for the derivative of a holomorphic function f : C → C.
Specifically, if ∆z is the difference between two points in the domain and ∆f is the
difference between the corresponding points in the range, then

∆f ≈ f ′(z) ·∆z.

In this case, however, multiplication by f ′(z) can both stretch and rotate the complex
plane. In particular, the modulus |f ′(z)| will be the “stretch factor” near z, while the
argument arg

(
f ′(z)

)
will be the “rotation factor”.
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Figure 5: The image of a letter J under the map f(z) = z2 + 1. Since the derivative
is 2i, the map stretches the J by a factor of 2 and rotates it 90◦ counterclockwise.

EXAMPLE 8 Geometric Meaning of the Derivative
Let f(z) = z2 + 1, and consider the behavior of this map near z = i. It is easy to
check that

f(i) = 0 and f ′(i) = 2i.

Since |f ′(i)| = 2i, the map f should have a “stretch factor” of 2 near the point i.
Moreover, since arg

(
f ′(i)

)
= π/2 = 90◦, the map f should have a “rotation factor”

of 90◦ near this point.
Figure 5 shows the effect of this map on a letter J drawn in the complex plane.

The first part of the figure shows the domain, with the letter J centered at the point i,
while the second part shows the image of the J under the map f . Since f(i) = 0, the
image of the letter J is centered at the origin. The size and orientation of the J is
determined by the derivative: the image has been stretched by a factor of two, and
has been rotated 90◦ counterclockwise. �

Stability and Chaos

Because |f ′(p)| represents the stretch factor of a holomorphic map, we get the follow-
ing test for the stability of a fixed point:

Theorem 4 Stability of Fixed Points

Let f : C→ C be a holomorphic map, and let p ∈ C be a fixed point for f .

1. If |f ′(p)| < 1, then p is a sink.

2. If |f ′(p)| > 1, then p is a source.
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EXAMPLE 9 Complex Fixed Points
Let f : C→ C be the function f(z) = iz2 + z + 2. We can find the fixed points for f
by solving the equation

iz2 + z + 2 = z.

This equation has two solutions, namely z = 1 + i and z = −1 − i, so each of these
is a fixed point for f .

To determine whether these are sources or sinks, we must find the derivative
f ′(z). Since the complex derivative is defined in essentially the same way as the real
derivative, all of the usual differentiation rules apply, and in particular

f ′(z) = 2iz + 1.

Then
|f ′(1 + i)| = | − 1 + 2i| =

√
5 > 1,

so 1 + i is a source. Similarly,

|f ′(−1− i)| = |3− 2i| =
√

13 > 1,

so −1− i is a source as well. �

Because the Chain Rule works the same way for holomorphic maps as it does for
one-dimensional maps, we get the following test for the stability of periodic cycles:

Theorem 5 Stability of Cycles

Let f : C→ C be a holomorphic map, and let p1, . . . , pn be a periodic cycle for f .

1. If |f ′(p1) · · · f ′(pn)| < 1, then {p1, . . . , pn} is a periodic sink.

2. If |f ′(p1) · · · f ′(pn)| > 1, then {p1, . . . , pn} is a periodic source.

More generally, we can define Lyapunov numbers for orbits in the complex plane:

Definition: Lyapunov Number
Let f : C → C be a holomorphic map. The Lyapunov number of an orbit
{p1, p2, p3, . . .} for f is the limit

L(p1) = lim
n→∞

|f ′(p1) · · · f ′(pn)|1/n.

If L(p1) > 1 and p1 is not pre-periodic, then the orbit of p1 is said to be chaotic.
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Exercises

1. Evaluate each of the following expressions. Write your answer in the form a+bi.

a)
1 + 2i

3− 5i
.

b) e2iπ/3.

c) (1− i)9.

2. Use Euler’s formula and the Binomial Theorem to find a formula for cos(7x).

3. Find all roots of the polynomial z6−1. Express your answers in the form a+bi.

4. Let f(z) = z2 + 15
32
i. Find and classify the fixed points of f as sources or sinks.

5. Find and classify the period-two orbit of the map f(z) = 1 + iz2.


