Exercises: Derivatives

1–3 ■ Use the definition of the derivative to find $f'(x_0)$ for the given function and the given value of x_0 .

1.
$$f(x) = 3x^2 + 2$$
, $x_0 = 2$

2.
$$f(x) = 1/x$$
, $x_0 = 3$

3.
$$f(x) = 2\sqrt{x}$$
, $x_0 = 25$

4. Use the definition of the derivative to find a general formula for f'(x) if $f(x) = 4x^2 + 1$.

5–12 ■ Use the power rule to compute the derivative of the given function.

5.
$$x^3$$

6.
$$\sqrt{x}$$

7.
$$\frac{1}{x}$$

8.
$$\frac{1}{x^2}$$

9.
$$\sqrt[3]{x}$$

10.
$$\frac{1}{\sqrt{x}}$$

11.
$$x^2 \sqrt{x}$$

12.
$$\sqrt[3]{x^2}$$

13–18 ■ Find the derivative of the given function.

13.
$$5x^4 - 3\sqrt{x} + 4$$

13.
$$5x^4 - 3\sqrt{x} + 4$$
 14. $\frac{x^2}{5} + 3e^x + \sin x$

15.
$$\frac{8}{r^5} + 6x - \sqrt{2}$$

15.
$$\frac{8}{x^5} + 6x - \sqrt{2}$$
 16. $x\sqrt{2} + x\sqrt[3]{x} + \cos(\pi/8)$

17.
$$e^2x^3 - 4\cos x$$

$$18. \ \frac{\tan x}{\pi} + \frac{2}{\sqrt{x}}$$

19. Find the equation of the tangent line to the graph of $y = x^3 - 6x + 8$ at the point (1,3).

20. Find the equation of the tangent line to the graph of $y = \sqrt[3]{x}$ at x = 8.

21. Find the equation of the tangent line to the graph of $y = 4 \sin x$ at $x = 5\pi/6$.

22. Find the equation of the tangent line to the graph of $y = e^x$

23–26 ■ Use the product rule to find the derivative of the given

23.
$$x^3 \sin x$$

24.
$$4x^2 + \sqrt{x} \tan x$$

25.
$$1 + 4e^x \cos x$$

26.
$$x \sin x \cos x$$

27–30 ■ Use the quotient rule to find the derivative of the given function. Simplify your answers.

27.
$$\frac{x^3}{x^2+1}$$

28.
$$\frac{2x}{1+\sqrt{x}}$$

29.
$$\frac{3\sin x + 1}{x - 1}$$

$$30. \ \frac{e^x}{1+\cos x}$$