Optimization

Extra Practice Problems

1. Engineers wish to construct a power transmission cable connecting two power substations on opposite sides of a river.

Underwater cable costs $\$ 5$ million $/ \mathrm{km}$, while cable on land costs $\$ 3$ million $/ \mathrm{km}$.
(a) Find a formula for the total cost of the cable as a function of the length x shown in the picture.
(b) Find the value of x that minimizes the total cost of the cable.
2. A closed box is to be made from a large sheet of cardboard by cutting out two squares and two rectangles, and then bending the sides and top into position.
(a) Find a formula for the volume of the resulting box as a function of the length x.
(b) Find the maximum possible volume of the box.

3. A heavy metal ball is placed into a tin can, and then liquid is added until the top of the ball is just barely covered. The can has a radius of 2 inches and the ball has a radius of r and a volume of $\frac{4}{3} \pi r^{3}$.
(a) Find a formula for the volume of liquid in the can as a function of r.
(b) Find the value of r that maximizes the volume of liquid.

4. At 12:00 noon, a boat departs from a small island and sails north with a speed of $20 \mathrm{~km} / \mathrm{h}$. At the same time, a second boat is 30 km due east of the island, and is sailing towards the island at a speed of $15 \mathrm{~km} / \mathrm{h}$.
(a) Let t be the time in hours after noon. Find a formula for the distance between the boats as a function of t.
(b) At what time are the two boats closest together?
5. A point P lies on the curve $y=\sqrt{x^{2}+x+1}$.
(a) Find a formula for the distance from P to origin as a function of the x-coordinate of P.
(b) Find the point on the curve $y=\sqrt{x^{2}+x+1}$ which is closest to the origin.
6. A piece of wire one meter long is cut into two parts.

The first part is bent into the shape of a rectangle whose length is equal to twice its width, while the second part is bent into the shape of a square.
(a) Find a formula for the total combined area of the two shapes as a function of x.
(b) Find the value of x that minimizes the total area.
7. A manufacturer wishes to design a closed cylindrical can that uses $600 \mathrm{~cm}^{2}$ worth of sheet metal.
(a) Find a formula for the volume of the can as a function of the radius r.
(b) Find the value of r that maximizes the volume of the can.

Solutions

1.

(a) The length of the underwater cable is $\sqrt{1+x^{2}}$, and the length of the land cable is $3-x$, so the total cost is

$$
5 \sqrt{1+x^{2}}+3(3-x) \text { million dollars }
$$

(b) We set the derivative equal to zero:

$$
5 \frac{1}{2 \sqrt{1+x^{2}}}(2 x)-3=0
$$

which simplifies to

$$
\frac{5 x}{\sqrt{1+x^{2}}}=3 .
$$

Squaring both sides yields

$$
\frac{25 x^{2}}{1+x^{2}}=9
$$

Solving for x yields $x=3 / 4 \mathrm{~km}$.
2.
(a) The box has a length of $4-x$, a width of $5-2 x$, and a height of x, so

$$
V=(4-x)(5-2 x) x=2 x^{3}-13 x^{2}+20 x
$$

(b) Setting the derivative equal to 0 gives $6 x^{2}-26 x+20=0$, and using the quadratic formula yields $x=1$ or $x=10 / 3$. But $x=10 / 3$ is impossible since the width would be negative, so the maximum volume must be when $x=1$ foot. Plugging this into our formula for volume above gives a maximum volume of 9 feet 3.
3.
(a) The liquid and the ball together have the shape of a cylinder with a radius of 2 inches and a height of $2 r$. This cylinder has a volume of $\pi(2)^{2}(2 r)=8 \pi r$. Since the ball has a volume of $\frac{4}{3} \pi r^{3}$, the liquid must have a volume of $8 \pi r-\frac{4}{3} \pi r^{3}$.
(b) Setting the derivative equal to zero gives the equation $8 \pi-4 \pi r^{2}=0$, and solving for r yields $r=\sqrt{2}$ inches.
4.
(a) The distance from the first boat to the island is $20 t$, and the distance from the second boat to the island is $30-15 t$. These distances make a right triangle whose hypotenuse is the distance between the two boats, so the distance is $\sqrt{\sqrt{(20 t)^{2}+(30-15 t)^{2}}}$.
(b) Setting the derivative equal to zero gives the equation

$$
\frac{2(20 t)(20)+2(30-15 t)(-15)}{2 \sqrt{(20 t)^{2}+(30-15 t)^{2}}}=0 .
$$

Multiplying through by the denominator yields

$$
2(20 t)(20)+2(30-15 t)(-15)=0
$$

Simplifying and solving for t yields $t=18 / 25$ hours after noon (around 12:43 pm).
5.
(a) The coordinates of the point P are $\left(x, \sqrt{x^{2}+x+1}\right)$, so the distance from P to the origin is

$$
\sqrt{x^{2}+\left(\sqrt{x^{2}+x+1}\right)^{2}}=\sqrt{2 x^{2}+x+1}
$$

(b) Setting the derivative equal to zero gives the equation

$$
\frac{4 x+1}{\sqrt{2 x^{2}+x+1}}=0 .
$$

Multiplying through by the denominator yields $4 x+1=0$, so $x=-1 / 4$. Thus the closest point on the curve to the origin is $\left(-\frac{1}{4}, \frac{\sqrt{13}}{4}\right)$.
6.
(a) The rectangle has length $x / 3$ and width $x / 6$, and thus has area $x^{2} / 18$. The other piece of wire has length $1-x$, which means the square has side length dfrac $1-x 4$ and area $\frac{(1-x)^{2}}{16}$. Thus the total area is $\frac{x^{2}}{18}+\frac{(x-1)^{2}}{16}$.
(b) Setting the derivative equal to zero gives

$$
\frac{x}{9}+\frac{x-1}{8}=0
$$

and solving yields $x=9 / 17$ meters.
7.
(a) Let h be the height of the can. The surface area is $2 \pi r^{2}+2 \pi r h$, so

$$
2 \pi r^{2}+2 \pi r h=600 .
$$

Solving for h gives $h=\frac{300-\pi r^{2}}{\pi r}$. Then

$$
V=\pi r^{2} h=\pi r^{2} \cdot \frac{300-\pi r^{2}}{\pi r}=300 r-\pi r^{3}
$$

(b) Setting the derivative equal to zero gives

$$
300-3 \pi r^{2}=0
$$

and solving yields $r=\frac{10}{\sqrt{\pi}} \mathrm{~cm}$.

