Antiderivatives

Study Guide

Problems in parentheses are for extra practice.

1. Antiderivatives and indefinite integrals

An antiderivative for a given function $f(x)$ is a function whose derivative is $f(x)$. For example,

$$
F(x)=\frac{1}{3} x^{3} \quad \text { is an antiderivative for } \quad f(x)=x^{2}
$$

Any two antiderivatives for the same function differ by a constant. Thus the most general antiderivative for the function $f(x)=x^{2}$ is

$$
F(x)=\frac{1}{3} x^{3}+C
$$

where C is an arbitrary constant. This is also known as an indefinite integral, and is written using the integral sign:

$$
\int x^{2} d x=\frac{1}{3} x^{3}+C
$$

Problems: 1-16 odd, (1-16 even)

2. Initial Value Problems

An initial value problem tells you the derivative of a function as well as one value, and asks you to find the function. For example, we might might be asked to find a function $f(x)$ so that

$$
f^{\prime}(x)=x^{2} \quad \text { and } \quad f(1)=2 .
$$

Here are the steps for solving this problem:

1. Since $f^{\prime}(x)=x^{2}$, we know that $f(x)=\frac{1}{3} x^{3}+C$ for some constant C.
2. Plugging in $x=1$ gives the equation $2=\frac{1}{3}(1)^{3}+C$, and solving for C yields $C=\frac{5}{3}$.

Thus $f(x)=\frac{1}{3} x^{3}+\frac{5}{3}$.
One variation on this kind of problem gives you the second derivative as well as two values of x. For example, suppose we are asked to find a function $f(x)$ so that

$$
f^{\prime \prime}(x)=3 x, \quad f(1)=4, \quad \text { and } \quad f(2)=6
$$

The steps to solving this are as follows:

1. Since $f^{\prime \prime}(x)=3 x$, we know that $f^{\prime}(x)=\frac{3}{2} x^{2}+C$ for some constant C, so $f(x)=\frac{1}{2} x^{3}+C x+D$ for some constant D.
2. Plugging in $x=1$ and $x=2$ gives two equations:

$$
4=\frac{1}{2}+C+D \quad \text { and } \quad 6=4+2 C+D
$$

and solving gives $C=-\frac{3}{2}$ and $D=5$.
Thus $f(x)=\frac{1}{2} x^{3}-\frac{3}{2} x+5$.
Problems: 17-22 odd, (17-22 even)

Exercises: Antiderivatives

1-6 ■ Find the most general form of the antiderivative for the given function.

1. $f(x)=6 x^{2}+2$
2. $f(x)=8 x^{3}-\frac{x}{3}$
3. $f(x)=4 \sin x$
4. $f(x)=3 \cos x+\frac{1}{1+x^{2}}$
5. $f(x)=3 \sqrt{x}+x^{-2}$
6. $f(x)=e^{3 x}+4 \sin (2 x)$

7-10 ■ Evaluate the given indefinite integral.
7. $\int\left(5 x^{2}+1\right) d x$
8. $\int \frac{1}{\sqrt{x}} d x$
9. $\int \csc x \cot x d x$
10. $\int \frac{1}{e^{x}} d x$
11. Find the most general antiderivative for $x \cos \left(x^{2}\right)$.
12. Find the most general antiderivative for $x^{2} \cos x+2 x \sin x$.
13. Find the most general antiderivative for $\sin ^{2} x \cos x$. (Hint: Use a power of $\sin x$.)
14. Find the most general antiderivative for $\frac{3 x^{2}}{1+x^{6}}$. (Hint: Use the inverse tangent.)
15. Given that $f^{\prime}(x)=\sqrt[3]{x}$, find the value of $f(8)-f(1)$.
16. If $g(x)$ and $h(x)$ are differentiable functions, find the most general antiderivative of the function

$$
f(x)=g^{\prime}(h(x)) h^{\prime}(x)+3 g(x)^{2} g^{\prime}(x) .
$$

17-22 ■ Find a function $f(x)$ that satisfies the given conditions.
17. $f^{\prime}(x)=6 x^{2}+3 x$ and $f(0)=5$.
18. $f^{\prime}(x)=\cos (2 x)+\sec ^{2} x$ and $f(\pi / 4)=2$.
19. $f^{\prime}(x)=e^{x}+e^{2 x}$ and $f(\ln 4)=15$.
20. $f^{\prime \prime}(x)=3 x, f^{\prime}(0)=2$, and $f(1)=4$.
21. $f^{\prime \prime}(x)=-2, f(1)=4$, and $f(3)=2$.
22. $f^{\prime \prime}(x)=\frac{3}{\sqrt{x}}, f(1)=8$, and $f(4)=45$.

Answers to the Exercises

1. $2 x^{3}+2 x+C$
2. $2 x^{4}-\frac{x^{2}}{6}+C$
3. $-4 \cos x+C$
4. $3 \sin x+\tan ^{-1} x+C$
5. $2 x^{3 / 2}-x^{-1}+C$
6. $\frac{1}{3} e^{3 x}-2 \cos (2 x)+C$
7. $\frac{5}{3} x^{3}+x+C$
8. $2 \sqrt{x}+C$
9. $-\csc x+C$
10. $-e^{-x}+C$
11. $\frac{1}{2} \sin \left(x^{2}\right)+C$
12. $x^{2} \sin x+C$
13. $\frac{1}{3} \sin ^{3} x+C$
14. $\tan ^{-1}\left(x^{3}\right)+C$
15. $\frac{45}{4}$
16. $g(h(x))+g(x)^{3}+C$
17. $2 x^{3}+\frac{3}{2} x^{2}+5$
18. $\frac{1}{2} \sin (2 x)+\tan x+\frac{1}{2}$
19. $e^{x}+\frac{1}{2} e^{2 x}+3$
20. $\frac{1}{2} x^{3}+2 x+\frac{3}{2}$
21. $-x^{2}+3 x+2$
22. $4 x^{3 / 2}+3 x+1$
