Antiderivatives

Study Guide

Problems in parentheses are for extra practice.

1. Antiderivatives and indefinite integrals

An **antiderivative** for a given function f(x) is a function whose derivative is f(x). For example,

$$F(x) = \frac{1}{3}x^3$$
 is an antiderivative for $f(x) = x^2$.

Any two antiderivatives for the same function differ by a constant. Thus the most general antiderivative for the function $f(x) = x^2$ is

$$F(x) = \frac{1}{3}x^3 + C$$

where C is an arbitrary constant. This is also known as an **indefinite integral**, and is written using the integral sign:

$$\int x^2 dx = \frac{1}{3}x^3 + C$$

Problems: 1–16 odd, (1–16 even)

2. Initial Value Problems

An initial value problem tells you the derivative of a function as well as one value, and asks you to find the function. For example, we might might be asked to find a function f(x) so that

$$f'(x) = x^2$$
 and $f(1) = 2$

Here are the steps for solving this problem:

- 1. Since $f'(x) = x^2$, we know that $f(x) = \frac{1}{3}x^3 + C$ for some constant C.
- 2. Plugging in x = 1 gives the equation $2 = \frac{1}{3}(1)^3 + C$, and solving for C yields $C = \frac{5}{3}$.

Thus $f(x) = \frac{1}{3}x^3 + \frac{5}{3}$.

One variation on this kind of problem gives you the *second* derivative as well as two values of x. For example, suppose we are asked to find a function f(x) so that

f''(x) = 3x, f(1) = 4, and f(2) = 6.

The steps to solving this are as follows:

- 1. Since f''(x) = 3x, we know that $f'(x) = \frac{3}{2}x^2 + C$ for some constant C, so $f(x) = \frac{1}{2}x^3 + Cx + D$ for some constant D.
- 2. Plugging in x = 1 and x = 2 gives two equations:

$$4 = \frac{1}{2} + C + D$$
 and $6 = 4 + 2C + D$

and solving gives $C = -\frac{3}{2}$ and D = 5.

Thus $f(x) = \frac{1}{2}x^3 - \frac{3}{2}x + 5.$

Problems: 17–22 odd, (17–22 even)

Exercises: Antiderivatives

1–6 Find the most general form of the antiderivative for the given function.

- **1.** $f(x) = 6x^2 + 2$ **2.** $f(x) = 8x^3 \frac{x}{3}$
- **3.** $f(x) = 4 \sin x$ **4.** $f(x) = 3 \cos x + \frac{1}{1+x^2}$

5.
$$f(x) = 3\sqrt{x} + x^{-2}$$
 6. $f(x) = e^{3x} + 4\sin(2x)$

7–10 ■ Evaluate the given indefinite integral.

- **7.** $\int (5x^2 + 1) dx$ **8.** $\int \frac{1}{\sqrt{x}} dx$ **9.** $\int \csc x \cot x dx$ **10.** $\int \frac{1}{e^x} dx$
- **11.** Find the most general antiderivative for $x \cos(x^2)$.
- **12.** Find the most general antiderivative for $x^2 \cos x + 2x \sin x$.
- **13.** Find the most general antiderivative for $\sin^2 x \cos x$. (*Hint:* Use a power of $\sin x$.)

- 14. Find the most general antiderivative for $\frac{3x^2}{1+x^6}$. (*Hint:* Use the inverse tangent.)
- **15.** Given that $f'(x) = \sqrt[3]{x}$, find the value of f(8) f(1).
- **16.** If g(x) and h(x) are differentiable functions, find the most general antiderivative of the function

$$f(x) = g'(h(x))h'(x) + 3g(x)^2g'(x)$$

17–22 Find a function f(x) that satisfies the given conditions.

17.
$$f'(x) = 6x^2 + 3x$$
 and $f(0) = 5$.
18. $f'(x) = \cos(2x) + \sec^2 x$ and $f(\pi/4) = 2$.
19. $f'(x) = e^x + e^{2x}$ and $f(\ln 4) = 15$.
20. $f''(x) = 3x$, $f'(0) = 2$, and $f(1) = 4$.
21. $f''(x) = -2$, $f(1) = 4$, and $f(3) = 2$.
22. $f''(x) = \frac{3}{\sqrt{x}}$, $f(1) = 8$, and $f(4) = 45$.

Answers to the Exercises

1.
$$2x^{3} + 2x + C$$
 2. $2x^{4} - \frac{x^{2}}{6} + C$ 3. $-4\cos x + C$ 4. $3\sin x + \tan^{-1} x + C$
5. $2x^{3/2} - x^{-1} + C$ 6. $\frac{1}{3}e^{3x} - 2\cos(2x) + C$ 7. $\frac{5}{3}x^{3} + x + C$ 8. $2\sqrt{x} + C$ 9. $-\csc x + C$
10. $-e^{-x} + C$ 11. $\frac{1}{2}\sin(x^{2}) + C$ 12. $x^{2}\sin x + C$ 13. $\frac{1}{3}\sin^{3} x + C$ 14. $\tan^{-1}(x^{3}) + C$
15. $\frac{45}{4}$ 16. $g(h(x)) + g(x)^{3} + C$ 17. $2x^{3} + \frac{3}{2}x^{2} + 5$ 18. $\frac{1}{2}\sin(2x) + \tan x + \frac{1}{2}$
19. $e^{x} + \frac{1}{2}e^{2x} + 3$ 20. $\frac{1}{2}x^{3} + 2x + \frac{3}{2}$ 21. $-x^{2} + 3x + 2$ 22. $4x^{3/2} + 3x + 1$