L'Hôpital's Rule
 Study Guide

Problems in parentheses are for extra practice.

1. The Basic Rule

If the limit of a fraction

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

has the form $0 / 0$ or ∞ / ∞, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

For example:

$$
\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\sin (5 x)}=\lim _{x \rightarrow 0} \frac{3 \cos (3 x)}{5 \cos (5 x)}=\frac{3}{5} .
$$

Note that the ∞ / ∞ case also includes situations where the numerator and/or denominator approaches $-\infty$.
Sometimes it is necessary to apply L'Hôpital's rule more than once. For example:

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{e^{x}-1-x}=\lim _{x \rightarrow 0} \frac{\sin x}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{\cos x}{e^{x}}=\frac{1}{1}=1 .
$$

Problems: Section 4.5 \# 7, 13, 15, (21), (45)

2. Limits of the form $0 \cdot \infty$

Products of the form $0 \cdot \infty$ are also indeterminate. The usual method of handling them is to change to a fraction using

$$
f(x) g(x)=\frac{f(x)}{g(x)^{-1}} \quad \text { or } \quad f(x) g(x)=\frac{g(x)}{f(x)^{-1}}
$$

and then use L'Hôpital's rule. For example:

$$
\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-1}}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-x^{-2}}=\lim _{x \rightarrow 0^{+}}-x=0 .
$$

Problems: Section 4.5 \# 25, 63, (65)

3. Limits of the form $\infty-\infty$

A difference of the form $\infty-\infty$ (or a sum of the form $-\infty+\infty$) is also indeterminate. Usually you can handle such a limit by first rearranging it using algebra.
Problems: Section 4.5 \# 37, 41

4. Indeterminate Powers

Powers of the form $0^{0}, \infty^{0}$, and 1^{∞} are also indeterminate. To find the limit of such a power, use the identity

$$
a^{b}=e^{b \ln a}
$$

and then find the limit of the exponent. For example, the limit

$$
\lim _{x \rightarrow \infty} x^{1 / x}
$$

has type ∞^{0}. Using the identity $a^{b}=e^{b \ln a}$, we see that $x^{1 / x}=e^{\ln (x) / x}$. Since

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0
$$

we see that

$$
\lim _{x \rightarrow \infty} x^{1 / x}=\lim _{x \rightarrow \infty} e^{\ln (x) / x}=e^{0}=1
$$

Problems: Section 4.5 \# 51, (53), 59

