Limits
Study Guide

Problems listed in parentheses are for extra practice.

1. Limits by Factoring
Sometimes you can find a limit by factoring the numerator and/or denominator. For example:
\[
\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} x + 3 = 6.
\]

Problems: Section 2.2 # 23, 25, (27), (29)

2. Conjugate Expressions
When taking the limit of an expression whose numerator or denominator includes a square root, it often helps to multiply through by the conjugate of the radical expression. For example:
\[
\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} = \lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} \cdot \frac{\sqrt{x} + 3}{\sqrt{x} + 3} = \lim_{x \to 9} \frac{x - 9}{(x - 9)(\sqrt{x} + 3)} = \lim_{x \to 9} \frac{1}{\sqrt{x} + 3} = \frac{1}{6}
\]

Problems: Section 2.2 # 37, 39, (41)

3. Limit Laws
You should understand the limit laws listed in Theorem 1 (pg. 66) and used in Example 5.
Problems: Section 2.2 # 51, 53, (55)

4. Sandwich Theorem
The sandwich theorem says that if \(f, g, \) and \(h \) are three functions and
\[
f(x) \leq g(x) \leq h(x)
\]
for all values of \(x \) close to \(a \), and
\[
\lim_{x \to a} f(x) = L \quad \text{and} \quad \lim_{x \to a} h(x) = L
\]
for some number \(L \), then we can conclude that
\[
\lim_{x \to a} g(x) = L.
\]
Problems: Section 2.2 # 63, (65a)
5. One-Sided Limits

The expressions
\[\lim_{x \to a^-} f(x) \quad \text{and} \quad \lim_{x \to a^+} f(x) \]
are one-sided limits. The first means the limit as \(x \) approaches \(a \) from the left, and the second is the limit as \(x \) approaches \(a \) from the right. The limit
\[\lim_{x \to a} f(x) \]
only exists if both one-sided limits exist and are equal.

Problems: Section 2.2 # 1, 5 and Section 2.4 # (1), 3, 5, (7), 19, 21