Trigonometry

Study Guide

1. Angles

We measure angles counterclockwise from the positive x-axis.

We almost always use radians instead of degrees in calculus. The conversion is:

$\pi ext{ radians} = 180^{\circ}$

In particular,

$$\frac{\pi}{6} = 30^{\circ}, \qquad \frac{\pi}{4} = 45^{\circ}, \qquad \frac{\pi}{3} = 60^{\circ}, \qquad \frac{\pi}{2} = 90^{\circ}.$$

Negative angles are clockwise from 0. For example, $-\frac{\pi}{2}$ is the same as $\frac{3\pi}{2}$.

2. Trigonometric Functions

If (x, y) is a point on the unit circle at an angle of θ , then

$$\cos \theta = x$$
 and $\sin \theta = y$.

For example, the point (0,1) is at an angle of $\pi/2$, so

$$\cos\left(\frac{\pi}{2}\right) = 0$$
 and $\sin\left(\frac{\pi}{2}\right) = 1.$

The other four trig functions are defined in terms of cosine and sine:

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \sec \theta = \frac{1}{\cos \theta} \qquad \csc \theta = \frac{1}{\sin \theta} \qquad \cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$$

3. Multiples of $\pi/4$

Points at certain multiples of $\frac{\pi}{4}$ have coordinates that $\pm \frac{\sqrt{2}}{2}$.

For example, $\cos\left(\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2}$ and $\sin\left(\frac{7\pi}{4}\right) = -\frac{\sqrt{2}}{2}$

4. Multiples of $\pi/6$

Points at certain multiples of $\frac{\pi}{6}$ and $\frac{\pi}{3}$ have one coordinate which is $\pm \frac{1}{2}$ and one coordinate which is $\pm \frac{\sqrt{3}}{2}$.

Note that $\frac{\sqrt{3}}{2}$ is bigger than $\frac{1}{2}$, which helps you tell which coordinate is which.

5. Computing Values

Suppose you need to compute a value like $\tan\left(\frac{5\pi}{6}\right)$. The first step is to draw a unit circle and remember where $5\pi/6$ is:

Next we figure out the coordinates of the point labeled $5\pi/6$. It looks like the x-coordinate is negative and bigger than the y-coordinate, so

$$\cos\left(\frac{5\pi}{6}\right) = x = -\frac{\sqrt{3}}{2} \quad \text{and} \quad \sin\left(\frac{5\pi}{6}\right) = y = \frac{1}{2}.$$
$$\tan\left(\frac{5\pi}{6}\right) = \frac{\sin(5\pi/6)}{\cos(5\pi/6)} = \frac{1/2}{-\sqrt{3}/2} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}.$$

6. Exercises

Then

Use this technique to compute the following values. **Do not use a calculator**, and try drawing your own unit circles instead of referring to the ones above. The answers are on the next page.

1.
$$\cos(0)$$
 2. $\cos\left(\frac{\pi}{2}\right)$ 3. $\sin\left(\frac{3\pi}{2}\right)$ 4. $\sec(\pi)$ 5. $\cot\left(-\frac{\pi}{2}\right)$ 6. $\tan\left(\frac{\pi}{2}\right)$
7. $\cos\left(\frac{\pi}{4}\right)$ 8. $\sin\left(\frac{\pi}{3}\right)$ 9. $\tan\left(\frac{\pi}{3}\right)$ 10. $\sec\left(\frac{\pi}{6}\right)$ 11. $\csc\left(\frac{\pi}{4}\right)$ 12. $\cot\left(\frac{\pi}{6}\right)$
13. $\cos\left(\frac{3\pi}{4}\right)$ 14. $\sin\left(\frac{2\pi}{3}\right)$ 15. $\sin\left(-\frac{\pi}{4}\right)$ 16. $\sin\left(\frac{5\pi}{6}\right)$ 17. $\sin\left(\frac{7\pi}{4}\right)$ 18. $\cos\left(\frac{4\pi}{3}\right)$
19. $\tan\left(-\frac{\pi}{3}\right)$ 20. $\csc\left(-\frac{2\pi}{3}\right)$ 21. $\sec\left(\frac{7\pi}{4}\right)$ 22. $\csc\left(\frac{11\pi}{6}\right)$ 23. $\sec\left(\frac{2\pi}{3}\right)$ 24. $\cot\left(-\frac{3\pi}{4}\right)$

7. Answers

1. 1 2. 0 3. -1 4. -1 5. 0 6. undefined
7.
$$\frac{\sqrt{2}}{2}$$
 8. $\frac{\sqrt{3}}{2}$ 9. $\sqrt{3}$ 10. $\frac{2\sqrt{3}}{3}$ 11. $\sqrt{2}$ 12. $\sqrt{3}$
13. $-\frac{\sqrt{2}}{2}$ 14. $\frac{\sqrt{3}}{2}$ 15. $-\frac{\sqrt{2}}{2}$ 16. $\frac{1}{2}$ 17. $-\frac{\sqrt{2}}{2}$ 18. $-\frac{1}{2}$
19. $-\sqrt{3}$ 20. $-\frac{2\sqrt{3}}{3}$ 21. $\sqrt{2}$ 22. -2 23. -2 24. 1