
Banach Spaces

These notes provide an introduction to Banach spaces, which are complete normed
vector spaces. For the purposes of these notes, all vector spaces are assumed to be
over the real numbers.

Complete Metric Spaces

Notions such as convergent sequence and Cauchy sequence make sense for any metric
space.

Definition: Cauchy Sequence, Convergent Sequence
Let X be a metric space, and let {xn} be a sequence of points in X.

1. We say that {xn} is a Cauchy sequence if for every ε > 0, there exists an
N ∈ N so that

i, j ≥ N ⇒ d(xi, xj) < ε.

2. We say that {xn} converges to a point x ∈ X if

lim
n→∞

d(xn, x) = 0.

Proposition 1 Convergent Sequences are Cauchy

If X is a normed vector space, then every convergent sequence in X is a Cauchy
sequence.

PROOF Let {xn} be a sequence that converges to some point x ∈ X, and let ε > 0.
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Since (.xn, x)→ 0, there exists an N ∈ N so that

n ≥ N ⇒ d(xn, x) <
ε

2
.

If i, j ≥ N it follows that

d(xi, xj) ≤ d(xi, x) + d(xj, x) <
ε

2
+
ε

2
= ε,

which proves that {xn} is a Cauchy sequence. �

Though every convergent sequence is Cauchy, it is not necessarily the case that
every Cauchy sequence in a metric space converges. For example, let Q be the metric
space of all rational numbers under the usual metric:

d(q1, q2) = |q1 − q2|.

Then there are many Cauchy sequences in Q that do not converge to any point in Q.
For example, the sequence

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . .

is a Cauchy sequence in Q, but it does not converge to any point in Q.

Definition: Complete Metric Space
A metric space X is said to be complete if every Cauchy sequence in X converges
to a point in X.

For example, the metric space R of real numbers is complete, since every Cauchy
sequence in R converges. More generally, Rn is a complete metric space under the
usual metric for all n ∈ N.

Of course, any normed vector space V is naturally a metric space, with metric
defined by

d(v,w) = ‖v −w‖.

Thus it makes sense to talk about convergent sequences and Cauchy sequences in a
normed metric space. Specifically, if {vn} a sequence of vectors in V , then {vn} is
Cauchy if for every ε > 0 there exists an N ∈ N so that

i, j ≥ N ⇒ ‖vi − vj‖ < ε,

and {vn} converges to a vector v ∈ V if ‖vn − v‖ → 0 as n→∞.
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Definition: Banach Space
A normed vector space V is called a Banach space if every Cauchy sequence in V
converges.

That is, a Banach space is a complete normed vector space. It is not hard to
prove that any finite-dimensional normed vector space is a Banach space (see the
appendix at the end of these notes), so completeness is really only an issue for infinite-
dimensional spaces.

Infinite-Dimensional Vector Spaces

A vector space V is said to be infinite-dimensional if V does not have any finite
basis. Perhaps the simplest example of an infinite-dimensional vector space is the
space Rω consisting of all infinite sequences of real numbers:

Rω = {(v1, v2, v3, . . .) | v1, v2, v3, . . . ∈ R}.

Unfortunately, there is not an obvious way to put a norm on Rω. In particular, the
formula

‖(v1, v2, v3, . . . , )‖ =

√√√√ ∞∑
n=1

v2n

does not define a norm, since the sum on the right may diverge. For example,

‖(1, 1, 1, . . .)‖ =
√

12 + 12 + 12 + · · · = ∞.

If we want an infinite-dimensional normed space, we must restrict to a subspace of Rω.
The following example discusses one such subspace.

EXAMPLE 1 The Space R∞
Consider the follows subset of Rω:

R∞ =
{

(v1, v2, v3, . . .) ∈ Rω
∣∣ vn = 0 for all but finitely many n

}
.

Note that R∞ is closed under addition and scalar multiplication, and is therefore a
linear subspace of Rω. Moreover, the function

‖(v1, v2, v3, . . . , )‖ =

√√√√ ∞∑
n=1

v2n

is a valid norm on R∞, since the sum on the right only ever has finitely many nonzero
terms.
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Unfortunately, R∞ is not a Banach space. For example, let {vn} be the following
sequence of vectors in R∞:

v1 = (1, 0, 0, 0, . . .), v2 =
(
1, 1

2
, 0, 0, 0, . . .

)
, v3 =

(
1, 1

2
, 1
3
, 0, 0, 0, . . .

)
, . . .

Let v =
(
1, 1

2
, 1
3
, 1
4
, . . .

)
. Then

lim
n→∞

‖vn − v‖ = lim
n→∞

√√√√ ∞∑
k=n+1

1

k2
= 0,

so vn → v in Rω. It follows that {vn} is a Cauchy sequence. However, the vector v
does not lie in R∞, so {vn} is a Cauchy sequence in R∞ that does not converge to
any point in R∞. �

If we want a Banach space of sequences, we must include at least some sequences
with infinitely many nonzero terms.

Theorem 2 `2 is a Banach Space

The set

`2 =

{
(v1, v2, v3, . . .) ∈ Rω

∣∣∣∣∣
∞∑
n=1

v2n <∞

}
forms a Banach space under the norm

‖(v1, v2, v3, . . .)‖ =

√√√√ ∞∑
n=1

v2n.

PROOF Since `2 = L2(N), it is closed under addition and scalar multiplication,
and every Cauchy sequence in `2 converges by the Lp completeness theorem. �

By the way, it is not hard to show that every point in `2 is the limit of a sequence
of points in R∞. Thus R∞ sits inside of `2 in roughly the same way that the rational
numbers sit inside the real numbers. In the language of metric spaces, `2 is the metric
completion of R∞.

Of course, the above theorem can be generalized to any p ∈ [1,∞].
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Theorem 3 `p is a Banach Space

For any p ∈ [1,∞], the vector space `p is a Banach space with respect to the
p-norm.

Function Spaces

A function space is a vector space whose “vectors” are functions. For example,
the set RR of all functions R → R forms a vector space, with addition and scalar
multiplication defined by

(f + g)(x) = f(x) + g(x) and (λf)(x) = λ f(x).

Again, there is not an obvious choice for a norm on RR, essentially because RR is too
large a space. However, if we restrict our functions a bit we can define normed vector
spaces.

EXAMPLE 2 The Space C([−1, 1]).
Let C([−1, 1]) denote the space of all continuous functions [−1, 1] → R. Note that
this is a vector space, since the sum of continuous functions is continuous, and any
scalar multiple of a continuous function is continuous. We can define a norm on
C([−1, 1]) by the formula

‖f‖ =

∫ 1

−1
|f(x)| dx.

Note that this integral is always finite, since every continuous function on [−1, 1] is
bounded.

Unfortunately, C([−1, 1]) is not a Banach space with respect to this norm. For
example let {fn} be the sequence of functions defined by

fn(x) =


−1 if x ∈

[
−1,− 1

n

]
,

nx if x ∈
[
− 1
n
, 1
n

]
1 if x ∈

[
1
n
, 1
]
.

Note that each fn is continuous. Furthermore, it is easy to check that

‖fi − fj‖ =

∣∣∣∣1i − 1

j

∣∣∣∣
for all i, j ∈ N, so {fn} is a Cauchy sequence. However, {fn} does not converge
(in L1) to any continuous function f : [−1, 1]→ R. �
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The trouble here is that sequences of continuous functions can converge to dis-
continuous functions, so the space of all continuous functions is not complete.

We can use the Lebesgue integral to define something like a complete function
space, but it is a bit tricky. Given a measure space (X,µ), one obvious candidate is
the space

L1(X)

of all L1 functions on X, under the L1 norm. Unfortunately, this space L1(X) is not
a normed vector space. The trouble is that a normed vector space V must satisfy

‖v‖ = 0 ⇒ v = 0

for all v ∈ V , but the space L1(X) only satisfies

‖f‖1 = 0 ⇒ f = 0 almost everywhere.

To fix this problem, we must consider a function f to be equal to the zero if f = 0
almost everywhere. Indeed, we must relax our notion of equality so that f and g are
considered equal if f = g almost everywhere.

Definition: L1-Space
If (X,µ) is a measure space, the corresponding L1-space, denoted L1(X), is the
space of all L1 functions X → R, where two functions are considered the same if
they are equal almost everywhere.

Formally speaking, each element of L1(X) is an equivalence class of L1 functions
on X, where two functions f and g are considered equivalent if f = g almost every-
where (often abbreviated f = g a.e.). Note that addition and scalar multiplication
are well-defined on L1(X), since

f1 = f2 a.e. and g1 = g2 a.e. ⇒ f1 + g1 = f2 + g2 a.e..

and
f1 = f2 a.e. ⇒ λf1 = λf2 a.e.

for all λ ∈ R. From an algebraic point of view, L1(X) is simply the quotient L1(X)/N ,
where L1(X) is the vector space of all L1 functions on X and N is the linear subspace
of L1(X) consisting of all functions that are equal to zero almost everywhere.

Theorem 4 L1(X) is a Banach space

If (X,µ) is a measure space, then L1(X) is a Banach space under the L1 norm.
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PROOF This follows immediately from the L1 completeness theorem. �

In the case of Lebesgue measure, the space L1(X) can be viewed as the metric
completion of the space of continuous functions.

Theorem 5 Density of Continuous Functions

For any f ∈ L1(R), there exists a sequence of continuous functions fn : R → R
so that fn → f in L1.

PROOF See Homework 7, problem 2. �

It follows that L1([a, b]) is the metric completion of C([a, b]) under the L1 norm
for any closed interval [a, b] ⊆ R. From this point of view, the Riemann integral

R(f) =

∫ b

a

f(x) dx

can be thought of as a continuous function R : C([a, b]) → R, and the Lebesgue
integral

L(f) =

∫
[a,b]

f dµ

is simply the continuous extension L : L1([a, b])→ R of R to all of L1([a, b]).
Of course, we can generalize all of these results from L1-space to Lp-space.

Definition: Lp-Space
If (X,µ) is a measure space and p ∈ [1,∞], the corresponding Lp-space, denoted
Lp(X), is the space of all Lp functions X → R, where two functions are considered
the same if they are equal almost everywhere.

Theorem 6 Lp(X) is a Banach space

If (X,µ) is a measure space and p ∈ [1,∞], then Lp(X) is a Banach space under
the Lp norm.

By the way, there is one Lp norm under which the space C([a, b]) of continuous
functions is complete.
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Theorem 7 L∞ Completeness of C([a, b])

For each closed interval [a, b] ⊂ R, the vector space C([a, b]) under the L∞-norm
is a Banach space.

PROOF Let [a, b] ⊂ R be a closed interval. Note first that

‖f‖∞ = max
{
|f(x)|

∣∣ x ∈ [a, b]
}

for any continuous function f : [a, b] → R. In particular, if f and g are continuous,
then ‖f − g‖∞ < ε if and only if |f − g| < ε.

Let {fn} be a Cauchy sequence in C([a, b]) under the L∞-norm. Then for every
ε > 0, there exists an N ∈ N so that

i, j ≥ N ⇒ |fi − fj| < ε.

It follows that {fn(x)} is a Cauchy sequence for each x ∈ [a, b], so {fn} converges
pointwise to some function f : [a, b]→ R.

We claim that {fn} converges uniformly to f . To prove this, let ε > 0, and let
N ∈ N so that

i, j ≥ N ⇒ |fi − fj| < ε.

If n ≥ N and x ∈ [a, b], then we know that |fn(x) − fj(x)| < ε for all j ≥ N , and
it follows that |fn(x) − f(x)| ≤ ε. We conclude that |fn − f | ≤ ε for all n ≥ N ,
which proves that fn → f uniformly. Then f must be continuous by the uniform
limit theorem, and fn → f in L∞. �

Sums in Banach Spaces

A norm on a vector space makes it possible to define infinite series of vectors.

Definition: Infinite Series of Vectors
Let V be a normed vector space, and let {vn} be a sequence in V . We say that the
series

∞∑
n=1

vn

converges in V if the sequence sn =
∑n

k=1 vk of partial sums converges to some
point s ∈ V . In this case, s is called the sum of the series.

There is a nice test for convergence of series in a Banach space.
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Theorem 8 Absolute Convergence Test

Let V be a Banach space, let {vn} be a sequence of vectors in V , and suppose
that

∞∑
n=1

‖vn‖ < ∞.

Then the series
∞∑
n=1

vn

converges in V .

PROOF For each n ∈ N, let

an =
n∑
k=1

‖vk‖ and sn =
n∑
k=1

vk.

By hypothesis, the sequence {an} converges, so it is a Cauchy sequence. In particular,
for every ε > 0, there exists an N ∈ N so that

i, j ≥ n ⇒ |ai − aj| < ε.

But it follows easily from the triangle inequality that ‖si − sj‖ ≤ |ai − aj| for all
i, j ∈ N, so {sn} is a Cauchy sequence as well. Since V is a Banach space, we
conclude that {sn} converges in V , so the given series converges. �

Appendix: Finite-Dimensional Spaces

In this appendix we prove that any finite-dimensional normed vector space is com-
plete. We begin by examining the relationship between different norms on the same
vector space.

Definition: Lipschitz Equivalence
Let V be a vector space, and let ‖−‖A and ‖−‖B be two norms on V . We say that
‖−‖A and ‖−‖B are Lipschitz equivalent if there exist constants λ, µ > 0 so that

‖v‖A ≤ λ ‖v‖B and ‖v‖B ≤ µ ‖v‖A

for all v ∈ V .
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Note that this is an equivalence relation for norms on V .

Proposition 9 Properties of Lipschitz Equivalence

Let V be a vector space, and let ‖−‖A and ‖−‖B be two Lipschitz equivalent
norms on V . Then

1. A sequence {vn} is Cauchy with respect to ‖−‖A if and only if it is Cauchy
with respect to ‖−‖B.

2. A sequence {vn} converges to a vector v with respect to ‖−‖A if and only if
it converges to v with respect to ‖−‖B.

3. V is complete with respect to ‖−‖A if and only if it is complete with respect
to ‖−‖B.

PROOF Let λ, µ > 0 be the required constants. For (1), let {vn} be a Cauchy
sequence with respect to ‖−‖A, and let ε > 0. There there exists an N ∈ N so that

n ≥ N ⇒ ‖vi − vj‖A <
ε

µ
.

Since ‖vi − vj‖B ≤ µ‖vi − vj‖A for all i and j, it follows that

n ≥ N ⇒ ‖vi − vj‖A < ε,

so {vn} is a Cauchy sequence with respect to ‖−‖B as well.
For (2), suppose that vn → v with respect to ‖−‖A, so ‖vn−v‖A → 0 as n→∞.

Since
0 ≤ ‖vn − v‖B ≤ µ‖vn − v‖A

for all n, it follows that ‖vn − v‖B → 0 as n→∞, so vn → v with respect to ‖−‖B.
Statement (3) follows immediately from (1) and (2). �

It is also possible to prove that Lipschitz equivalent norms on a vector space V
define the same topology on V .
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Proposition 10 Norms on Rn

Every norm on Rn is Lipschitz equivalent to the Euclidean norm

PROOF Let ‖−‖A be a norm on Rn, and let ‖−‖2 denote the Euclidean norm. Let
e1, . . . , en be the standard basis for Rn, and set

λ =
√
‖e1‖2A + · · ·+ ‖en‖2A

Then for any vector v = (v1, . . . , vn) in Rn, we have

‖v‖A = ‖v1e1 + · · ·+ vnen‖A ≤ |v1| ‖e1‖A + · · ·+ |vn| ‖en‖A.

so by the Cauchy-Schwarz inequality

‖v‖A ≤
√
|v1|2 + · · ·+ |vn|2

√
‖e1‖2A + · · ·+ ‖en‖2A = λ ‖v‖2,

which is half of what we need to prove.
For the other half, observe that∣∣‖v‖A − ‖w‖A∣∣ ≤ ‖v −w‖A ≤ λ‖v −w‖2

for all v,w ∈ Rn, and therefore ‖−‖A is a continuous function on Rn. Consider the
unit sphere

Sn−1 =
{
u ∈ Rn

∣∣ ‖u‖2 = 1
}
.

This set is closed and bounded in Rn, and is therefore compact. Then ‖−‖A attains
a minimum value α on Sn−1, which must be greater than zero. Thus

‖u‖A ≥ α

for all u ∈ Sn−1. It follows easily that

‖v‖A ≥ α ‖v‖2

for all v ∈ Rn. Equivalently,
‖v‖2 ≤ µ ‖v‖A

for all v ∈ Rn, where µ = 1/α. �

An easily corollary of this is that Rn is complete with respect to any norm. Indeed,
we can extend this to any finite-dimensional vector space.
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Corollary 11 Completeness of Finite-Dimensional Spaces

Every finite-dimensional normed vector space is a Banach space.

PROOF Let V be a normed vector space of dimension n, where ‖−‖V is the norm
on V , and let T : Rn → V be a linear isomorphism. Define a norm ‖−‖T on Rn by

‖w‖T = ‖T (w)‖V .

Then ‖−‖T is Lipschitz equivalent to the Euclidean norm, and hence Rn is complete
with respect to ‖−‖T . But T is an isometric isomorphism with respect to ‖−‖T , and
hence V is complete as well. �

Exercises

1. (a) Let X be a metric space, and let {xn} be a Cauchy sequence in X. Prove
that if {xn} has a convergent subsequence, then {xn} converges.

(b) Deduce that every compact metric space is complete.

2. Let X be a complete metric space, let F1 ⊇ F2 ⊇ F3 ⊇ · · · be a sequence of
closed sets in X, and let

diam(Fn) = sup{d(x, y) | x, y ∈ Fn}.

Prove that if diam(Fn)→ 0 as n→∞, then
⋂
n∈N Fn is nonempty.

3. Let X be a complete metric space, let F be a closed subset of X, and let d|F
be the metric on F obtained by restricting the metric on X. Prove that F is a
complete metric space with respect to d|F .

4. A sequence {xn} in a metric space X is said to have bounded variation if

∞∑
n=1

d(xn, xn+1) < ∞.

Prove that if X is complete, then every sequence of bounded variation in X
converges.

5. Prove that R∞ is dense in `2. That is, prove that every point in `2 is the limit
of a sequence of points in R∞.

6. If (X,µ) is a measure space, prove that the simple functions are dense in L1(X).
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7. Let (X,µ) be a measure space, and define a function L : L1(X)→ R by

L(f) =

∫
X

f dµ.

Prove that L is continuous.

8. Prove that if {an} is an `2 sequence, then the Taylor series

∞∑
n=1

anx
n

converges in L1([−1, 1]).

9. Let p ∈ [1,∞]. Prove that if {an} is an `1 sequence, then the Fourier series

∞∑
n=1

an cosnx

converges in L1([−π, π]).

10. Let p ∈ (0, 1), and let a = (a1, a2, . . .) be a point in `p. Prove that

a =
∞∑
n=1

anen.

in `p, where {en} is the sequence

e1 = (1, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), . . .

11. Let V be a vector space. Prove that Lipschitz equivalence is an equivalence
relation for norms on V .

12. If V is a vector space, prove that any two Lipschitz equivalent norms induce
the same topology on V .

13. Let [a, b] be a closed interval, let g : [a, b] → (0,∞) be a continuous function,
and let dν = g dm, where m denotes Lebesgue measure. Prove that the the
norm ‖−‖1,ν on L1([a, b]) defined by

‖f‖1,ν =

∫
[a,b]

|f | dν

is Lipschitz equivalent to the usual 1-norm.
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