
Fourier Series

A Fourier series is an infinite series of the form

a +
∞∑
n=1

bn cos(nωx) +
∞∑
n=1

cn sin(nωx).

Virtually any periodic function that arises in applications can be represented as the
sum of a Fourier series. For example, consider the three functions whose graph are
shown below:

These are known, respectively, as the triangle wave Λ(x), the sawtooth wave N(x),
and the square wave (x). Each of these functions can be expressed as the sum of
a Fourier series:

Λ(x) = cosx +
cos 3x

32
+

cos 5x

52
+

cos 7x

72
+

cos 9x

92
+ · · ·

N(x) = sinx +
sin 2x

2
+

sin 3x

3
+

sin 4x

4
+

sin 5x

5
+ · · ·

(x) = sinx +
sin 3x

3
+

sin 5x

5
+

sin 7x

7
+

sin 9x

9
+ · · ·

Fourier series are critically important to the study of differential equations, and they
have many applications throughout the sciences. In addition, Fourier series played an
important historical role in the development of analysis, and the desire to prove theo-
rems about their convergence was a large part of the motivation for the development
of Lebesgue integration.

These notes develop Fourier series on the level of calculus. We will not be worrying
about convergence, and we will not be not be proving that any given function is
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n cosnx sinnx

2 cos2x− sin2x 2 cosx sinx

3 cos3x− 3 cosx sin2x 3 cos2x sinx− sin3x

4 cos4x− 6 cos2x sin2x+ sin4x 4 cos3x sinx− 4 cosx sin3x

5 cos5x− 10 cos3x sin2x+ 5 cosx sin4x 5 cos4x sinx− 10 cos2x sin3x+ sin5x

Table 1: Multiple-angle formulas.

actually equal to the sum of its Fourier series. We will revisit the theoretical aspects
of this topic later in the course after we have defined the Lebesgue integral and proven
Lebesgue’s dominated convergence theorem.

Trigonometric Polynomials

A trigonometric polynomial is a polynomial expression involving cosx and sinx:

cos5x+ 6 cos3x sin2x+ 3 sin4x+ 2 cos2x+ 5

Because of the identity cos2x + sin2x = 1, most trigonometric polynomials can be
written in several different ways. For example, the above polynomial can be rewrit-
ten as

5 cos3x sin2x+ 3 sin4x+ cos3x− 2 sin2x+ 7

Fourier Sums

A Fourier sum is a Fourier series with finitely many terms:

5 + 3 sin 2x + 4 cos 5x − 3 sin 5x + 2 cos 8x.

Every Fourier sum is actually a trigonometric polynomial, and any trigonometric
polynomial can be expressed as a Fourier sum.

Converting a Fourier sum to a trigonometric polynomial is fairly straightfor-
ward: simply substitute the appropriate multiple-angle identity for each cosnx and
sinnx (see Table 1).

It is less obvious that every trigonometric polynomial can be expressed as a Fourier
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sum. This depends on the three product-to-sum formulas:

cosA cosB =
1

2
cos(A−B) +

1

2
cos(A+B)

sinA cosB =
1

2
sin(A−B) +

1

2
sin(A+B)

sinA sinB =
1

2
cos(A−B) − 1

2
cos(A+B).

These identities allow us to transform any product of trigonometric functions into a
sum. By applying them repeatedly, we can remove all of the multiplications from a
trigonometric polynomial, resulting in a Fourier sum.

Alternatively, one can use these identities to derive power-reduction formulas
for cosjx sinkx, the first few of which are listed below:

j = 0 j = 1 j = 2 j = 3

k = 0 1 cosx
1 + cos 2x

2

3 cosx+ cos 3x

4

k = 1 sinx
sin 2x

2

sinx+ sin 3x

4

2 sin 2x+ sin 4x

8

k = 2
1− cos 2x

2

cosx− cos 3x

4

1− cos 4x

8

2 cosx− cos 3x− cos 5x

16

k = 3
3 sinx− sin 3x

4

2 sin 2x− sin 4x

8

2 sinx+ sin 3x− sin 5x

16

3 sin 2x− sin 6x

32

These formulas tell us how to convert each term of a trigonometric polynomial directly
into a Fourier sum.
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Orthogonality

There is a nice integral formula for finding the coefficients of any Fourier sum. This
is based on the orthogonality of the functions cosnx and sinnx:

Theorem 1 Orthogonality Relations

If j, k ∈ N, then:∫ π

−π
cos jx cos kx dx =

∫ π

−π
sin jx sin kx dx =

{
π if j = k

0 otherwise,

and ∫ π

−π
sin jx cos kx dx = 0.

PROOF For n ∈ Z, observe that∫ π

−π
sinnx dx = 0 and

∫ π

−π
cosnx dx =

{
2π if n = 0

0 otherwise.

If j, k ∈ N, we can use the product-to-sum identities to deduce that∫ π

−π
cos jx cos kx dx =

∫ π

−π

cos (j − k)x+ cos (j + k)x

2
dx =

{
π if j = k

0 otherwise,

and∫ π

−π
sin jx sin kx dx =

∫ π

−π

cos (j − k)x− cos (j + k)x

2
dx =

{
π if j = k

0 otherwise,

and ∫ π

−π
sin jx cos kx dx =

∫ π

−π

sin (j − k)x+ sin (j + k)x

2
dx = 0. �

In general, the inner product of two functions f and g on an interval [a, b] is

〈f, g〉 =

∫ b

a

f(x) g(x) dx.

A collection F of nonzero functions on [a, b] is said to be orthogonal if 〈f, g〉 = 0
for all f, g ∈ F with f 6= g. According to the above theorem, the functions

{cosnx}n∈N ∪ {sinnx}n∈N
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are orthogonal on the interval [−π, π]. Note that these functions are also orthogonal
to the constant function 1.

This definition of orthogonality is related to the notion of orthogonality in linear
algebra. Specifically, let C([a, b]) be the vector space of all real-valued continuous
functions on the interval [a, b]. Then the formula for 〈f, g〉 given above defines an
inner product on this vector space (analogous to the dot product on Rn), under which
orthogonal functions are the same as orthogonal vectors.

Theorem 2 Fourier Coefficients

Let

f(x) = a +
N∑
n=1

bn cosnx +
N∑
n=1

cn sinnx.

Then

a =
1

2π

∫ π

−π
f(x) dx.

Furthermore, for all n ∈ {1, . . . , N},

bn =
1

π

∫ π

−π
f(x) cosnx dx and cn =

1

π

∫ π

−π
f(x) sinnx dx.

PROOF The formula for a is fairly obvious. To derive the formula for the b’s,
observe that∫ π

−π
f(x) cos kx dx

= a

∫ π

−π
cos kx dx +

N∑
n=1

bn

∫ π

−π
cosnx cos kx dx +

N∑
n=1

cn

∫ π

−π
sinnx cos kx dx.

Applying the orthogonality relations reduces this to∫ π

−π
f(x) cos kx dx = bkπ

and the formula for bk follows. The derivation of the formula for ck is similar. �

The formulas in the theorem above can be written as follows:

a =
〈f, 1〉
〈1, 1〉

, bn =
〈f, cosnx〉

〈cosnx, cosnx〉
and cn =

〈f, sinnx〉
〈sinnx, sinnx〉

.
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From the point of view of linear algebra, these are special cases of a formula that holds
for any collection of orthogonal vectors. Specifically, let u1, . . . ,un be orthogonal
vectors in an inner product space, and let

v = λ1u1 + · · ·+ λnun.

Then
λk =

v · uk
uk · uk

for each k, where · denotes the inner product of vectors.

Corollary 3 Uniqueness of Fourier Sums

Let

f(x) = a +
N∑
n=1

bn cosnx +
N∑
n=1

cn sinnx

and

g(x) = A +
N∑
n=1

Bn cosnx +
N∑
n=1

Cn sinnx.

Then f = g if and only if a = A and bn = Bn and cn = Cn for all n.

Finally, we should mention the following famous formula for the inner product of two
trigonometric polynomials. This follows directly from the orthogonality relations:

Theorem 4 Inner Product Formula

Let

f(x) = a +
N∑
n=1

bn cosnx +
N∑
n=1

cn sinnx

and

g(x) = A +
N∑
n=1

Bn cosnx +
N∑
n=1

Cn sinnx.

Then ∫ π

−π
f(x) g(x) dx = 2πaA +

N∑
n=1

πbnBn +
N∑
n=1

πcnCn.
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Figure 1: Six partial sums of the Fourier series for x2.

Fourier Series

We have seen how the coefficients of the Fourier sum for a trigonometric polynomial
f(x) can be found using definite integrals. The same formulas can be used to define
Fourier coefficients for any function f :

Definition: Fourier Coefficients for f
The Fourier coefficients for a function f : [−π, π]→ R are the real number a and
the sequences bn and cn defined by the following formulas:

a =
1

2π

∫ π

−π
f(x) dx, bn =

1

π

∫ π

−π
f(x) cosnx dx, cn =

1

π

∫ π

−π
f(x) sinnx dx.

Definition: Fourier Series for f
The Fourier series for a function f : [−π, π]→ R is the sum

a +
∞∑
n=1

bn cosnx +
∞∑
n=1

cn sinnx.

where a, bn, and cn are the Fourier coefficients for f .

If f is a trigonometric polynomial, then its corresponding Fourier series is finite, and
the sum of the series is equal to f(x). The surprise is that the Fourier series usually
converges to f(x) even if f isn’t a trigonometric polynomial.
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EXAMPLE 1 Let f : [−π, π]→ R be the function f(x) = x2. The integrals

a =
1

2π

∫ π

−π
x2 dx, bn =

1

π

∫ π

−π
x2 cosnx dx, cn =

1

π

∫ π

−π
x2 sinnx dx

yield the following Fourier coefficients:

a =
π2

3
, bn = (−1)n

4

n2
, and cn = 0.

Thus the Fourier series for f is

π2

3
+

∞∑
n=1

(−1)n
4

n2
cosnx =

π2

3
− 4 cosx +

4 cos 2x

22
+ − 4 cos 3x

32
+ · · · .

This series converges uniformly to f(x) on the interval [−π, π]. Figure 1 shows the
first six partial sums of this series, together with the parabola y = x2.

Of course, the series only converges to x2 on the interval [−π, π]. Over the real
line, the sum of the series is periodic with period 2π, as shown in Figure 2. �

EXAMPLE 2 Now consider the function f : [−π, π]→ R defined by f(x) = x. The
Fourier coefficients for this function are

a = 0, bn = 0, and cn = (−1)n+1 2

n
,

so the Fourier series for f is

∞∑
n=1

(−1)n+1 2

n
sinnx = 2 sinx − 2

2
sin 2x +

2

3
sin 3x − 2

4
sin 4x + · · · .

Note that the coefficients of this series are essentially the harmonic series, which
diverges. Thus, it is very unclear that this series will even converge for a typical value
of x.

The first eight partial sums of this series are shown in Figure 3. As you can see,
this series appears to converge to f(x) for most values of x. Indeed, it does converge

Π 2 Π 3 Π 4 Π 5 Π0-Π-2 Π-3 Π-4 Π-5 Π

Π2

Figure 2: The sum of the Fourier series for x2.
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Figure 3: Eight partial sums of the Fourier series for x.

to f(x) for all values of x in the interval (−π, π), though this is relatively difficult to
prove.

Also, as you can see from the graphs, all of the partial sums of the Fourier series
have roots at −π and π. It follows that the sum of the series also has roots at these
points. Therefore, the Fourier series for f(x) converges pointwise to the function

g(x) =

{
x if − π < x < π

0 if x = ±π.

on the interval [−π, π].
Figure 4 shows the sum of this Fourier series over the real line. This function is

similar to the “sawtooth wave” discussed in the introduction, although the graph in
Figure 4 is more explicit about the behavior at the discontinuities. �

As these examples show, the issue of which functions can be represented as Fourier
series is a bit complicated. As a general rule, if f : [−π, π] → R is any reasonably
well-behaved function, then the Fourier series for f converges to f(x) for “almost
all” values of x. Unfortunately, it is rather difficult to prove any general results

Π 2 Π 3 Π 4 Π 5 Π-Π-2 Π-3 Π-4 Π-5 Π

-Π

Π

Figure 4: The sum of the Fourier series for x.
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about convergence of Fourier series without the help of measure theory and Lebesgue
integration.

Applications

Now that we know how to find the Fourier series for a typical function, we would like
to discuss how these series are used in mathematics and physics. Fourier series were
first developed to help in the solution of certain very important partial differential
equations that arise in the study of physical systems.

We will be considering the following three partial differential equations. The first
involves a function f(x1, . . . , xn) with no time-dependence, while the other two in-
volve a function f(x1, . . . , xn, t):

∇2f = 0, ∇2f =
∂f

∂t
, and ∇2f =

∂2f

∂t2

These equations1 are respectively known as Laplace’s equation, the heat equa-
tion, and the wave equation. These are arguably the three most important partial
differential equations, and much of the study of PDE’s is devoted to understanding
just these three. As we shall see, Fourier series can be quite helpful for solving them.

Laplace’s Equation

Let D2 be the unit disc centered at the origin in R2, and consider Laplace’s equation
for a function f : D2 → R. This has the form:

∂2f

∂x2
+
∂2f

∂y2
= 0.

In general, solutions to Laplace’s equation are called harmonic functions.
In the same way that an ordinary differential equation requires initial conditions

to specify a unique solution, a partial differential equation requires boundary con-
ditions. In the present case, what we need to know is the value of the function on
the boundary circle:

1The expression ∇2f in these equations is called the Laplacian, and is defined by the formula

∇2f =
∂2f

∂x21
+ · · ·+ ∂2f

∂x2n
.

Intuitively, the Laplacian measures how much the value of f at point differs from the average value
of f at nearby points.
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Dirichlet’s Problem
Given a function g : S1 → R, find a harmonic function f : D2 → R that agrees
with g on S1.

In principle, Dirichlet’s problem should have a solution for virtually any function g.
The reason for this is based on physics, specifically the distribution of heat inside solid
bodies. According to the theory of heat transfer, the temperature T (x, y) inside any
solid body in a steady state must be a harmonic function. Imagine, then, that we heat
and cool the edge of a metal disc so as to maintain a specific temperature function on
the boundary circle. If we wait a long time, the temperature function T (x, y) inside
the disc should reach a steady state, and this will be the desired solution to Dirichlet’s
problem.

So how can we solve Dirichlet’s problem mathematically? Well, consider the
functions ϕn : D2 → R and ψn : D2 → R defined by

ϕn(x, y) = rn cosnθ and ψn(x, y) = rn sinnθ,

where (r, θ) are the polar coordinates for a point (x, y). It is not difficult to show that
ϕn and ψn are harmonic functions for any n ∈ N. Moreover, any expression such as

3 + 2r2cos 2θ − 5r3sin 3θ + r8sin 8θ

is also a harmonic function.2 This gives us a large number of different solutions to
work with.

In particular, observe that ϕn(x, y) and ψn(x, y) restrict to the functions cosnθ
and sinnθ on the unit circle. Therefore, we now know how to solve Dirichlet’s problem
whenever g(θ) is a trigonometric polynomial.

EXAMPLE 3 Let g : S1 → R be the function

g(θ) = 5 cos θ + 4 sin 2θ − 6 cos 5θ.

Find a harmonic function f : D2 → R that agrees with g on S1.

SOLUTION The desired harmonic function is

f(x, y) = 5r cos θ + 4r2sin 2θ − 6r5cos 5θ. �

How does this help in general? Well, given any function g : S1 → R, we can try
to express g as a Fourier series involving cosnθ and sinnθ:

g(θ) = a +
∞∑
n=1

bn cosnθ +
∞∑
n=1

cn sinnθ.

2In general, any linear combination of solutions to Laplace’s equation is again a solution. A
differential equation with this property is called linear.
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Assuming this series actually converges to g, we can treat the Fourier series as though
it were a trigonometric polynomial, giving us the following harmonic function:

f(x, y) = a +
∞∑
n=1

bnr
n cosnθ +

∞∑
n=1

cnr
n sinnθ.

Assuming all of this works, we should be able to solve Dirichlet’s problem for any
function g that can be expressed as the sum of a Fourier series.

EXAMPLE 4 Let g : S1 → R be the function

g(x, y) =


1 if x > 0

1/2 if x = 0

0 if x < 0

.

Find a harmonic function f : D2 → R that agrees with g on S1.

SOLUTION In terms of θ, we have

g(θ) =


1 if − π/2 < θ < π/2

1/2 if θ = ±π/2
0 otherwise.

This function is indeed the sum of a Fourier series. The integrals for the Fourier
coefficients are

a =
1

2π

∫ π/2

−π/2
dx, bn =

1

π

∫ π/2

−π/2
cosnx dx, and cn =

1

π

∫ π/2

−π/2
sinnx dx.

This gives a = 1/2 and cn = 0, while bn is the sequence

2

π
, 0, − 2

3π
, 0,

2

5π
, 0, ,− 2

7π
, . . .

Thus

g(θ) =
1

2
+

2

π

(
cos θ − cos 3θ

3
+

cos 5θ

5
− cos 7θ

7
+ · · ·

)
.

Then

f(x, y) =
1

2
+

2

π

(
r cos θ − r3cos 3θ

3
+
r5cos 5θ

5
− r7cos 7θ

7
+ · · ·

)
should be the desired harmonic function.

A plot of this function is shown in Figure 5. The gray level indicates the value of
the function, and the contours for 0.1, 0.2, . . . , 0.9 are shown. �
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Figure 5: A harmonic function on the unit disc.

The Heat Equation

Consider a long metal rod whose temperature varies with position. Assuming the
rod is thermally insulated from its surroundings, heat will slowly diffuse from the
hot portions of the rod to the cool portions until the temperature becomes uniform.
Ignoring constants such as the thermal conductivity of the metal, this diffusion is
governed by the equation

∂T

∂t
=

∂2T

∂x2

where T (x, t) is the temperature of the rod at position x and time t. This PDE is a
one-dimensional version of the heat equation.

Now, given the initial distribution of the temperature at t = 0, we ought to be
able to predict how the temperature of the rod will evolve over time. For simplicity,
assume that the rod has a length of 2π, with x restricted to the interval [−π, π]. This
gives us the following problem:

Heat Diffusion Problem
Given a function g : [−π, π] → R, find a solution T : [−π, π] × R → R to the heat
equation such that T (x, 0) = g(x) for all x ∈ [−π, π].

The solution to this problem is similar to our solution to Dirichlet’s problem. First
we must solve the heat equation in the case where g(x) = cosnx or g(x) = sinnx.
As you can easily verify, the corresponding solutions are

ϕn(x, t) = e−n
2t cosnx and ψn(x, t) = e−n

2t sinnx.

Again, any combination of these will also be a solution to the heat equation:

2 + 5e−t cos t + 8e−9t sin 3t − 6e−25t cos 5t
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This lets us solve the heat equation whenever g(x) is a trigonometric polynomial.
For an arbitrary function g(x), we can follow the same procedure we did before.

First we attempt to express g as a Fourier series:

g(x) = a +
∞∑
n=1

bn cosnx +
∞∑
n=1

cn sinnx.

Assuming this succeeds, we obtain a candidate solution to the heat equation for
which T (x, 0) = g(x):

T (x, t) = a +
∞∑
n=1

bn e
−n2t cosnx +

∞∑
n=1

cn e
−n2t sinnx.

Of course, this is all based on conjecture and hope. We have little evidence that the
above series will converge in general. Also, this series will only be a solution to the
heat equation if it is valid to take its derivative by separately differentiating each
term. We will need to develop a lot of theory if we want to make this rigorous.

The Wave Equation

Consider a stringed instrument, such as a guitar, piano, or harp. Such an instrument
consists of several long strings held at high tension, which vibrate and produce sound
when they are disturbed. The classical vibrating string problem is to model the
motion of such a string.

Imagine that the string is stretched out along the x-axis, and is only allowed to
vibrate in the vertical direction. At each time t, the vertical displacement of the
string will be a function u(x), with the shape of the string being the graph of this
function. Thus we can describe the motion of the string by a function u(x, t), where
x is horizontal position and t is time.

Under ideal conditions, the motion of the string will be governed by the following
equation:

∂2u

∂x2
=

∂2u

∂t2
.

This is the one-dimensional version of the wave equation.
In principle, we should be able to solve this equation if we are given the initial

shape u(x, 0) and initial velocity (∂u/∂t)(x, 0) of the string. For simplicity, we assume
that the string has length π, with x restricted to the interval [0, π]. In addition, we
assume that the string is pinned at its ends, so that u(0, t) = u(π, t) = 0 for all t ∈ R:
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Vibrating String Problem
Given two functions g, h : [0, π]→ R, find a solution u : [0, π]×R→ R to the wave
equation satisfying the following conditions:

u(0, t) = u(π, t) = 0, u(x, 0) = g(x),
∂u

∂t
(x, 0) = h(x).

The solution here is slightly more complicated than the previous cases. Consider
the following solutions to the wave equation:

ψn(x, t) = sinnx cosnt and Ψn(x, t) = sinnx sinnt.

Note that ψn(x, t) and Ψn(x, t) describe the same sort of vibration, but are temporally
out of phase. Each solution ψn(x, t) has initial position g(x) = sinnx, but has zero
initial velocity. On the other hand, each solution Ψn(x, t) restricts to g(x) = 0, but
has initial velocity h(x) = n sinnx.

These solutions let us solve the wave equation as long as g(x) and h(x) are trigono-
metric polynomials.3 Specifically, suppose that

g(x) =
N∑
n=1

An sinnx and h(x) =
N∑
n=1

Bn sinnx.

Then the corresponding solution to the wave equation is

u(x, t) =
N∑
n=1

An sinnx cosnt +
N∑
n=1

Bn

n
sinnx sinnt.

Note that the factor of 1/n cancels with the n that we get from the derivative of
sinnt.

More generally, given any functions g and h, we can attempt to express both as
Fourier sine series:

g(x) =
∞∑
n=1

An sinnx and h(x) =
∞∑
n=1

Bn sinnx.

Then the corresponding solution to the wave equation ought to be

u(x, t) =
∞∑
n=1

An sinnx cosnt +
∞∑
n=1

Bn

n
sinnx sinnt.

Incidentally, the basic solutions ψn(x, t) and Ψn(x, t) to the wave equation are
known as normal modes. Physically, these correspond to certain standing waves in
the string (see Figure 6). If the string used to produce music, the primary modes ψ1

3Since the string is fixed at both ends, we know that g(0) = g(π) = 0. Therefore, if g is a
trigonometric polynomial, it must be a sum of sines. The same goes for h.
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Figure 6: The normal modes ψ1, . . . , ψ7.

and Ψ1 sound the main note, while the remaining modes ψ2, ψ3, . . . and Ψ2,Ψ3, . . .
produce certain higher notes known as harmonics or overtones. The strength of
these overtones is responsible for the rich sound of stringed instruments.

Exercises

1. Let Λ : R → R, N : R → R, and : R → R be the three functions defined by
Fourier series in the introduction.

(a) Determine the range of each of these functions.

(b) Draw careful graphs of N(x) and (x), making sure to show the value of
each function at its points of discontinuity.

2. Use the product-to-sum formulas and the table of power-reduction formulas to
express cos6x sin6x as a Fourier sum.

3. Let p1, p2, p3 : [−1, 1]→ R be the functions

p1(x) = 1, p2(x) = x, and p3(x) = 3x2 − 1

(a) Compute 〈pi, pj〉 for all i, j ∈ {1, 2, 3}. Are p1, p2, and p3 orthogonal?

(b) Let q : [−1, 1]→ R be a quadratic polynomial, and suppose that

〈q, p1〉 = 7, 〈q, p2〉 = 2, and 〈q, p3〉 = 8.

What is q?

4. Let f : [−π, π]→ R be the function defined by

f(x) =
∞∑
n=1

sinnx

2n
=

sinx

2
+

sin 2x

4
+

sin 3x

8
+

sin 4x

16
+ · · · .
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a) Evaluate

∫ π

−π
f(x) sin 3x dx.

b) Evaluate

∫ π

−π
f(x)2 dx.

5. Let f : [−π, π]→ R be the function

f(x) =

{
1 if 0 ≤ x ≤ π/2

0 otherwise.

Compute the Fourier series for f(x) by hand.

6. Compute the Fourier series for cos(x/2) and ex on the interval [−π, π]. (Feel
free to use Wolfram Alpha for the integrals.)

7. Let g : S1 → R be the function g(x, y) = |y|. Find a formula for the harmonic
function f : D2 → S2 that agrees with g on S1. (Feel free to use Wolfram Alpha
for the integrals.)


