
Hilbert Spaces

Recall that any inner product space V has an associated norm defined by

‖v‖ =
√
〈v,v〉.

Thus an inner product space can be viewed as a special kind of normed vector space.
In particular, every inner product space V has a metric defined by

d(v,w) = ‖v −w‖ =
√
〈v −w,v −w〉.

Definition: Hilbert space
A Hilbert space is an inner product space whose associated metric is complete.

That is, a Hilbert space is an inner product space that is also a Banach space.
For example, Rn is a Hilbert space under the usual dot product:

〈v,w〉 = v ·w = v1w1 + · · ·+ vnwn.

More generally, a finite-dimensional inner product space is a Hilbert space. The
following theorem provides examples of infinite-dimensional Hilbert spaces.

Theorem 1 L2 is a Hilbert Space

For any measure space (X,µ), the associated L2-space L2(X) forms a Hilbert
space under the inner product

〈f, g〉 =

∫
X

fg dµ.

PROOF The norm associated to the given inner product is the L2-norm:

‖f‖ =
√
〈f, f〉 =

√∫
X

f 2 dµ = ‖f‖2.
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We have already proven that L2(X) is complete with respect to this norm, and hence
L2(X) is a Hilbert space. �

In the case where X = N, this gives us the following.

Corollary 2 `2 is a Hilbert Space

The space `2 of all square-summable sequences is a Hilbert space under the inner
product

〈v,w〉 =
∑
n∈N

vnwn.

`2-Linear Combinations

We now turn to some general theory for Hilbert spaces. First, recall that two vectors
v and w in an inner product space are called orthogonal if 〈v,w〉 = 0.

Proposition 3 Convergence of Orthogonal Series

Let {vn} be a sequence of orthogonal vectors in a Hilbert space. Then the series

∞∑
n=1

vn

converges if and only if
∞∑
n=1

‖vn‖2 < ∞.

PROOF Let sn be the sequence of partial sums for the given series. By the Pythagorean
theorem,

‖si − sj‖2 =

∥∥∥∥∥
j∑

n=i+1

vn

∥∥∥∥∥
2

=

j∑
n=i+1

‖vn‖2.

for all i ≤ j. It follows that {sn} is a Cauchy sequence if and only if
∑∞

n=1 ‖vn‖2
converges. �
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We wish to apply this proposition to linear combinations of orthonormal vec-
tors. First recall that a sequence {un} of vectors in an inner product space is called
orthonormal if

〈ui,uj〉 =

{
1 if i = j,

0 if i 6= j,

for all i and j.

Corollary 4 `2-Linear Combinations

Let {un} be an orthonormal sequence of vectors in a Hilbert space, and let {an}
be a sequence of real numbers. Then the series

∞∑
n=1

anun

converges if and only if the sequence {an} lies in `2.

In general, if {an} is an `2 sequence, then the sum

∞∑
n=1

anun

is called a `2-linear combination of the vectors {un}. By the previous corollary,
every `2-linear combination orthonormal vectors in a Hilbert space converges

Proposition 5 Inner Product Formula

Let {un} be an orthonormal sequence of vectors in a Hilbert space, and let

v =
∞∑
n=1

anun and w =
∞∑
n=1

bnun

be `2-linear combinations of the vectors {un}. Then

〈v,w〉 =
∞∑
n=1

anbn.
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PROOF Let sN =
∑N

n=1 anun and tN =
∑N

n=1 bnun, and note that sN → v and
tN → w as N → ∞. Since the inner product 〈−,−〉 is a continuous function, it
follows that

〈v,w〉 = lim
N→∞

〈sN , tN〉 = lim
N→∞

N∑
n=1

anbn =
∞∑
n=1

anbn. �

In the case where v = w, this gives the following.

Corollary 6 Norm Formula

Let {un} be an orthonormal sequence of vectors in a Hilbert space, and let

v =
∞∑
n=1

anun

be an `2-linear combination of these vectors. Then

‖v‖ =

√√√√ ∞∑
n=1

a2n.

We can also use the inner product formula to find a nice formula for the coefficients
of an `2-linear combination.

Corollary 7 Formula for the Coefficients

Let {un} be an orthonormal sequence of vectors in a Hilbert space, and let

v =
∞∑
n=1

anun

be an `2-linear combination of these vectors. Then for all n ∈ N,

an = 〈un,v〉.

PROOF Given an n ∈ N, we can write un =
∑∞

k=1 bkuk, where bn = 1 and bk = 0
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for all k 6= n. By the inner product formula, it follows that

〈un,v〉 =
∞∑
k=1

akbk = an. �

In general, we say that a vector v is in the `2-span of {un} if v can be expressed
as an `2-linear combination of the vectors {un}. According to the previous corollary,
any vector v in the `2-span of {un} can be written as

v =
∞∑
n=1

〈un,v〉un.

It follows that

‖v‖ =

√√√√ ∞∑
n=1

〈un,v〉2

and

〈v,w〉 =
∞∑
n=1

〈un,v〉〈un,w〉

for any two vectors v and w in the `2-span of {un}.

Projections

Definition: Projection Onto a Subspace
Let V be an inner product space, let S be a linear subspace of V , and let v ∈ V .
A vector p ∈ S is called the projection of v onto S if

〈s,v − p〉 = 0

for all s ∈ S.

It is easy to see that the projection p of v onto S, if it exists, must be unique. In
particular, if p1 and p2 are two possible projections, then

‖p1 − p2‖2 = 〈p1 − p2,p1 − p2〉 = 〈p1 − p2,v − p2〉 − 〈p1 − p2,v − p1〉,

and both of the inner products on the right are zero since p1 − p2 ∈ S.
It is always possible to project onto a finite-dimensional subspace.
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Proposition 8 Projection Onto Finite-Dimensional Subspaces

Let V be an inner product space, let S be a finite-dimensional subspace of V ,
and let {u1, . . . ,un} be an orthonormal basis for S. Then for any v ∈ V , the
vector

p =
n∑
k=1

〈uk,v〉uk

is the projection of v onto S.

PROOF Observe that 〈uk,p〉 = 〈uk,v〉 for each k, and hence 〈uk,v − p〉 = 0 for
each k. By linearity, it follows that 〈s,v − p〉 = 0 for all s ∈ S, and hence p is the
projection of v onto S. �

Our goal is to generalize this proposition to the `2-span of an orthonormal se-
quence.

Lemma 9 Bessel’s Inequality

Let V be a Hilbert space, let {un} be an orthonormal sequence in V , and let
v ∈ V . Then

∞∑
n=1

〈un,v〉2 ≤ ‖v‖2.

PROOF Let N ∈ N, and let

pN =
N∑
n=1

〈un,v〉un

be the projection of v onto Span{u1, . . . ,uN}. Then 〈pN ,v − pN〉 = 0, so by the
Pythagorean theorem

‖v‖2 = ‖pN‖2 + ‖v − pN‖2 ≥ ‖pN‖2 =
N∑
n=1

〈un,v〉2.

This holds for all N ∈ N, so the desired inequality follows. �
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Proposition 10 Projection Formula

Let V be a Hilbert space, and let {un} be an orthonormal sequence of vectors
in V . Then for any v ∈ V , the sequence

{
〈un,v〉

}
is `2, and the vector

p =
∞∑
n=1

〈un,v〉un

is the projection of v onto the `2-span of {un}.

PROOF Bessel’s inequality shows that the sequence
{
〈un,v〉

}
is `2, and thus the

sum for p converges. By the coefficient formula (Corollary 7), we have that

〈un,p〉 = 〈un,v〉

for all n ∈ N, and hence 〈un,v − p〉 = 0 for all n ∈ N. By the continuity of 〈−,−〉,
it follows that 〈s,v − p〉 = 0 for any s in the `2-span of {un}, and hence p is the
projection of v onto this subspace. �

Hilbert Bases

Definition: Hilbert Basis
Let V be a Hilbert space, and let {un} be an orthonormal sequence of vectors in V .
We say that {un} is a Hilbert basis for V if for every v ∈ V there exists a sequence
{an} in `2 so that

v =
∞∑
n=1

anun.

That is, {un} is a Hilbert basis for V if every vector in V is in the `2-span of {un}.
For convenience, we are requiring all Hilbert bases to be countably infinite, but in
the more general theory of Hilbert spaces a Hilbert basis may have any cardinality.

Note that a Hilbert basis {un} for V is not actually a basis for V in the sense of
linear algebra. In particular, if {an} is any `2 sequence with infinitely many nonzero
terms, then the vector

∞∑
n=1

anun
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cannot be expressed as a finite linear combination of Hilbert basis vectors. Of course,
it is clearly much more useful to allow `2-linear combinations, and in the context of
Hilbert spaces it is common to use the word basis to mean Hilbert basis, while a
standard linear-algebra-type basis is referred to as a Hamel basis.

EXAMPLE 1 The Standard Basis for `2

Consider the following orthonormal sequence in `2:

e1 = (1, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), e3 = (0, 0, 1, 0, . . .), . . .

If v = (v1, v2, . . .) is a vector in `2, it is easy to show that

v =
∞∑
n=1

vnen,

and therefore {en} is a Hilbert basis for `2. �

This example is in some sense quite general, as shown by the following proposition.

Proposition 11 Isomorphism With `2

Let V be a Hilbert space, and suppose that V has a Hilbert basis {un}. Then
there exists an isometric isomorphism T : `2 → V such that T (en) = un for
each n.

PROOF Define a function T : `2 → V by

T (a1, a2, . . .) =
∞∑
n=1

anun.

Clearly T is linear. Note also that T is a bijection, with inverse given by

T−1(v) =
(
〈u1,v〉, 〈u2,v〉, . . .

)
,

and hence T is a linear isomorphism. Finally, we have

∥∥T (a1, a2, . . .)
∥∥ =

∥∥∥∥∥
∞∑
n=1

anun

∥∥∥∥∥ =

√√√√ ∞∑
n=1

a2n =
∥∥(a1, a2, . . .)

∥∥
2

for all (a1, a2, . . .) ∈ `2, so T is isometric. �
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Proposition 12 Characterization of Hilbert Bases

Let V be a Hilbert space, and let {un} be an orthonormal sequence of vectors
in V . Then the following are equivalent:

1. The sequence {un} is a Hilbert basis for V .

2. The set of all finite linear combinations of elements of {un} is dense in V .

3. For every nonzero v ∈ V , there exists an n ∈ N so that 〈un,v〉 6= 0.

PROOF Let S be the set of all finite linear combinations of elements of {un}, i.e. the
linear span of {un}. We prove that (1)⇒ (2)⇒ (3)⇒ (1).

(1)⇒ (2) Suppose that {un} is a Hilbert basis, and let v ∈ V . Then

v =
∞∑
n=1

anun

for some `2 sequence {an}. Then v is the limit of the sequence of partial sums

sN =
N∑
n=1

anun,

so v lies in the closure of S.

(2)⇒ (3) Suppose that S is dense in V , and let v be a nonzero vector in V . Let
{sn} be a sequence in S that converges to v. Then there exists an n ∈ N so
that ‖sn − v‖ < ‖v‖, and it follows that

〈sn,v〉 =
‖sn‖2 + ‖v‖2 − ‖sn − v‖2

2
>
‖sn‖2

2
≥ 0.

But since sn ∈ S, we know that sn ∈ Span{u1, . . . ,uk} for some k ∈ N, and it
follows that 〈ui,v〉 6= 0 for some i ≤ k.

(3)⇒ (1) Suppose that condition (3) holds, let v ∈ V , and let

p =
∞∑
n=1

〈un,v〉un

be the projection of v onto the `2-span of {un} (by Proposition 10). Then
〈un,p − v〉 = 0 for all n ∈ N, so by condition (3) the vector p − v must be
zero. Then v = p, so v lies in the `2-span of {un}, which proves that {un} is a
Hilbert basis. �
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Fourier Series

The theory of Hilbert spaces lets us provide a nice theory for Fourier series on the
interval [−π, π]. We begin with the following theorem.

Theorem 13 Density of Continuous Functions

For any closed interval [a, b] ⊆ R, the continuous functions on [a, b] are dense
in L2

(
[a, b]

)
.

PROOF See Homework 7, Problem 2 for a proof in the L1 case. The L2 case is
quite similar. �

It follows that any closed subset of L2
(
[a, b]

)
that contains the continuous functions

must be all of L2
(
[a, b]

)
.

Theorem 14 The Fourier Basis

The sequence

1√
2π
,

cosx√
π
,

sinx√
π
,

cos 2x√
π
,

sin 2x√
π
,

cos 3x√
π
,

sin 3x√
π
, . . .

is a Hilbert basis for L2
(
[−π, π]

)
.

PROOF It is easy to check that the given functions are orthonormal. Let S be
the set of all finite linear combinations of the basis elements, i.e. the set of all finite
trigonometric polynomials. By Proposition 12, it suffices to prove that S is dense
in L2

(
[−π, π]

)
.

Let C(T ) be the set of all continuous functions f on [−π, π] → R for which
f(−π) = f(π). By Homework 10, every function in C(T ) is the uniform limit (and
hence the L2 limit) of trigonometric polynomials, so the closure of S contiains C(T ).
But clearly every continuous function on [a, b] is the L2 limit of functions in C(T ),
and hence the closure of S contains every continuous function. By Theorem 13, we
conclude that the closure of S is all of L2

(
[−π, π]

)
. �

In general, an orthogonal sequence {fn} of nonzero L2 functions on [a, b] is called a
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complete orthogonal system for [a, b] if the sequence
{
fn/‖fn‖2

}
of normalizations

is a Hilbert basis for L2
(
[a, b]

)
. According to the above theorem, the sequence

1, cosx, sinx, cos 2x, sin 2x, cos 3x, sin 3x, . . .

is a complete orthogonal system for the interval [−π, π].

Definition: Fourier Coefficients
Let f : [−π, π] → R be an L2 function. Then the Fourier coefficients of f are
defined as follows:

a =
〈f, 1〉

2π
=

1

2π

∫
[−π,π]

f dm,

bn =
〈f, cosnx〉

π
=

1

π

∫
[−π,π]

f(x) cosnx dm(x),

cn =
〈f, sinnx〉

π
=

1

π

∫
[−π,π]

f(x) sinnx dm(x).

Note that the Fourier coefficients are the coefficients for the functions

1, cosx, sinx, cos 2x, sin 2x, cos 3x, sin 3x, . . . ,

which are not unit vectors. The actual coefficients of the Hilbert basis vectors are

a
√

2π,
{
bn
√
π
}
, and

{
cn
√
π
}
.

Corollary 15 Riesz-Fischer Theorem

Let f : [−π, π]→ R be an L2 function with Fourier coefficients a, {bn} and {cn}.
Then {bn} and {cn} are `2 sequences, and the Fourier series

a +
∞∑
n=1

(
bn cosnx+ cn sinnx

)
converges to f in L2.

PROOF This follows from Theorem 14 and the coefficient formula (Corollary 7). �
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Corollary 16 Parseval’s Theorem

Let f : [−π, π] → R be an L2 function with Fourier coefficients a, {bn}, {cn},
and let g : [−π, π] → R be an L2 function with fourier coefficients A, {Bn},
and {Cn}. Then

1

π

∫
[−π,π]

fg dm = 2aA+
∞∑
n=1

(bnBn + cnCn).

PROOF By the inner product formula (Proposition 5), we have

〈f, g〉 =
(
a
√

2π
)(
A
√

2π
)

+
∞∑
n=1

((
bn
√
π
)(
Bn

√
π
)

+
(
cn
√
π
)(
Cn
√
π
))
,

and dividing through by π gives the desired formula. �

In the case where g = f , this theorem yields Parseval’s identity:

1

π

∫
[−π,π]

f 2 dm = 2a2 +
∞∑
n=1

(
b2n + c2n

)
.

Corollary 17 Isomorphism of L2 and `2

If a < b, then L2([a, b]) and `2 are isometrically isomorphic.

PROOF Since

1√
2π
,

cosx√
π
,

sinx√
π
,

cos 2x√
π
,

sin 2x√
π
,

cos 3x√
π
,

sin 3x√
π
, . . .

is a Hilbert basis for L2
(
[−π, π]

)
, it follows from Proposition 11 that the linear trans-

formation T : `2 → L2
(
[−π, π]

)
defined by

T (a1, a2, a3, . . .) =
a1√
2π

+
a2 cosx√

π
+
a3 sinx√

π
+
a4 cos 2x√

π
+
a5 sin 2x√

π
+ · · ·

is an isometric isomorphism. �
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Other Orthogonal Systems

The Fourier basis is not the only Hilbert basis for L2
(
[a, b]

)
. Indeed, many such

families of orthogonal functions are known. In this section, we derive an orthonormal
sequence of polynomials that is a Hilbert basis for L2

(
[a, b]

)
.

Consider the sequence of functions

1, x, x2, x3, . . .

on the interval [−1, 1]. These functions are not a Hilbert basis for L2
(
[−1, 1]

)
, since

they are not orthonormal. However, it is possible to use these functions to make a
Hilbert basis of polynomials via the Gram-Schmidt process. We start by making
the the constant function 1 into a unit vector:

p0(x) =
1

‖1‖2
=

1√
2
.

The function x is already orthogonal to p0 on the interval [−1, 1], so we normalize x
as well:

p1(x) =
x

‖x‖2
= x

√
3

2
.

Now we want a quadratic polynomial orthogonal to p0 and p1. The function x2 is
already orthogonal to p1, but not to p0. However, if we subtract from x2 the projection
of x2 onto p0, then we get a quadratic polynomial orthogonal to p0:

x2 − 〈p0, x2〉 p0(x) = x2 − 1

3
.

Normalizing gives:

p2(x) =
3
√

5

2
√

2

(
x2 − 1

3

)
Continuing in this fashion, we obtain an orthonormal sequence {pn} of polynomi-
als, where each pn is obtained from xn by subtracting the projections of xn onto
p0, . . . , pn−1 and then normalizing.

Definition: Legendre Polynomials
The normalized Legendre polynomials are the sequence of polynomial functions
pn : [−1, 1]→ R defined recursively by p0(x) = 1/

√
2 and

pn(x) = cn

(
xn −

n−1∑
k=0

〈
pk, x

n
〉
pk(x)

)

for n ≥ 1, where the constant cn > 0 is chosen so that ‖pn‖2 = 1.
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Figure 1: The normalized Legendre polynomials p0, . . . , p5.

By design, each normalized Legendre polynomial pn(x) has degree n, and the
sequence {pn}n≥0 is orthonormal. The next few such polynomials are

p3(x) =
5
√

7

2
√

2

(
x3 − 3

5
x

)
, p4(x) =

105

8
√

2

(
x4 − 6

7
x2 +

3

35

)
, . . .

Figure 1 shows the graphs of the first six normalized Legendre polynomials.

Theorem 18 The Legendre Basis

The sequence p0, p1, p2, . . . of normalized Legendre polynomials is a Hilbert basis
for L2

(
[−1, 1]

)
.

PROOF Let S be the linear span of p0, p1, p2, . . .. Since

xn =
pn(x)

cn
+

n−1∑
k=0

〈
pk, x

n
〉
pk(x),

the subspace S contains each xn, and hence contains all polynomials. By the Weier-
strass approximation theorem, every continuous function on [−1, 1] is a uniform limit
(and hence and L2 limit) of a sequence of polynomials. It follows that the closure
of S contains all the continuous functions, and hence contains all L2 functions by
Theorem 13. �
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Thus every L2 function f on [−1, 1] can be written as the sum of an infinite
Legendre series

f =
∞∑
n=0

〈pn, f〉pn.

These behave much like Fourier series, with analogs of Parseval’s theorem and Par-
seval’s identity.

Legendre polynomials are important in partial differential equations. For the
following definition, recall that a harmonic function on a closed region in R3 is any
continuous function that satisfies Laplace’s equation ∇2f = 0 on the interior of the
region.

Definition: Dirichlet Problem on a Ball
Let B3 denote the closed unit ball on R3, and let S2 denote the unit sphere. The
Dirichlet problem on B3 can be stated as follows:

Given a continuous function f : S2 → R, find a harmonic function
F : B3 → R that agrees with f on S2.

Since we are working on the ball, it makes sense to use spherical coordinates
(ρ, θ, φ), which are defined by the formulas

x = ρ cos θ sinφ, y = ρ sin θ sinφ, z = ρ cosφ.

Using spherical coordinates, one family of solutions to Laplace’s equation on the ball
can be written as follows:

F (ρ, θ, φ) = ρn pn(cosφ)

where pn is the nth Legendre polynomial. These solutions are all axially symmetric
around the z-axis, meaning that they have no explicit dependence on θ.

Since the Legendre polynomials are a Hilbert basis, we can use these solutions to
solve the Dirichlet problem for any axially symmetric function f : S2 → R. All we do
is write f as the sum of a Legendre series

f(θ, φ) =
∞∑
n=0

an pn(cosφ),

and then the corresponding harmonic function F will be defined by the formula

F (ρ, θ, φ) =
∞∑
n=0

anρ
npn(cosφ).
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EXAMPLE 1 Let f : S2 → R be the function defined by

f(x, y, z) = z2.

Find a harmonic function F : B3 → R that agrees with f on S2.

SOLUTION Note that z = cosφ on S2, so we can write f as

f(θ, φ) = cos2φ.

Since
p0(x) = c0 and p2(x) = c2

(
x2 − 1

3

)
where c0 = 1/

√
2 and c2 =

√
45/8, we can write f as

f(θ, φ) =
1

3c0
p0(cosφ) +

1

c2
p2(cosφ).

Then the corresponding harmonic function F : B3 → R is given by

F (ρ, θ, φ) =
1

3c0
p0(cosφ) +

ρ2

c2
p2(cosφ) =

1

3
+ ρ2

(
cos2φ− 1

3

)
. �

The functions pn(cosφ) on the unit sphere can be generalized to the family of
spherical harmonics Y`,m(θ, φ), which are a Hilbert basis for L2(S2). The Legendre
polynomials defined above correspond to the m = 0 case:

Y`,0(θ, φ) =
1√
2π

p`(cosφ).

Every L2 function f on the sphere has a Fourier decomposition in terms of spherical
harmonics:

f(θ, φ) =
∞∑
`=0

∑̀
m=−`

a`,mY`,m(θ, φ).

In quantum mechanics, these spherical harmonics give rise to the eigenfunctions of
the square of the angular momentum operator. These are known as atomic orbitals,
and can be used to describe the quantum wave functions of electrons in an atom.
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