Hilbert Spaces

Recall that any inner product space V has an associated norm defined by

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

Thus an inner product space can be viewed as a special kind of normed vector space. In particular, every inner product space V has a metric defined by

$$d(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\| = \sqrt{\langle \mathbf{v} - \mathbf{w}, \mathbf{v} - \mathbf{w} \rangle}.$$

Definition: Hilbert space

A Hilbert space is an inner product space whose associated metric is complete.

That is, a Hilbert space is an inner product space that is also a Banach space. For example, \mathbb{R}^n is a Hilbert space under the usual dot product:

$$\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v} \cdot \mathbf{w} = v_1 w_1 + \dots + v_n w_n.$$

More generally, a finite-dimensional inner product space is a Hilbert space. The following theorem provides examples of infinite-dimensional Hilbert spaces.

Theorem 1 L^2 is a Hilbert Space

For any measure space (X, μ) , the associated L^2 -space $L^2(X)$ forms a Hilbert space under the inner product

$$\langle f,g\rangle = \int_X fg\,d\mu.$$

PROOF The norm associated to the given inner product is the L^2 -norm:

$$||f|| = \sqrt{\langle f, f \rangle} = \sqrt{\int_X f^2 d\mu} = ||f||_2.$$

We have already proven that $L^2(X)$ is complete with respect to this norm, and hence $L^2(X)$ is a Hilbert space.

In the case where $X = \mathbb{N}$, this gives us the following.

Corollary 2 ℓ^2 is a Hilbert Space

The space ℓ^2 of all square-summable sequences is a Hilbert space under the inner product

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{n \in \mathbb{N}} v_n w_n.$$

ℓ^2 -Linear Combinations

We now turn to some general theory for Hilbert spaces. First, recall that two vectors \mathbf{v} and \mathbf{w} in an inner product space are called **orthogonal** if $\langle \mathbf{v}, \mathbf{w} \rangle = 0$.

Proposition 3 Convergence of Orthogonal Series

Let $\{\mathbf{v}_n\}$ be a sequence of orthogonal vectors in a Hilbert space. Then the series $\sum_{n=1}^{\infty} \mathbf{v}_n$ converges if and only if $\sum_{n=1}^{\infty} \|\mathbf{v}_n\|^2 < \infty.$

PROOF Let \mathbf{s}_n be the sequence of partial sums for the given series. By the Pythagorean theorem,

$$\|\mathbf{s}_i - \mathbf{s}_j\|^2 = \left\|\sum_{n=i+1}^j \mathbf{v}_n\right\|^2 = \sum_{n=i+1}^j \|\mathbf{v}_n\|^2.$$

for all $i \leq j$. It follows that $\{\mathbf{s}_n\}$ is a Cauchy sequence if and only if $\sum_{n=1}^{\infty} \|\mathbf{v}_n\|^2$ converges.

We wish to apply this proposition to linear combinations of orthonormal vectors. First recall that a sequence $\{\mathbf{u}_n\}$ of vectors in an inner product space is called **orthonormal** if

$$\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

for all i and j.

Corollary 4 ℓ^2 -Linear Combinations

Let $\{\mathbf{u}_n\}$ be an orthonormal sequence of vectors in a Hilbert space, and let $\{a_n\}$ be a sequence of real numbers. Then the series

$$\sum_{n=1}^{\infty} a_n \mathbf{u}_n$$

converges if and only if the sequence $\{a_n\}$ lies in ℓ^2 .

In general, if $\{a_n\}$ is an ℓ^2 sequence, then the sum

$$\sum_{n=1}^{\infty} a_n \mathbf{u}_n$$

is called a ℓ^2 -linear combination of the vectors $\{\mathbf{u}_n\}$. By the previous corollary, every ℓ^2 -linear combination orthonormal vectors in a Hilbert space converges

Proposition 5 Inner Product Formula

Let $\{\mathbf{u}_n\}$ be an orthonormal sequence of vectors in a Hilbert space, and let

$$\mathbf{v} = \sum_{n=1}^{\infty} a_n \mathbf{u}_n$$
 and $\mathbf{w} = \sum_{n=1}^{\infty} b_n \mathbf{u}_n$

be ℓ^2 -linear combinations of the vectors $\{\mathbf{u}_n\}$. Then

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{n=1}^{\infty} a_n b_n.$$

PROOF Let $\mathbf{s}_N = \sum_{n=1}^N a_n \mathbf{u}_n$ and $\mathbf{t}_N = \sum_{n=1}^N b_n \mathbf{u}_n$, and note that $\mathbf{s}_N \to \mathbf{v}$ and $\mathbf{t}_N \to \mathbf{w}$ as $N \to \infty$. Since the inner product $\langle -, - \rangle$ is a continuous function, it follows that

$$\langle \mathbf{v}, \mathbf{w} \rangle = \lim_{N \to \infty} \langle \mathbf{s}_N, \mathbf{t}_N \rangle = \lim_{N \to \infty} \sum_{n=1}^N a_n b_n = \sum_{n=1}^\infty a_n b_n.$$

In the case where $\mathbf{v} = \mathbf{w}$, this gives the following.

Corollary 6 Norm Formula

Let $\{\mathbf{u}_n\}$ be an orthonormal sequence of vectors in a Hilbert space, and let

$$\mathbf{v} = \sum_{n=1}^{\infty} a_n \mathbf{u}_n$$

be an ℓ^2 -linear combination of these vectors. Then

$$\|\mathbf{v}\| = \sqrt{\sum_{n=1}^{\infty} a_n^2}.$$

We can also use the inner product formula to find a nice formula for the coefficients of an ℓ^2 -linear combination.

Corollary 7 Formula for the Coefficients

Let $\{\mathbf{u}_n\}$ be an orthonormal sequence of vectors in a Hilbert space, and let

$$\mathbf{v} = \sum_{n=1}^{\infty} a_n \mathbf{u}_n$$

be an ℓ^2 -linear combination of these vectors. Then for all $n \in \mathbb{N}$,

$$a_n = \langle \mathbf{u}_n, \mathbf{v} \rangle.$$

PROOF Given an $n \in \mathbb{N}$, we can write $\mathbf{u}_n = \sum_{k=1}^{\infty} b_k \mathbf{u}_k$, where $b_n = 1$ and $b_k = 0$

for all $k \neq n$. By the inner product formula, it follows that

$$\langle \mathbf{u}_n, \mathbf{v} \rangle = \sum_{k=1}^{\infty} a_k b_k = a_n.$$

In general, we say that a vector **v** is in the ℓ^2 -span of $\{\mathbf{u}_n\}$ if **v** can be expressed as an ℓ^2 -linear combination of the vectors $\{\mathbf{u}_n\}$. According to the previous corollary, any vector **v** in the ℓ^2 -span of $\{\mathbf{u}_n\}$ can be written as

$$\mathbf{v} = \sum_{n=1}^{\infty} \langle \mathbf{u}_n, \mathbf{v} \rangle \mathbf{u}_n.$$

It follows that

$$\|\mathbf{v}\| = \sqrt{\sum_{n=1}^{\infty} \langle \mathbf{u}_n, \mathbf{v} \rangle^2}$$

and

$$\langle {f v}, {f w}
angle \, = \, \sum_{n=1}^\infty \langle {f u}_n, {f v}
angle \langle {f u}_n, {f w}
angle$$

for any two vectors \mathbf{v} and \mathbf{w} in the ℓ^2 -span of $\{\mathbf{u}_n\}$.

Projections

Definition: Projection Onto a Subspace

Let V be an inner product space, let S be a linear subspace of V, and let $\mathbf{v} \in V$. A vector $\mathbf{p} \in S$ is called the **projection of v onto** S if

$$\langle \mathbf{s}, \mathbf{v} - \mathbf{p} \rangle = 0$$

for all $\mathbf{s} \in S$.

It is easy to see that the projection \mathbf{p} of \mathbf{v} onto S, if it exists, must be unique. In particular, if \mathbf{p}_1 and \mathbf{p}_2 are two possible projections, then

$$\|\mathbf{p}_1-\mathbf{p}_2\|^2 = \langle \mathbf{p}_1-\mathbf{p}_2,\mathbf{p}_1-\mathbf{p}_2
angle = \langle \mathbf{p}_1-\mathbf{p}_2,\mathbf{v}-\mathbf{p}_2
angle - \langle \mathbf{p}_1-\mathbf{p}_2,\mathbf{v}-\mathbf{p}_1
angle,$$

and both of the inner products on the right are zero since $\mathbf{p}_1 - \mathbf{p}_2 \in S$.

It is always possible to project onto a finite-dimensional subspace.

Proposition 8 Projection Onto Finite-Dimensional Subspaces

Let V be an inner product space, let S be a finite-dimensional subspace of V, and let $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ be an orthonormal basis for S. Then for any $\mathbf{v} \in V$, the vector

$$\mathbf{p} = \sum_{k=1}^n \langle \mathbf{u}_k, \mathbf{v}
angle \mathbf{u}_k$$

is the projection of \mathbf{v} onto S.

PROOF Observe that $\langle \mathbf{u}_k, \mathbf{p} \rangle = \langle \mathbf{u}_k, \mathbf{v} \rangle$ for each k, and hence $\langle \mathbf{u}_k, \mathbf{v} - \mathbf{p} \rangle = 0$ for each k. By linearity, it follows that $\langle \mathbf{s}, \mathbf{v} - \mathbf{p} \rangle = 0$ for all $\mathbf{s} \in S$, and hence \mathbf{p} is the projection of \mathbf{v} onto S.

Our goal is to generalize this proposition to the $\ell^2\text{-}\mathrm{span}$ of an orthonormal sequence.

Lemma 9 Bessel's Inequality

Let V be a Hilbert space, let $\{\mathbf{u}_n\}$ be an orthonormal sequence in V, and let $\mathbf{v} \in V$. Then $\sum_{n=1}^{\infty} \langle \mathbf{u}_n, \mathbf{v} \rangle^2 \leq \|\mathbf{v}\|^2.$

PROOF Let $N \in \mathbb{N}$, and let

$$\mathbf{p}_N \,=\, \sum_{n=1}^N \langle \mathbf{u}_n, \mathbf{v}
angle \mathbf{u}_n$$

be the projection of \mathbf{v} onto $\text{Span}\{\mathbf{u}_1,\ldots,\mathbf{u}_N\}$. Then $\langle \mathbf{p}_N,\mathbf{v}-\mathbf{p}_N\rangle = 0$, so by the Pythagorean theorem

$$\|\mathbf{v}\|^2 = \|\mathbf{p}_N\|^2 + \|\mathbf{v} - \mathbf{p}_N\|^2 \ge \|\mathbf{p}_N\|^2 = \sum_{n=1}^N \langle \mathbf{u}_n, \mathbf{v} \rangle^2.$$

This holds for all $N \in \mathbb{N}$, so the desired inequality follows.

Proposition 10 Projection Formula

Let V be a Hilbert space, and let $\{\mathbf{u}_n\}$ be an orthonormal sequence of vectors in V. Then for any $\mathbf{v} \in V$, the sequence $\{\langle \mathbf{u}_n, \mathbf{v} \rangle\}$ is ℓ^2 , and the vector

$$\mathbf{p} \ = \ \sum_{n=1}^{\infty} \langle \mathbf{u}_n, \mathbf{v}
angle \mathbf{u}_n$$

is the projection of \mathbf{v} onto the ℓ^2 -span of $\{\mathbf{u}_n\}$.

PROOF Bessel's inequality shows that the sequence $\{\langle \mathbf{u}_n, \mathbf{v} \rangle\}$ is ℓ^2 , and thus the sum for **p** converges. By the coefficient formula (Corollary 7), we have that

$$\langle {f u}_n, {f p}
angle \, = \, \langle {f u}_n, {f v}
angle$$

for all $n \in \mathbb{N}$, and hence $\langle \mathbf{u}_n, \mathbf{v} - \mathbf{p} \rangle = 0$ for all $n \in \mathbb{N}$. By the continuity of $\langle -, - \rangle$, it follows that $\langle \mathbf{s}, \mathbf{v} - \mathbf{p} \rangle = 0$ for any \mathbf{s} in the ℓ^2 -span of $\{\mathbf{u}_n\}$, and hence \mathbf{p} is the projection of \mathbf{v} onto this subspace.

Hilbert Bases

Definition: Hilbert Basis

Let V be a Hilbert space, and let $\{\mathbf{u}_n\}$ be an orthonormal sequence of vectors in V. We say that $\{\mathbf{u}_n\}$ is a **Hilbert basis** for V if for every $\mathbf{v} \in V$ there exists a sequence $\{a_n\}$ in ℓ^2 so that

$$\mathbf{v} = \sum_{n=1}^{\infty} a_n \mathbf{u}_n.$$

That is, $\{\mathbf{u}_n\}$ is a Hilbert basis for V if every vector in V is in the ℓ^2 -span of $\{\mathbf{u}_n\}$. For convenience, we are requiring all Hilbert bases to be countably infinite, but in the more general theory of Hilbert spaces a Hilbert basis may have any cardinality.

Note that a Hilbert basis $\{\mathbf{u}_n\}$ for V is not actually a basis for V in the sense of linear algebra. In particular, if $\{a_n\}$ is any ℓ^2 sequence with infinitely many nonzero terms, then the vector

$$\sum_{n=1}^{\infty} a_n \mathbf{u}_n$$

cannot be expressed as a finite linear combination of Hilbert basis vectors. Of course, it is clearly much more useful to allow ℓ^2 -linear combinations, and in the context of Hilbert spaces it is common to use the word **basis** to mean Hilbert basis, while a standard linear-algebra-type basis is referred to as a **Hamel basis**.

EXAMPLE 1 The Standard Basis for ℓ^2

Consider the following orthonormal sequence in ℓ^2 :

 $\mathbf{e}_1 = (1, 0, 0, 0, \ldots), \qquad \mathbf{e}_2 = (0, 1, 0, 0, \ldots), \qquad \mathbf{e}_3 = (0, 0, 1, 0, \ldots), \qquad \ldots$

If $\mathbf{v} = (v_1, v_2, \ldots)$ is a vector in ℓ^2 , it is easy to show that

$$\mathbf{v} = \sum_{n=1}^{\infty} v_n \mathbf{e}_n,$$

and therefore $\{\mathbf{e}_n\}$ is a Hilbert basis for ℓ^2 .

This example is in some sense quite general, as shown by the following proposition.

Proposition 11 Isomorphism With ℓ^2

Let V be a Hilbert space, and suppose that V has a Hilbert basis $\{\mathbf{u}_n\}$. Then there exists an isometric isomorphism $T: \ell^2 \to V$ such that $T(\mathbf{e}_n) = \mathbf{u}_n$ for each n.

PROOF Define a function $T: \ell^2 \to V$ by

$$T(a_1, a_2, \ldots) = \sum_{n=1}^{\infty} a_n \mathbf{u}_n.$$

Clearly T is linear. Note also that T is a bijection, with inverse given by

$$T^{-1}(\mathbf{v}) = (\langle \mathbf{u}_1, \mathbf{v} \rangle, \langle \mathbf{u}_2, \mathbf{v} \rangle, \ldots),$$

and hence T is a linear isomorphism. Finally, we have

$$||T(a_1, a_2, \ldots)|| = ||\sum_{n=1}^{\infty} a_n \mathbf{u}_n|| = \sqrt{\sum_{n=1}^{\infty} a_n^2} = ||(a_1, a_2, \ldots)||_2$$

for all $(a_1, a_2, \ldots) \in \ell^2$, so T is isometric.

Proposition 12 Characterization of Hilbert Bases

Let V be a Hilbert space, and let $\{\mathbf{u}_n\}$ be an orthonormal sequence of vectors in V. Then the following are equivalent:

- **1.** The sequence $\{\mathbf{u}_n\}$ is a Hilbert basis for V.
- **2.** The set of all finite linear combinations of elements of $\{\mathbf{u}_n\}$ is dense in V.
- **3.** For every nonzero $\mathbf{v} \in V$, there exists an $n \in \mathbb{N}$ so that $\langle \mathbf{u}_n, \mathbf{v} \rangle \neq 0$.

PROOF Let S be the set of all finite linear combinations of elements of $\{\mathbf{u}_n\}$, i.e. the linear span of $\{\mathbf{u}_n\}$. We prove that $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$.

 $(1) \Rightarrow (2)$ Suppose that $\{\mathbf{u}_n\}$ is a Hilbert basis, and let $\mathbf{v} \in V$. Then

$$\mathbf{v} = \sum_{n=1}^{\infty} a_n \mathbf{u}_n$$

for some ℓ^2 sequence $\{a_n\}$. Then **v** is the limit of the sequence of partial sums

$$\mathbf{s}_N = \sum_{n=1}^N a_n \mathbf{u}_n$$

so \mathbf{v} lies in the closure of S.

(2) \Rightarrow (3) Suppose that S is dense in V, and let **v** be a nonzero vector in V. Let $\{\mathbf{s}_n\}$ be a sequence in S that converges to **v**. Then there exists an $n \in \mathbb{N}$ so that $\|\mathbf{s}_n - \mathbf{v}\| < \|\mathbf{v}\|$, and it follows that

$$\langle \mathbf{s}_n, \mathbf{v} \rangle = \frac{\|\mathbf{s}_n\|^2 + \|\mathbf{v}\|^2 - \|\mathbf{s}_n - \mathbf{v}\|^2}{2} > \frac{\|\mathbf{s}_n\|^2}{2} \ge 0$$

But since $\mathbf{s}_n \in S$, we know that $\mathbf{s}_n \in \text{Span}\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ for some $k \in \mathbb{N}$, and it follows that $\langle \mathbf{u}_i, \mathbf{v} \rangle \neq 0$ for some $i \leq k$.

(3) \Rightarrow (1) Suppose that condition (3) holds, let $\mathbf{v} \in V$, and let

$$\mathbf{p} \ = \ \sum_{n=1}^{\infty} \langle \mathbf{u}_n, \mathbf{v}
angle \mathbf{u}_n$$

be the projection of \mathbf{v} onto the ℓ^2 -span of $\{\mathbf{u}_n\}$ (by Proposition 10). Then $\langle \mathbf{u}_n, \mathbf{p} - \mathbf{v} \rangle = 0$ for all $n \in \mathbb{N}$, so by condition (3) the vector $\mathbf{p} - \mathbf{v}$ must be zero. Then $\mathbf{v} = \mathbf{p}$, so \mathbf{v} lies in the ℓ^2 -span of $\{\mathbf{u}_n\}$, which proves that $\{\mathbf{u}_n\}$ is a Hilbert basis.

Fourier Series

The theory of Hilbert spaces lets us provide a nice theory for Fourier series on the interval $[-\pi, \pi]$. We begin with the following theorem.

Theorem 13 Density of Continuous Functions

For any closed interval $[a, b] \subseteq \mathbb{R}$, the continuous functions on [a, b] are dense in $L^2([a, b])$.

PROOF See Homework 7, Problem 2 for a proof in the L^1 case. The L^2 case is quite similar.

It follows that any closed subset of $L^2([a, b])$ that contains the continuous functions must be all of $L^2([a, b])$.

Theorem 14 The Fourier Basis

PROOF It is easy to check that the given functions are orthonormal. Let S be the set of all finite linear combinations of the basis elements, i.e. the set of all finite trigonometric polynomials. By Proposition 12, it suffices to prove that S is dense in $L^2([-\pi,\pi])$.

Let C(T) be the set of all continuous functions f on $[-\pi,\pi] \to \mathbb{R}$ for which $f(-\pi) = f(\pi)$. By Homework 10, every function in C(T) is the uniform limit (and hence the L^2 limit) of trigonometric polynomials, so the closure of S contains C(T). But clearly every continuous function on [a,b] is the L^2 limit of functions in C(T), and hence the closure of S contains every continuous function. By Theorem 13, we conclude that the closure of S is all of $L^2([-\pi,\pi])$.

In general, an orthogonal sequence $\{f_n\}$ of nonzero L^2 functions on [a, b] is called a

complete orthogonal system for [a, b] if the sequence $\{f_n/||f_n||_2\}$ of normalizations is a Hilbert basis for $L^2([a, b])$. According to the above theorem, the sequence

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, $\cos 3x$, $\sin 3x$, ...

is a complete orthogonal system for the interval $[-\pi,\pi]$.

Definition: Fourier Coefficients

Let $f: [-\pi, \pi] \to \mathbb{R}$ be an L^2 function. Then the **Fourier coefficients** of f are defined as follows:

$$a = \frac{\langle f, 1 \rangle}{2\pi} = \frac{1}{2\pi} \int_{[-\pi,\pi]} f \, dm,$$

$$b_n = \frac{\langle f, \cos nx \rangle}{\pi} = \frac{1}{\pi} \int_{[-\pi,\pi]} f(x) \cos nx \, dm(x),$$

$$c_n = \frac{\langle f, \sin nx \rangle}{\pi} = \frac{1}{\pi} \int_{[-\pi,\pi]} f(x) \sin nx \, dm(x).$$

Note that the Fourier coefficients are the coefficients for the functions

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, $\cos 3x$, $\sin 3x$, ...,

which are not unit vectors. The actual coefficients of the Hilbert basis vectors are

$$a\sqrt{2\pi}, \qquad \{b_n\sqrt{\pi}\}, \qquad \text{and} \qquad \{c_n\sqrt{\pi}\}.$$

Corollary 15 Riesz-Fischer Theorem

Let $f: [-\pi, \pi] \to \mathbb{R}$ be an L^2 function with Fourier coefficients $a, \{b_n\}$ and $\{c_n\}$. Then $\{b_n\}$ and $\{c_n\}$ are ℓ^2 sequences, and the Fourier series

$$a + \sum_{n=1}^{\infty} (b_n \cos nx + c_n \sin nx)$$

converges to f in L^2 .

PROOF This follows from Theorem 14 and the coefficient formula (Corollary 7). ■

Corollary 16 Parseval's Theorem

Let $f: [-\pi, \pi] \to \mathbb{R}$ be an L^2 function with Fourier coefficients $a, \{b_n\}, \{c_n\}, and let <math>g: [-\pi, \pi] \to \mathbb{R}$ be an L^2 function with fourier coefficients $A, \{B_n\}, and \{C_n\}$. Then

$$\frac{1}{\pi} \int_{[-\pi,\pi]} fg \, dm = 2aA + \sum_{n=1}^{\infty} (b_n B_n + c_n C_n).$$

PROOF By the inner product formula (Proposition 5), we have

$$\langle f,g\rangle = (a\sqrt{2\pi})(A\sqrt{2\pi}) + \sum_{n=1}^{\infty} ((b_n\sqrt{\pi})(B_n\sqrt{\pi}) + (c_n\sqrt{\pi})(C_n\sqrt{\pi})),$$

and dividing through by π gives the desired formula.

In the case where g = f, this theorem yields **Parseval's identity**:

$$\frac{1}{\pi} \int_{[-\pi,\pi]} f^2 \, dm = 2a^2 + \sum_{n=1}^{\infty} (b_n^2 + c_n^2).$$

Corollary 17 Isomorphism of L^2 and ℓ^2

If a < b, then $L^2([a, b])$ and ℓ^2 are isometrically isomorphic.

PROOF Since

$$\frac{1}{\sqrt{2\pi}}, \quad \frac{\cos x}{\sqrt{\pi}}, \quad \frac{\sin x}{\sqrt{\pi}}, \quad \frac{\cos 2x}{\sqrt{\pi}}, \quad \frac{\sin 2x}{\sqrt{\pi}}, \quad \frac{\cos 3x}{\sqrt{\pi}}, \quad \frac{\sin 3x}{\sqrt{\pi}}, \quad \dots$$

is a Hilbert basis for $L^2([-\pi,\pi])$, it follows from Proposition 11 that the linear transformation $T: \ell^2 \to L^2([-\pi,\pi])$ defined by

$$T(a_1, a_2, a_3, \ldots) = \frac{a_1}{\sqrt{2\pi}} + \frac{a_2 \cos x}{\sqrt{\pi}} + \frac{a_3 \sin x}{\sqrt{\pi}} + \frac{a_4 \cos 2x}{\sqrt{\pi}} + \frac{a_5 \sin 2x}{\sqrt{\pi}} + \cdots$$

is an isometric isomorphism.

Other Orthogonal Systems

The Fourier basis is not the only Hilbert basis for $L^2([a, b])$. Indeed, many such families of orthogonal functions are known. In this section, we derive an orthonormal sequence of polynomials that is a Hilbert basis for $L^2([a, b])$.

Consider the sequence of functions

$$1, \quad x, \quad x^2, \quad x^3, \quad \dots$$

on the interval [-1, 1]. These functions are not a Hilbert basis for $L^2([-1, 1])$, since they are not orthonormal. However, it is possible to use these functions to make a Hilbert basis of polynomials via the **Gram-Schmidt process**. We start by making the the constant function 1 into a unit vector:

$$p_0(x) = \frac{1}{\|1\|_2} = \frac{1}{\sqrt{2}}.$$

The function x is already orthogonal to p_0 on the interval [-1, 1], so we normalize x as well:

$$p_1(x) = \frac{x}{\|x\|_2} = x\sqrt{\frac{3}{2}}$$

Now we want a quadratic polynomial orthogonal to p_0 and p_1 . The function x^2 is already orthogonal to p_1 , but not to p_0 . However, if we subtract from x^2 the projection of x^2 onto p_0 , then we get a quadratic polynomial orthogonal to p_0 :

$$x^{2} - \langle p_{0}, x^{2} \rangle p_{0}(x) = x^{2} - \frac{1}{3}$$

Normalizing gives:

$$p_2(x) = \frac{3\sqrt{5}}{2\sqrt{2}} \left(x^2 - \frac{1}{3} \right)$$

Continuing in this fashion, we obtain an orthonormal sequence $\{p_n\}$ of polynomials, where each p_n is obtained from x^n by subtracting the projections of x^n onto p_0, \ldots, p_{n-1} and then normalizing.

Definition: Legendre Polynomials

The normalized Legendre polynomials are the sequence of polynomial functions $p_n: [-1,1] \to \mathbb{R}$ defined recursively by $p_0(x) = 1/\sqrt{2}$ and $p_n(x) = c_n \left(x^n - \sum_{k=0}^{n-1} \langle p_k, x^n \rangle p_k(x) \right)$

$$p_n(x) = c_n\left(x^n - \sum_{k=0}^{n-1} \langle p_k, x^n \rangle p_k(x)\right)$$

for $n \ge 1$, where the constant $c_n > 0$ is chosen so that $||p_n||_2 = 1$.

Figure 1: The normalized Legendre polynomials p_0, \ldots, p_5 .

By design, each normalized Legendre polynomial $p_n(x)$ has degree n, and the sequence $\{p_n\}_{n\geq 0}$ is orthonormal. The next few such polynomials are

$$p_3(x) = \frac{5\sqrt{7}}{2\sqrt{2}} \left(x^3 - \frac{3}{5}x \right), \qquad p_4(x) = \frac{105}{8\sqrt{2}} \left(x^4 - \frac{6}{7}x^2 + \frac{3}{35} \right), \qquad \dots$$

Figure 1 shows the graphs of the first six normalized Legendre polynomials.

Theorem 18 The Legendre Basis

The sequence p_0, p_1, p_2, \ldots of normalized Legendre polynomials is a Hilbert basis for $L^2([-1,1])$.

PROOF Let S be the linear span of p_0, p_1, p_2, \ldots Since

$$x^{n} = \frac{p_{n}(x)}{c_{n}} + \sum_{k=0}^{n-1} \langle p_{k}, x^{n} \rangle p_{k}(x),$$

the subspace S contains each x^n , and hence contains all polynomials. By the Weierstrass approximation theorem, every continuous function on [-1, 1] is a uniform limit (and hence and L^2 limit) of a sequence of polynomials. It follows that the closure of S contains all the continuous functions, and hence contains all L^2 functions by Theorem 13.

Thus every L^2 function f on [-1,1] can be written as the sum of an infinite Legendre series

$$f = \sum_{n=0}^{\infty} \langle p_n, f \rangle p_n.$$

These behave much like Fourier series, with analogs of Parseval's theorem and Parseval's identity.

Legendre polynomials are important in partial differential equations. For the following definition, recall that a **harmonic function** on a closed region in \mathbb{R}^3 is any continuous function that satisfies Laplace's equation $\nabla^2 f = 0$ on the interior of the region.

Definition: Dirichlet Problem on a Ball

Let B^3 denote the closed unit ball on \mathbb{R}^3 , and let S^2 denote the unit sphere. The **Dirichlet problem** on B^3 can be stated as follows:

Given a continuous function $f: S^2 \to \mathbb{R}$, find a harmonic function $F: B^3 \to \mathbb{R}$ that agrees with f on S^2 .

Since we are working on the ball, it makes sense to use **spherical coordinates** (ρ, θ, ϕ) , which are defined by the formulas

$$x = \rho \cos \theta \sin \phi, \qquad y = \rho \sin \theta \sin \phi, \qquad z = \rho \cos \phi.$$

Using spherical coordinates, one family of solutions to Laplace's equation on the ball can be written as follows:

$$F(\rho, \theta, \phi) = \rho^n p_n(\cos \phi)$$

where p_n is the *n*th Legendre polynomial. These solutions are all **axially symmetric** around the *z*-axis, meaning that they have no explicit dependence on θ .

Since the Legendre polynomials are a Hilbert basis, we can use these solutions to solve the Dirichlet problem for any axially symmetric function $f: S^2 \to \mathbb{R}$. All we do is write f as the sum of a Legendre series

$$f(\theta,\phi) = \sum_{n=0}^{\infty} a_n p_n(\cos\phi),$$

and then the corresponding harmonic function F will be defined by the formula

$$F(\rho, \theta, \phi) = \sum_{n=0}^{\infty} a_n \rho^n p_n(\cos \phi).$$

EXAMPLE 1 Let $f: S^2 \to \mathbb{R}$ be the function defined by

 $f(x, y, z) = z^2.$

Find a harmonic function $F: B^3 \to \mathbb{R}$ that agrees with f on S^2 . SOLUTION Note that $z = \cos \phi$ on S^2 , so we can write f as

$$f(\theta,\phi) = \cos^2\phi$$

Since

$$p_0(x) = c_0$$
 and $p_2(x) = c_2\left(x^2 - \frac{1}{3}\right)$

where $c_0 = 1/\sqrt{2}$ and $c_2 = \sqrt{45/8}$, we can write f as

$$f(\theta, \phi) = \frac{1}{3c_0} p_0(\cos \phi) + \frac{1}{c_2} p_2(\cos \phi).$$

Then the corresponding harmonic function $F: B^3 \to \mathbb{R}$ is given by

$$F(\rho,\theta,\phi) = \frac{1}{3c_0}p_0(\cos\phi) + \frac{\rho^2}{c_2}p_2(\cos\phi) = \frac{1}{3} + \rho^2\left(\cos^2\phi - \frac{1}{3}\right).$$

The functions $p_n(\cos \phi)$ on the unit sphere can be generalized to the family of **spherical harmonics** $Y_{\ell,m}(\theta, \phi)$, which are a Hilbert basis for $L^2(S^2)$. The Legendre polynomials defined above correspond to the m = 0 case:

$$Y_{\ell,0}(\theta,\phi) = \frac{1}{\sqrt{2\pi}} p_{\ell}(\cos\phi).$$

Every L^2 function f on the sphere has a Fourier decomposition in terms of spherical harmonics:

$$f(\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell,m} Y_{\ell,m}(\theta,\phi).$$

In quantum mechanics, these spherical harmonics give rise to the eigenfunctions of the square of the angular momentum operator. These are known as **atomic orbitals**, and can be used to describe the quantum wave functions of electrons in an atom.