
Convexity, Inequalities, and Norms

Convex Functions

You are probably familiar with the notion of concavity of functions. Given a twice-
differentiable function ϕ : R→ R,

• We say that ϕ is convex (or concave up) if ϕ′′(x) ≥ 0 for all x ∈ R.

• We say that ϕ is concave (or concave down) if ϕ′′(x) ≤ 0 for all x ∈ R.

For example, a quadratic function

ϕ(x) = ax2 + bx+ c

is convex if a ≥ 0, and is concave if a ≤ 0.
Unfortunately, the definitions above are not sufficiently general, since they require

ϕ to be twice differentiable. Instead, we will use the following definitions:

Definition: Convex and Concave Functions
Let −∞ ≤ a < b ≤ ∞, and let ϕ : (a, b)→ R be a function.

1. We say that ϕ is convex if

ϕ
(
(1− λ)x+ λy

)
≤ (1− λ)ϕ(x) + λϕ(y)

for all x, y ∈ (a, b) and λ ∈ [0, 1].

2. We say that ϕ is concave if

ϕ
(
(1− λ)x+ λy

)
≥ (1− λ)ϕ(x) + λϕ(y)

for all x, y ∈ (a, b) and λ ∈ [0, 1].
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Figure 1: For a convex function, every chord lies above the graph.

Geometrically, the function

λ 7→
(
(1− λ)x+ λy, (1− λ)ϕ(x) + λϕ(y)

)
, 0 ≤ λ ≤ 1

is a parametrization of a line segment in R2. This line segment has endpoints
(
x, ϕ(x)

)
and

(
y, ϕ(y)

)
, and is therefore a chord of the graph of ϕ (see figure 1). Thus our

definitions of concave and convex can be interpreted as follows:

• A function ϕ is convex if every chord lies above the graph of ϕ.

• A function ϕ is concave if every chord lies below the graph of ϕ.

Another fundamental geometric property of convex functions is that each tangent
line lies entirely below the graph of the function. This statement can be made precise
even for functions that are not differentiable:

Theorem 1 Tangent Lines for Convex Functions

Let ϕ : (a, b) → R be a convex function. Then for every point c ∈ (a, b), there
exists a line L in R2 with the following properties:

1. L passes through the point
(
c, ϕ(c)

)
.

2. The graph of ϕ lies entirely above L.

PROOF See exercise 1. �
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Figure 2: A tangent line to y = |x| at the point (0, 0).

We will refer to any line satisfying the conclusions of the above theorem as a
tangent line for ϕ at c. If ϕ is not differentiable, then the slope of a tangent line
may not be uniquely determined. For example, if ϕ(x) = |x|, then a tangent line for
ϕ at 0 may have any slope between −1 and 1 (see figure 2).

We shall use the existence of tangent lines to provide a geometric proof of the
continuity of convex functions:

Theorem 2 Continuity of Convex Functions

Every convex function is continuous.

PROOF Let ϕ : (a, b) → R be a convex function, and let c ∈ (a, b). Let L be a
linear function whose graph is a tangent line for ϕ at c, and let P be a piecewise-
linear function consisting of two chords to the graph of ϕ meeting at c (see figure 3).
Then L ≤ ϕ ≤ P in a neighborhood of c, and L(c) = ϕ(c) = P (c). Since L and P
are continuous at c, it follows from the Squeeze Theorem that ϕ is also continuous
at c. �

We now come to one of the most important inequalities in analysis:
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Figure 3: Using the Squeeze Theorem to prove that ϕ(x) is continuous at c

Theorem 3 Jensen’s Inequality (Finite Version)

Let ϕ : (a, b) → R be a convex function, where −∞ ≤ a < b ≤ ∞, and let
x1, . . . , xn ∈ (a, b). Then

ϕ(λ1x1 + · · ·+ λnxn) ≤ λ1ϕ(x1) + · · ·+ λnϕ(xn)

for any λ1, . . . , λn ∈ [0, 1] satisfying λ1 + · · ·+ λn = 1.

PROOF Let c = λ1x1 + · · ·+ λnxn, and let L be a linear function whose graph is a
tangent line for ϕ at c. Since λ1 + · · ·+ λn = 1, we know that

L(λ1x1 + · · ·+ λnxn) = λ1L(x1) + · · ·+ λnL(xn).

Since L ≤ ϕ and L(c) = ϕ(c), we conclude that

ϕ(c) = L(c) = L(λ1x1 + · · ·+ λnxn)

= λ1L(x1) + · · ·+ λnL(xn)

≤ λ1ϕ(x1) + · · ·+ λnϕ(xn). �

This statement can be generalized from finite sums to integrals. Specifically, we
can replace the points x1, . . . , xn by a function f : X → R, and we can replace the
weights λ1, . . . , λn by a measure µ on X for which µ(X) = 1.
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Theorem 4 Jensen’s Inequality (Integral Version)

Let (X,µ) be a measure space with µ(X) = 1. Let ϕ : (a, b) → R be a convex
function, where −∞ ≤ a < b ≤ ∞, and let f : X → (a, b) be an L1 function.
Then

ϕ

(∫
X

f dµ

)
≤
∫
X

(ϕ ◦ f) dµ

PROOF Let c =
∫
X
f dµ, and let L be a linear function whose graph is a tangent

line for ϕ at c. Since µ(X) = 1, we know that L(
∫
X
f dµ) =

∫
X

(L ◦ f) dµ. Since
L(c) = ϕ(c) and L ≤ ϕ, this gives

ϕ(c) = L(c) = L

(∫
X

f dµ

)
=

∫
X

(L ◦ f) dµ ≤
∫
X

(ϕ ◦ f) dµ. �

Means

You are probably aware of the arithmetic mean and geometric mean of positive
numbers:

x1 + · · ·+ xn
n

and n
√
x1 · · ·xn.

More generally, we can define weighted versions of these means. Given positive
weights λ1, . . . , λn satisfying λ1 + · · ·+λn = 1, the corresponding weighted arithmetic
and geometric means are

λ1x1 + · · ·+ λnxn and xλ11 · · ·xλnn .

These reduce to the unweighted means in the case where λ1 = · · · = λn = 1/n.
Arithmetic and geometric means satisfy a famous inequality, namely that the

geometric mean is always less than or equal to the arithmetic mean. This turns out
to be a simple application of Jensen’s inequality:

Theorem 5 AM–GM Inequality

Let x1, . . . , xn > 0, and let λ1, . . . , λn ∈ [0, 1] so that λ1 + · · ·+ λn = 1. Then

xλ11 · · · xλnn ≤ λ1x1 + · · ·+ λnxn.
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Figure 4: A visual proof that
√
ab < (a+ b)/2.

PROOF This theorem is equivalent to the convexity of the exponential function
(see figure 4). Specifically, we know that

eλ1t1+···λntn ≤ λ1e
t1 + · · ·λnetn

for all t1, . . . , tn ∈ R. Substituting xi = eti gives the desired result. �

The following theorem generalizes this inequality to arbitrary measure spaces.
The proof is essentially the same as the proof of the previous theorem.

Theorem 6 Integral AM–GM Inequality

Let (X,µ) be a measure space with µ(X) = 1, and let f : X → (0,∞) be a
measurable function. Then

exp

(∫
X

log f dµ

)
≤
∫
X

f dµ

PROOF Since the exponential function is convex, Jensen’s inequality gives

exp

(∫
X

log f dµ

)
≤
∫
X

exp(log f) dµ =

∫
X

f dµ. �

By the way, we can rescale to get a version of this inequality that applies whenever
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µ(X) is finite and nonzero:

exp

(
1

µ(X)

∫
X

log f dµ

)
≤ 1

µ(X)

∫
X

f dµ.

Note that the quantity on the right is simply the average value of f on X. The
quantity on the left can be thought of as the (continuous) geometric mean of f .

p-Means

There are many important means in mathematics and science, beyond just the arith-
metic and geometric means. For example, the harmonic mean of positive numbers
x1, . . . , xn is

n

1/x1 + · · ·+ 1/xn
.

This mean is used, for example, in calculating the average resistance of resistors in
parallel. For another example, the Euclidean mean of x1, . . . , xn is√

x21 + · · ·+ x2n
n

.

This mean is used to average measurements taken for the standard deviation of a
random variable.

The AM–GM inequality can be extended to cover both of these means. In partic-
ular, the inequality

n

1/x1 + · · ·+ 1/xn
≤ n
√
x1 · · ·xn ≤

x1 + · · ·+ xn
n

≤
√
x21 + · · ·+ x2n

n
.

holds for all x1, . . . , xn ∈ (0,∞).
Both of these means are examples of p-means:

Definition: p-Means
Let x1, . . . , xn > 0. If p ∈ R− {0}, the p-mean of x1, . . . , xn is(

xp1 + · · ·+ xpn
n

)1/p

.

For example:

• The 2-mean is the same as the Euclidean mean.

• The 1-mean is the same as the arithmetic mean.
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• The (−1)-mean is the same as the harmonic mean.

Though it may not be obvious, the geometric mean also fits into the family of p-means.
In particular, it is possible to show that

lim
p→0

(
xp1 + · · ·+ xpn

n

)1/p

= n
√
x1 · · ·xn

for any x1, . . . , xn ∈ (0,∞). Thus, we may think of the geometric mean as the 0-mean.
It is also possible to use limits to define means for ∞ and −∞. It turns out

the the ∞-mean of x1, . . . , xn is simply max(x1, . . . , xn), while the (−∞)-mean is
min(x1, . . . , xn).

As with the arithmetic and geometric means, we can also define weighted versions
of p-means. Given positive weights λ1, . . . , λn satisfying λ1 + · · · + λn = 1, the
corresponding weighted p-mean is(

λ1x
p
1 + · · ·+ λnx

p
n

)1/p
.

As you may have guessed, the p-means satisfy a generalization of the AM-GM in-
equality:

Theorem 7 Generalized Mean Inequality

Let x1, . . . , xn > 0, and let λ1, . . . , λn ∈ [0, 1] so that λ1 + · · ·+ λn = 1. Then

p ≤ q ⇒
(
λ1x

p
1 + · · ·+ λnx

p
n

)1/p ≤ (
λ1x

q
1 + · · ·+ λnx

q
n

)1/q
for all p, q ∈ R− {0}.

PROOF If p = 1 and q > 1, this inequality takes the form(
λ1x1 + · · ·+ λnxn

)q ≤ λ1x
q
1 + · · ·+ λnx

q
n

which follows immediately from the convexity of the function ϕ(x) = xq.
The case where 0 < p < q follows from this. Specifically, since q/p > 1, we have(

λ1(x
p
1) + · · ·+ λn(xpn)

)q/p ≤ λ1(x
p
1)
q/p + · · ·+ λn(xpn)q/p

and the desired inequality follows. Cases involving negative values of p or q are left
as an exercise to the reader. �
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Applying the same reasoning using the integral version of Jensen’s inequality gives

p ≤ q ⇒
(∫

X

fp dµ

)1/p

≤
(∫

X

f q dµ

)1/q

for any L1 function f : X → (0,∞), where (X,µ) is a measure space with a total
measure of one.

Norms

A norm is a function that measures the lengths of vectors in a vector space. The
most familiar norm is the Euclidean norm on Rn, which is defined by the formula

‖(x1, . . . , xn)‖ =
√
x21 + · · ·+ x2n.

Definition: Norm on a Vector Space
Let V be a vector space over R. A norm on V is a function ‖−‖ : V → R, denoted
v 7→ ‖v‖, with the following properties:

1. ‖v‖ ≥ 0 for all v ∈ V , and ‖v‖ = 0 if and only if v = 0.

2. ‖λv‖ = |λ| ‖v‖ for all λ ∈ R and v ∈ V .

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v,w ∈ V .

For those familiar with topology, any norm ‖− ‖ on a vector space gives a metric
d on the vector space defined by the formula

d(v,w) = ‖v −w‖.

Thus any vector space with a norm can be thought of as a topological space.
The Euclidean norm on Rn can be generalized to the family of p-norms. For

any p ≥ 1, the p-norm on Rn is defined by the formula

‖(x1, . . . , xn)‖p = (|x1|p + · · ·+ |xn|p)1/p

The usual Euclidean norm corresponds to the case where p = 2.
It is easy to see that the definition of the p-norm satisfies axioms (1) and (2) for

a norm, but third axiom (which is known as the triangle inequality) is far from
clear. The following theorem establishes the p-norm is in fact a norm.
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Theorem 8 Minkowski’s Inequality

If u,v ∈ Rn and p ∈ [1,∞), then

‖u + v‖p ≤ ‖u‖p + ‖v‖p

PROOF Since p ≥ 1, the function x 7→ |x|p is convex. It follows that

‖(1− λ)u + λv‖pp =
n∑
i=1

|(1− λ)ui + λvi|p

≤
n∑
i=1

(1− λ)|ui|p + λ|vi|p = (1− λ) ‖u‖pp + λ ‖v‖pp

for all u and v and λ ∈ [0, 1]. In particular, this proves that ‖(1 − λ)u + λv‖p ≤ 1
whenever ‖u‖p = ‖v‖p = 1.

From this Minkowski’s inequality follows. In particular, we may assume that u
and v are nonzero. Then u/‖u‖p and v/‖v‖p are unit vectors, so

‖u + v‖p
‖u‖p + ‖v‖p

=

∥∥∥∥ ‖u‖p
‖u‖p + ‖v‖p

u

‖u‖p
+

‖v‖p
‖u‖p + ‖v‖p

v

‖v‖p

∥∥∥∥
p

≤ 1. �

If ‖ − ‖ is a norm on a vector space V , the unit ball in V is the set

BV (1) =
{
v ∈ V

∣∣ ‖v‖ ≤ 1
}
.

For example, the unit ball in R2 with respect to the Euclidean norm is a round disk
of radius 2 centered at the origin.

Figure 5 shows the unit ball in R2 with respect to various p-norms. Their shapes
are all fairly similar, with the the unit ball being a diagonal square when p = 1, and
the unit ball approaching a horizontal square as p→∞. All of these unit balls have
a certain important geometric property.

Definition: Convex Set
Let V is a vector space over R. If v and w are points in V , the line segment from
v to w is the set

L(v,w) = {λv + (1− λ)w | 0 ≤ λ ≤ 1}.

A subset S ⊆ V is convex if L(v,w) ⊆ S for all v,w ∈ S.

The following theorem gives a geometric interpretation of Minkowski’s inequality.
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Figure 5: The shape of the unit ball in R2 for various p-norms.

Theorem 9 Shapes of Unit Balls

Let V be a vector space over R, and let ‖ − ‖ : V → R be a function satisfying
conditions (1) and (2) for a norm. Then ‖− ‖ satisfies the triangle inequality if
and only if the unit ball {

v ∈ V
∣∣ ‖v‖ ≤ 1

}
is convex.

PROOF Suppose first that ‖ − ‖ satisfies the triangle inequality. Let v and w be
points in the unit ball, and let p = λv + (1− λ)w be any point on the line segment
from v to w. Then

‖p‖ = ‖λv + (1− λ)w‖ ≤ ‖λv‖+ ‖(1− λ)w‖

= λ‖v‖+ (1− λ)‖w‖ ≤ λ(1) + (1− λ)(1) = 1

so p lies in the unit ball as well.
For the converse, suppose that the unit ball is convex, and let v,w ∈ V . If v or

w is 0, then clearly ‖v + w‖ ≤ ‖v‖ + ‖w‖, so suppose they are both nonzero. Let
v̂ = v/‖v‖ and ŵ = w/‖w‖. Then

‖v̂‖ =

∥∥∥∥ 1

‖v‖
v

∥∥∥∥ =
1

‖v‖
‖v‖ = 1

and similarly ‖ŵ‖ = 1. Thus v̂ and ŵ both lie in the unit ball. Since

‖v‖
‖v‖+ ‖w‖

+
‖w‖

‖v‖+ ‖w‖
= 1,

the point
v + w

‖v‖+ ‖w‖
=

‖v‖
‖v‖+ ‖w‖

v̂ +
‖w‖

‖v‖+ ‖w‖
ŵ

must lie in the unit ball as well, and it follows that ‖v + w‖ ≤ ‖v‖+ ‖w‖. �
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Finally, we should mention that there is an integral version of Minkowski’s in-
equality. This involves the notion of a p-norm on a measure space.

Definition: p-Norm
Let (X,µ) be a measure space, let f be a measurable function on X, and let
p ∈ [1,∞). The p-norm of f is the quantity

‖f‖p =

(∫
X

|f |p dµ
)1/p

Note that ‖f‖p is always defined, since it involves the integral of a non-negative
function, but it may be infinite. We can now state Minkowski’s inequality for arbitrary
measure spaces.

Theorem 10 Minkowski’s Inequality (Integral Version)

Let (X,µ) be a measure space, let f, g : X → R be measurable functions, and let
p ∈ [1,∞). Then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

PROOF Since p ≥ 1, the function x 7→ |x|p is convex. It follows that

‖(1− λ)f + λg‖pp =

∫
X

|(1− λ)f + λg|p dµ

≤
∫
X

(
(1− λ)|f |p + λ|g|p

)
dµ = (1− λ) ‖f‖pp + λ ‖g‖pp

for any measurable functions f and g and any λ ∈ [0, 1]. In particular, this proves
that ‖(1− λ)f + λg‖p ≤ 1 whenever ‖f‖p = ‖g‖p = 1.

From this Minkowski’s inequality follows. First, observe that if ‖f‖p = 0, then
f = 0 almost everywhere, so Minkowski’s inequality follows in this case. A similar
argument holds if ‖g‖p = 0, so suppose that ‖f‖p > 0 and ‖g‖p > 0. Let f̂ = f/‖f‖p
and ĝ = g/‖g‖p, and note that ‖f̂‖p = ‖ĝ‖p = 1. Then

‖f + g‖p
‖f‖p + ‖g‖p

=

∥∥∥∥ ‖f‖p
‖f‖p + ‖g‖p

f̂ +
‖g‖p

‖f‖p + ‖g‖p
ĝ

∥∥∥∥
p

≤ 1. �
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Hölder’s Inequality

Recall that the Euclidean norm on Rn satisfies the Cauchy-Schwarz Inequality

|u · v| ≤ ‖u‖2 ‖v‖2
for all u,v ∈ Rn. Our next task is to prove a generalization of this known as Hölder’s
inequality.

Lemma 11 Young’s Inequality

If x, y ∈ [0,∞) and p, q ∈ (1,∞) so that 1/p+ 1/q = 1, then

xy ≤ xp

p
+
yq

q

PROOF This can be written

(xp)1/p(yq)1/q ≤ 1

p
xp +

1

q
yq

which is an instance of the weighted AM–GM inequality. �

Theorem 12 Hölder’s Inequality

Let u,v ∈ Rn, and let p, q ∈ (1,∞) so that 1/p+ 1/q = 1. Then

|u · v| ≤ ‖u‖p ‖v‖q.

PROOF By Young’s inequality,

|u · v| ≤ |u1v1|+ · · ·+ |unvn|

≤ |u1|
p + · · ·+ |un|p

p
+
|v1|q + · · ·+ |vn|q

q
=
‖u‖pp
p

+
‖v‖qq
q

In particular, if ‖u‖p = ‖v‖q = 1, then |u ·v| ≤ 1/p+ 1/q = 1, which proves Hölder’s
inequality in this case.

For the general case, we may assume that u and v are nonzero. Then u/‖u‖p and
v/‖v‖q are unit vectors for their respective norms, and therefore∣∣∣∣ u

‖u‖p
· v

‖v‖q

∣∣∣∣ ≤ 1.
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Multiplying through by ‖u‖p ‖v‖q gives the desired result. �

This inequality is not hard to generalize to integrals. We begin with the following
definition.

Definition: Inner Product of Functions
Let (X,µ) be a measure space, and let f and g be measurable functions on X. The
L2 inner product of f and g is defined as follows:

〈f, g〉 =

∫
X

fg dµ.

Note that 〈f, g〉 may be undefined if fg is not Lebesgue integrable on X. Note also
that 〈f, g〉 = ‖fg‖1 if f and g are nonnegative, but that in general 〈f, g〉 ≤ ‖fg‖1.

Theorem 13 Hölder’s Inequality (Integral Version)

Let (X,µ) be a measure space, let f and g be measurable functions on X, and
let p, q ∈ (1,∞) so that 1/p+ 1/q = 1. If ‖f‖p <∞ and ‖g‖p <∞, then 〈f, g〉
is defined, and

|〈f, g〉| ≤ ‖f‖p ‖g‖q

PROOF Suppose first that ‖f‖p = ‖g‖q = 1. By Young’s inequality,

‖fg‖1 =

∫
X

|fg| dµ ≤
∫
X

(
|f |p

p
+
|g|q

q

)
dµ ≤

‖f‖pp
p

+
‖g‖qq
q

= 1.

Since fg is L1, it follows that 〈f, g〉 is defined. Then 〈f, g〉 ≤ ‖fg‖1 ≤ 1, which proves
Hölder’s inequality in this case.

For the general case, note first that if either ‖f‖p = 0 or ‖g‖q = 0, then either
f = 0 almost everywhere or g = 0 almost everywhere, so Hölder’s inequality holds in
that case. Otherwise, let f̂ = f/‖f‖p and ĝ = g/‖g‖q. Then ‖f̂‖p = ‖ĝ‖q = 1, so

|〈f, g〉| = ‖f‖p ‖g‖p |〈f̂ , ĝ〉| ≤ ‖f‖p ‖g‖q �
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In the case where p = q = 2, this gives the following.

Corollary 14 Cauchy-Schwarz Inequality (Integral Version)

Let (X,µ) be a measure space, and let f and g be measurable functions on X.
If ‖f‖2 <∞ and ‖g‖2 <∞, then 〈f, g〉 is defined, and

|〈f, g〉| ≤ ‖f‖2 ‖g‖2.

Exercises

1. a) Prove that a function ϕ : R→ R is convex if and only if

ϕ(y)− ϕ(x)

y − x
≤ ϕ(z)− ϕ(x)

z − x
≤ ϕ(z)− ϕ(y)

z − y

for all x, y, z ∈ R with x < y < z.

b) Use this characterization of convex functions to prove Theorem 1 on the
existence of tangent lines.

2. Let ϕ : (a, b) → R be a differentiable function. Prove that ϕ is convex if and
only if ϕ′ is non-decreasing.

3. Let ϕ : R→ R be a convex function. Prove that

ϕ
(
(1− λ)x+ λy

)
≥ (1− λ)ϕ(x) + λϕ(y)

for λ ∈ R− [0, 1]. Use this to provide an alternative proof that ϕ is continuous.

4. If x, y ≥ 0, prove that

lim
p→0

(
xp + yp

2

)1/p

=
√
xy and lim

p→∞

(
xp + yp

2

)1/p

= max(x, y).

What is lim
p→−∞

(
xp + yp

2

)1/p

?

5. a) If x1, . . . , xn, y1, . . . , yn ∈ (0,∞), prove that

√
x1y1 + · · · √xnyn

n
≤
√
x1 + · · ·+ xn

n

√
y1 + · · ·+ yn

n
.

That is, the arithmetic mean of geometric means is less than or equal to
the corresponding geometric mean of arithmetic means.
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b) If λ, µ ∈ [0, 1] and λ+ µ = 1, prove that

xλ1y
µ
1 + · · ·xλnyµn

n
≤
(
x1 + · · ·+ xn

n

)λ(
y1 + · · ·+ yn

n

)µ
.

6. Prove the Generalized Mean Inequality (Theorem 6) in the case where p or q is
negative.

7. Let f : [0, 1]→ R be a bounded measurable function, and define ϕ : [1,∞)→ R
by

ϕ(p) =

∫
[0,1]

fp dµ.

Prove that logϕ is convex on [1,∞).

8. Prove that (
1 + x2y + x4y2

)3 ≤ (
1 + x3 + x6

)2(
1 + y3 + y6

)
for all x, y ∈ (0,∞).

9. Let (X,µ) be a measure space, let f, g : X → [0,∞) be measurable functions,
and let p, q, r ∈ (1,∞) so that 1/p+ 1/q = 1/r. Prove that ‖fg‖r ≤ ‖f‖p ‖g‖q.


