
L1 Completeness

We are now ready for one of the most important theorems in analysis, arguably

more important than even the dominated convergence theorem. We refer to it as

the L1 completeness theorem, though it is also known as the L1 Riesz-Fischer

theorem.

Theorem 1 L1 Completeness

Let (X,µ) be a measure space, and let {fn} be a sequence of measurable functions

on X. Suppose that, for every ε > 0, there exists an N ∈ N so that

i, j ≥ N ⇒
∫
X

|fi − fj| dµ < ε.

Then there exists a measurable function f on X so that

lim
n→∞

∫
X

|fn − f | dµ = 0.

We will put off the proof of this theorem for a little while in favor of discussing

its meaning.

This theorem is essentially a Cauchy criterion for sequences of measurable func-

tions. In particular, recall that a sequence {xn} of real numbers is called a Cauchy

sequence if for every ε > 0, there exists an N ∈ N so that

i, j ≥ N ⇒ |xi − xj| < ε.

The Cauchy criterion states that any Cauchy sequence of real numbers converges.

The L1 completeness theorem can be viewed as a version of the Cauchy criterion

for measurable functions. The hypothesis of the theorem says that {fn} is something
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like a Cauchy sequence of measurable functions, and the conclusion says that {fn}
converges to some measurable function f in a certain sense. The following definition

makes both of these notions precise.

Definition: L1 Cauchy sequence, L1 Convergence

Let (X,µ) be a measure space, and let {fn} be a sequence of measurable functions

on X.

1. We say that {fn} is an L1 Cauchy sequence if for every ε > 0 there exists

an N ∈ N so that

i, j ≥ N ⇒
∫
X

|fi − fj| dµ < ε.

2. We say that {fn} converges in L1 to a measurable function f if

lim
n→∞

∫
X

|fn − f | dµ = 0.

Using these definitions, the L1 completeness theorem (Theorem 1) is simply the

statement that every L1 Cauchy sequence converges in L1.

We can simplify the notation in these definitions using the L1 norm. If f is a

measurable function on X, recall that the L1-norm of f is defined by

‖f‖1 =

∫
X

|f | dµ.

Then a sequence {fn} of measurable functions is a Cauchy sequence if and only if for

every ε > 0 there exists an N ∈ N so that

i, j ≥ N ⇒ ‖fi − fj‖1 < ε.

Similarly, a sequence {fn} converges in L1 to a function f if and only if

lim
n→∞

‖fn − f‖1 = 0.

Proof of Completeness

We begin by stating and proving a useful criterion for convergence of sequences of

functions, which is based on the idea of bounded variation. A sequence {xn} of real
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numbers is said to have bounded variation if

∞∑
n=1

|xn+1 − xn| < ∞.

That is, {xn} has bounded variation if the path on the number line that visits every

term of the sequence has finite total length.

Proposition 2 Bounded Variation Test

Any sequence {xn} of real numbers with bounded variation converges.

PROOF Since {xn} has bounded variation, the series

∞∑
n=1

(xn+1 − xn)

converges absolutely. Then

lim
n→∞

xn = lim
n→∞

(
x1 +

n−1∑
k=1

(xk+1 − xk)

)
= x1 +

∞∑
k=1

(xk+1 − xk). �

The following theorem gives a nice criterion for when a sequence {fn} of measur-

able functions converges.

Theorem 3 L1 Convergence Criterion

Let (X,µ) be a measure space, let {fn} be a sequence of measurable functions

on X, and suppose that

∞∑
n=1

∫
X

|fn+1 − fn| dµ < ∞.

Then {fn} converges pointwise almost everywhere to a measurable function f ,

and fn → f in L1.
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In general, we say that a sequence {fn} of measurable functions has bounded

L1-variation if
∞∑
n=1

‖fn+1 − fn‖1 < ∞.

The condition is precisely the hypothesis of the present theorem.

PROOF Let

g =
∞∑
n=1

|fn+1 − fn|.

By the monotone convergence theorem, we know that∫
X

g dµ =

∫
X

∞∑
n=1

|fn+1 − fn| dµ =
∞∑
n=1

∫
X

|fn+1 − fn| dµ < ∞.

so g is L1. In particular g(x) < ∞ for almost all x ∈ X, so {fn(x)} has bounded

variation for almost all x ∈ X, and hence {fn(x)} converges pointwise almost every-

where.

Let f be the pointwise limit of the sequence {fn}, and note that for each n ∈ N,

f − fn = lim
N→∞

fN+1 − fn = lim
N→∞

N∑
k=n

(fk+1 − fk) =
∞∑
k=n

(fk+1 − fk)

almost everywhere. Then

|f − fn| =

∣∣∣∣∣
∞∑
k=n

(
fk+1 − fk

)∣∣∣∣∣ ≤
∞∑
k=n

|fk+1 − fk| ≤ g

almost everywhere, so by the dominated convergence theorem

lim
n→∞

∫
X

|f − fn| dµ =

∫
X

lim
n→∞

|f − fn| dµ = 0.

Thus fn → f in L1. �

We will use this theorem to prove that every L1 Cauchy sequence converges. We

begin with the following proposition.

Proposition 4 Subsequences of Bounded Variation

Let (X,µ) be a measure space, and let {fn} be an L1 Cauchy sequence of measur-

able functions on X. Then there exists a subsequence of {fn} that has bounded

L1-variation.
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PROOF Since {fn} is an L1 Cauchy sequence, there exists an increasing sequence

N1 < N2 < · · · of positive integers so that

i, j ≥ Nk ⇒ ‖fi − fj‖1 <
1

2k
.

Since Nk+1, Nk ≥ Nk for all k, it follows that ‖fNk+1
− fNk

‖1 < 1/2k, so

∞∑
k=1

‖fNk+1
− fNk

‖ ≤
∞∑
k=1

1

2k
= 1.

Thus {fNk
} is a subsequence of {fn} with bounded L1-variation. �

We are now ready to prove the L1 completeness theorem.

PROOF OF THEOREM 1 Let (X,µ) be a measure space, and let {fn} be an

L1 Cauchy sequence of measurable functions on X. Let {fnk
} be a subsequence of

bounded L1-variation, where n1 < n2 < · · · is an increasing sequence of positive

integers. By Theorem 3, there exists a measurable function f so that fnk
→ f in L1.

We claim that fn → f in L1.

Let ε > 0. Since {fn} is an L1 Cauchy sequence, there exists an N ∈ N so that

i, j ≥ N ⇒ ‖fi − fj‖1 <
ε

2
.

Since fnk
→ f in L1, there exists a k so that nk ≥ N and ‖fnk

− f‖1 < ε/2. Then for

all n ≥ N , we have

‖fn − f‖1 ≤ ‖fn − fnk
‖1 + ‖fnk

− f‖1 <
ε

2
+
ε

2
= ε. �

Properties of L1 Convergence

L1 convergence is a new kind of convergence for functions, different from both point-

wise convergence and uniform convergence. In this section we explore the properties

of this new kind of convergence.

First, we observe that the L1 limit of a sequence isn’t quite uniquely determined.
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Proposition 5 Almost Uniqueness of the Limit

Let (X,µ) be a measure space, let {fn} be a sequence of measurable functions

on X, and let f and g be measurable functions on X. If

fn → f in L1 and fn → g in L1

then f = g almost everywhere.

PROOF Suppose fn → f in L1 and fn → g in L1. By the triangle inequality

‖f − g‖1 ≤ ‖fn − f‖1 + ‖fn − g‖1

for each n. Since ‖f − fn‖1 → 0 and ‖g − fn‖1 → 0 as n → ∞, it follows that

‖f − g‖1 = 0, and hence f = g almost everywhere. �

Note also that if {fn} and {gn} are sequences of measurable functions and fn = gn
almost everywhere for each n, then fn → f in L1 if and only if gn → f in L1. Thus L1

convergence really doesn’t care about the behavior of the functions on sets of measure

zero.

Now, whenever we learn about a new kind of convergence for functions, one im-

portant question to ask is how “strong” the convergence is. For example, uniform

convergence is stronger than pointwise convergence, since every sequence of functions

that converges uniformly also converges pointwise. The following example shows that

uniform convergence is not stronger than L1 convergence.

EXAMPLE 1 Uniform Convergence Does Not Imply L1 Convergence

Let fn : R→ R be the sequence of measurable functions

fn =
χ[0,n]

n
.

Then |fn| ≤ 1/n for all n, so fn → 0 uniformly. However,

lim
n→∞

‖fn − 0‖1 = lim
n→∞

∫
[0,n]

1

n
dm = 1 6= 0

and thus fn 6→ 0 in L1. �

Despite this example, there is a large class of measure spaces on which uniform

convergence is stronger than L1 convergence.
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Proposition 6 Uniform Convergence vs. L1 Convergence

Let (X,µ) be a measure space with µ(X) < ∞, let {fn} be a sequence of mea-

surable functions on X, and suppose that fn → f uniformly almost everywhere.

Then fn → f in L1.

PROOF By hypothesis, ‖fn − f‖∞ → 0 as n→∞. But

‖fn − f‖1 =

∫
|fn − f | dµ ≤ ‖fn − f‖∞ µ(X)

for all n, and hence ‖fn − f‖1 → 0 as n→∞. �

The next question is whether L1 convergence is stronger or weaker than pointwise

convergence. The answer turns out to be neither.

EXAMPLE 2 Pointwise Convergence Does Not Imply L1 Convergence

Let En be the following sequence of measurable subsets of [0, 1]:

[0, 1],
[
0, 1

2

]
,
[
1
2
, 1
]
,
[
0, 1

3

]
,
[
1
3
, 2
3

]
,
[
2
3
, 1
]
, . . .

Then {χEn} is a sequence of measurable functions on [0, 1], and

lim
n→∞

‖χEn − 0‖1 = lim
n→∞

m(En) = 0,

so χEn → 0 in L1. However, the sequence {χEn(x)} does not converge to 0 at any

point x ∈ [0, 1], since each x lies in infinitely many of the sets En. �

EXAMPLE 3 L1 Convergence Does Not Imply Pointwise Convergence

Let fn : R→ R be the sequence of measurable functions

fn = nχ(0,1/n).

Then fn → 0 pointwise, but

lim
n→∞

‖fn − 0‖1 = lim
n→∞

∫
(0,1/n)

n dm = 1 6= 0

and thus fn 6→ 0 in L1. �
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Despite the previous example, there is a certain sense in which L1 convergence

implies pointwise convergence.

Proposition 7 Pointwise Convergence on a Subsequence

Let (X,µ) be a measure space, let {fn} be a sequence of measurable functions

on X, and suppose that fn → f in L1. Then there exists a subsequence of {fn}
that converges pointwise to f almost everywhere.

PROOF It is easy to prove that any L1 convergent sequence must be an L1 Cauchy

sequence (see Exercise 1). In particular, {fn} is an L1 Cauchy sequence, so by Propo-

sition 4 there must be a subsequence {fnk
} of bounded L1-variation. By Theorem 3,

this subsequence converges pointwise almost everywhere to some function g, and in-

deed fnk
→ g in L1. But fnk

→ f in L1 as well, so f = g almost everywhere, and

hence fnk
→ f pointwise almost everywhere. �

Finally, there are some circumstances under which pointwise convergence implies

L1 convergence.

Proposition 8 L1 Dominated Convergence Theorem

Let (X,µ) be a measure space, and let {fn} be a sequence of L1 functions on X

converging pointwise to a measurable function f . Suppose there exists an L1

function g on X such that

|fn| ≤ g

for all n ∈ N. Then fn → f in L1.

PROOF Since |fn| ≤ g for all n and fn → f pointwise, it follows that |f | ≤ g, and

hence |fn − f | ≤ |fn| + |f | = 2g for all n. Therefore, by the dominated convergence

theorem

lim
n→∞

∫
X

|fn − f | dµ =

∫
X

lim
n→∞

|fn − f | dµ = 0,

so fn → f in L1. �
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The conclusion “fn → f in L1” here is actually stronger than the usual conclusion

that

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ,

as the following proposition shows.

Proposition 9 Integrals of L1 Limits

Let (X,µ) be a measure space, let {fn} be a sequence of L1 functions on X, and

suppose fn → f in L1. Then f is L1, and

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

PROOF Since fn → f in L1, there exists a k so that ‖fk − f‖1 <∞. Then by the

triangle inequality

‖f‖1 ≤ ‖fk − f‖1 + ‖fk‖1 < ∞+∞ = ∞

which proves that f is L1. Moreover, we have that∣∣∣∣∣
∫
X

fn dµ−
∫
X

f dµ

∣∣∣∣∣ =

∣∣∣∣∣
∫
X

(fn − f) dµ

∣∣∣∣∣ ≤
∫
X

|fn − f | dµ = ‖fn − f‖1

for each n. Since ‖fn − f‖1 → 0 as n→∞, it follows that

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ. �

Exercises

For the following exercises, let (X,µ) be a measure space.

1. Let {fn} be a sequence of measurable functions on X, and suppose that {fn}
converges in L1 to a measurable function f . Prove that {fn} is an L1 Cauchy

sequence.

2. Let {fn} be the sequence of measurable functions on [0, 1] defined by

fn(x) =
√
nxn.

Prove that fn → 0 in L1.
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3. Let {fn} and {gn} be sequences of measurable functions on X, let f and g be

measurable functions on X, and suppose that fn → f in L1 and gn → g in L1.

Prove that fn + gn → f + g in L1.

4. Let {fn} be a sequence of measurable functions on X, and suppose that {fn} has

bounded L1 variation. Give a direct proof that {fn} is an L1 Cauchy sequence.

5. Let {fn} be a sequence of measurable functions on X, and suppose that∑
n∈N

‖fn‖1 < ∞.

Prove that the sequence of partial sums Sn =
∑n

k=1 fk converges in L1.

6. Let f be an L1 function on X. Prove that there exists a sequence of simple

functions that converges to f in L1.

7. Find a sequence {fn} of analytic functions on R such that fn → 0 uniformly

but fn 6→ 0 in L1.

8. Let {fn} be a sequence of measurable functions on X, and suppose that

lim
n→∞

∫
X

|fn| dµ = 0.

Prove that there exists a subsequence of {fn} that converges to 0 almost every-

where.
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