
Lebesgue Measure

The idea of the Lebesgue integral is to first define a measure on subsets of R. That
is, we wish to assign a number m(S) to each subset S of R, representing the total
length that S takes up on the real number line. For example, the measure m(I) of
any interval I ⊆ R should be equal to its length `(I).

Measure should also be additive, meaning that the measure of a disjoint union
of two sets is the sum of the measures of the sets:

m(S ] T ) = m(S) +m(T ).

Indeed, if we want m to be compatible with taking limits, it should be countably
additive, meaning that

m

( ⊎
n∈N

Sn

)
=
∑
n∈N

m(Sn)

for any sequence {Sn} of pairwise disjoint subsets of R.
Of course, the measure m(R) of the entire real line should be infinite, as should

the measure of any open or closed ray. Thus the measure should be a function

m : P(R)→ [0,∞]

where P(R) is the power set of R.

Question: Measuring Subsets of R
Does there exist a function m : P(R)→ [0,∞] having the following properties?

1. m(I) = `(I) for every interval I ⊆ R.

2. For every sequence S1, S2, . . . of pairwise disjoint subsets of R,

m

( ⊎
n∈N

Sn

)
=
∑
n∈N

m(Sn).
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Surprisingly, the answer to this question is no, although it will be a while before we
prove this. But it turns out that it is impossible to define a functionm : P(R)→ [0,∞]
satisfying both of the conditions above.

The reason is that there exist certain subsets of R that really cannot be assigned
a measure. In fact, there is a rigorous sense in which most subsets of R cannot be
assigned a measure. Interestingly, actual examples of this phenomenon are difficult to
construct, with all such constructions requiring the axiom of choice. As a result, such
poorly behaved sets are quite rare in practice, and it is possible to define a measure
that works well for almost any set that one is likely to encounter.

Thus our plan is to restrict ourselves to a certain collection M of subsets of R,
which we will refer to as the Lebesgue measurable sets. We will then define a
function

m : M→ [0,∞]

called the Lebesgue measure, which has all of the desired properties, and can be
used to define the Lebesgue integral. The following theorem summarizes what we are
planning to prove.

Main Theorem Existence of Lebesgue Measure

There exists a collectionM of subsets of R (the measurable sets) and a function
m : M→ [0,∞] satisfying the following conditions:

1. Every interval I ⊆ R is measurable, with m(I) = `(I).

2. If E ⊆ R is a measurable set, then the complement Ec = R − E is also
measurable.

3. For each sequence {En} of measurable sets in R, the union
⋃

n∈NEn is also
measurable. Moreover, if the sets {En} are pairwise disjoint, then

m

( ⊎
n∈N

En

)
=
∑
n∈N

m(En).

Lebesgue Outer Measure

We begin by defining the Lebesgue outer measure, which assigns to each subset
S of R an “outer measure” m∗(S). Thus m∗ will be a function

m∗ : P(R)→ [0,∞]

where P(R) denotes the power set of R.
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Of course, m∗ will not be countably additive. Instead, it will have the weaker
property of countable subadditivity, meaning that

m∗
( ⋃

n∈N

Sn

)
≤
∑
n∈N

m∗(Sn)

for any sequence {Sn} of subsets of R.
The outer measure m∗ should be thought of as our first draft of Lebesgue measure.

Indeed, once we determine which subsets of R are measurable, we will simply restrict
m∗ to the collectionM of measurable sets to obtain the Lebesgue measure m. Thus,
even though m∗ is not countably additive in general, it will turn out be countably
additive on the collection of measurable sets.

For the following definition, we say that a collection C of subsets of R covers a
set S ⊆ R if S ⊆

⋃
C.

Definition: Lebesgue Outer Measure
If S ⊆ R, the (Lebesgue) outer measure of S is defined by

m∗(S) = inf

{∑
I∈C

`(I)

∣∣∣∣∣ C is a collection of open intervals that covers S

}
.

It should make intuitive geometric sense that m∗(J) = `(J) for any interval J ,
though we will put off the proof of this for a little while. The difficult part is to show
that if we cover an interval J with open intervals, then the sum of the lengths of the
open intervals is greater than or equal to the length of J .

Note that m∗(S) may be infinite if
∑

I∈C `(I) is infinite for every collection C of
open intervals that covers S. For example, it is not hard to see that m∗(R) must be
infinite.

Proposition 1 Properties of m∗

Lebesgue outer measure m∗ has the following properties:

1. m∗(∅) = 0.

2. If S ⊆ T ⊆ R, then m∗(S) ≤ m∗(T ).

3. If {Sn} is a sequence of subsets of R, then

m∗
( ⋃

n∈N

Sn

)
≤
∑
n∈N

m∗(Sn)
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PROOF Statement (1) is obvious from the definition. For (2), let S ⊆ T ⊆ R, and
let C be any collection of open intervals that covers T . Then C also covers S, so

m∗(S) ≤
∑
I∈C

`(I).

This holds for every cover C of T by open intervals, and therefore m∗(S) ≤ m∗(T ).
For (3), let {Sn} be a sequence of subsets of R, and let S =

⋃
n∈N Sn. If m∗(Sn)

is infinite for some n, then by statement (2) it follows that m∗(S) = ∞, and we are
done. Suppose then that m∗(Sn) < ∞ for all n. For each n, let Cn be a cover of Sn

by open intervals so that ∑
I∈Cn

`(I) ≤ m∗(Sn) +
ε

2n
.

Then C =
⋃

n∈N Cn is a cover of S by open intervals, so

m∗(S) ≤
∑
I∈C

`(I) ≤
∑
n∈N

∑
I∈Cn

`(I) ≤
∑
n∈N

(
m∗(Sn) +

ε

2n

)
= ε+

∑
n∈N

m∗(Sn).

Since ε was arbitrary, statement (3) follows. �

Lebesgue Measure

We are now ready to define the measurable subsets of R. There are many possi-
ble equivalent definitions of measurable sets, and the following definition is known
as Carethéodory’s criterion. It is not very intuitive, and we shall see equivalent
definitions of measurability later on that make much more sense. The advantage of
Carethéodory’s criterion is that it is relatively easy to use from a theoretical perspec-
tive, and also it can be generalized to many other settings.

Definition: Lebesgue Measure
A subset E of R is said to be (Lebesgue) measurable if

m∗(T ∩ E) +m∗(T ∩ Ec) = m∗(T ).

for every subset T of R. In this case, the outer measure m∗(E) of E is called the
(Lebesgue) measure of E, and is denoted m(E).

The arbitrary subset T of R that appears in the criterion is known as a test set.
Note that

m∗(T ∩ E) +m∗(T ∩ Ec) ≥ m∗(T )
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automatically since m∗ is subadditive. Thus a set E is Lebesgue measurable if and
only if

m∗(T ∩ E) +m∗(T ∩ Ec) ≤ m∗(T )

for every test set T .
Note also that Carethéodory’s criterion is symmetric between E and Ec. Thus a

set E is measurable if and only if its complement Ec is measurable.

Proposition 2 Union of Two Measurable Sets

If E and F are measurable subsets of R, then E ∪ F is also measurable.

PROOF Let T ⊆ R be a test set. Since E is measurable, we know that

m∗(T ) = m∗(T ∩ E) +m∗(T ∩ Ec). (1)

Also, if we use T ∩ (E ∪ F ) as a test set, we find that

m∗
(
T ∩ (E ∪ F )

)
= m∗(T ∩ E) +m∗

(
T ∩ Ec ∩ F

)
. (2)

Finally, since F is measurable, we know that

m∗(T ∩ Ec) = m∗(T ∩ Ec ∩ F ) +m∗(T ∩ Ec ∩ F c). (3)

Combining equations (1), (2), and (3) together yields

m∗(T ) = m∗
(
T ∩ (E ∪ F )

)
+m∗(T ∩ Ec ∩ F c).

Since Ec ∩ F c = (E ∪ F )c, this proves that E ∪ F is measurable. �

Corollary 3 Intersection of Two Measurable Sets

If E and F are measurable subsets of R, then E ∩ F is also measurable.

PROOF Since E and F are measurable, their complements Ec and F c is also mea-
surable. It follows that the union Ec ∪ F c is measurable, and the complement of this
is E ∩ F . �
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Proposition 4 Countable Additivity

Let {Ek} be a sequence of pairwise disjoint measurable subsets of R. Then the
union

⊎
k∈NEk is measurable, and

m

( ⊎
k∈N

Ek

)
=
∑
k∈N

m(Ek).

PROOF Let T ⊆ R be a test set, and let U =
⊎

k∈NEk. We wish to show that

m∗(T ) ≥ m∗(T ∩ U) +m∗(T ∩ U c).

For each n ∈ N, let Un =
⊎n

k=1Ek. By the Proposition 2, each Un is measurable, so

m∗(T ) = m∗(T ∩ Un) +m∗(T ∩ U c
n).

But each Un ⊆ U , so T ∩ U c
n ⊇ T ∩ U c, and hence

m∗(T ) ≥ m∗(T ∩ Un) +m∗(T ∩ U c).

Thus it suffices to show that m∗(T ∩ Un)→ m∗(T ∩ U) as n→∞.
To prove this claim, observe first that

m∗(T ∩ Uk) = m∗(T ∩ Uk ∩ Ek) +m∗(T ∩ Uk ∩ Ec
k)

= m∗(T ∩ Ek) +m∗(T ∩ Uk−1).

for each k. By induction, it follows that

m∗(T ∩ Un) =
n∑

k=1

m∗(T ∩ Ek)

for each n. Then
n∑

k=1

m∗(T ∩ Ek) = m∗(T ∩ Un) ≤ m∗(T ∩ U) ≤
∑
k∈N

m∗(T ∩ Ek),

where the last inequality follows from the countable subadditivity of m∗. By the
squeeze theorem, we conclude that

lim
n→∞

m∗(T ∩ Un) = m∗(T ∩ U) =
∑
k∈N

m∗(T ∩ Ek),

which proves that U is measurable. Moreover, in the case where T = R, the last
equation gives

m(U) =
∑
k∈N

m(Ek). �
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Corollary 5 Countable Union of Measurable Sets

If {Ek} is any sequence of measurable subsets of R, then the union
⋃

k∈NEk is
measurable.

PROOF Let Un =
⋃n

k=1Ek for each k, and let Fn = Un − Un−1, with F1 = U1.
By Proposition 2, we know that each Un is measurable, and thus Fn = Un ∩ U c

n−1 is
measurable by Corollary 3. But the sets {Fn} are disjoint, and⊎

n∈N

Fn =
⋃
k∈N

Ek

so
⋃

k∈NEk is measurable. �

The Geometry of Intervals

All that remains in proving the desired properties of Lebesgue measure is to show that
intervals in R are measurable, with m(I) = `(I) for any interval I. Unlike all of the
work so far, proving this requires exploiting the geometry of intervals in a significant
way.

We begin with the following proposition.

Proposition 6 Intervals are Measurable

Every interval J in R is Lebesgue measurable.

PROOF Since each interval in R is the intersection of two rays, it suffices to prove
that each ray in R is measurable.

Let R be a ray in R, and let T ⊆ R be a test set. We wish to prove that

m∗(T ) ≥ m∗(T ∩R) +m∗(T ∩Rc)

If m∗(T ) = ∞ then we are done, so suppose that m∗(T ) < ∞. Let ε > 0, and let C
be a cover of T by open intervals so that∑

I∈C

`(I) ≤ m∗(T ) +
ε

2
.

Since the sum
∑

I∈C `(I) is finite, C must be countable (see the appendix on sums).
Let {I1, I2, . . .} be an enumeration of the elements of C, where we set In = ∅ for
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n > |C| if C is finite. Then each of the intersections In ∩R and In ∩Rc is an interval,
with

`(In ∩R) + `(In ∩Rc) = `(In).

For each n, let Jn and Kn be open intervals containing In ∩ R and In ∩ Rc,
respectively, such that

`(Jn) ≤ `(In ∩R) +
ε

2n+2
and `(Kn) ≤ `(In ∩Rc) +

ε

2n+2
.

Then {Jn}n∈N is a cover of T ∩R by open intervals, and {Kn}n∈N is a cover of T ∩Rc

by open intervals, so

m∗(T ∩R) +m∗(T ∩Rc) ≤
∑
n∈N

`(Jn) +
∑
n∈N

`(Kn)

≤
∑
n∈N

(
`(In ∩R) +

ε

2n+2

)
+
∑
n∈N

(
`(In ∩Rc) +

ε

2n+2

)

=
ε

2
+
∑
n∈N

`(In) ≤ m∗(T ) + ε.

Since ε was arbitrary, this proves the desired inequality. �

All that remains is to prove that the measure of any interval is equal to its length.
For this we need the famous Heine-Borel theorem, which we will state and prove
next. Those familiar with point-set topology should recognize this theorem as a
special case of the statement that closed intervals in R are compact. In fact, the
notion of compactness in point-set topology arose as a generalization of this theorem.

Theorem 7 Heine-Borel Theorem

Let [a, b] be a closed interval in R, and let C be a family of open intervals that
covers [a, b]. Then there exists a finite subcollection of C that covers [a, b].

PROOF Let S be the set of all points s ∈ [a, b] for which the interval [a, s] can be
covered by some finite subcollection of C. Note that a ∈ S, since the interval [a, a] is
just a single point. Our goal is to prove that b ∈ S.

Let x = sup(S). Since S ⊆ [a, b], we know that x ∈ [a, b]. Therefore, there
exists an interval (c, d) ∈ C that contains x. Since c < x, there is some point s ∈ S
that lies between c and x. Let {(c1, d1), . . . , (cn, dn)} be a finite subcollection of C
that covers [a, x]. Then the collection {(c1, d1), . . . , (cn, dn), (c, d)} covers [a, x], which
proves that x ∈ S.
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Moreover, if x < b, then there exists an ε > 0 such that x + ε ∈ [a, b] and
x+ ε ∈ (c, d). Then the collection {(c1, d1), . . . , (cn, dn), (c, d)} covers [a, x+ ε], which
proves that x + ε ∈ S, a contradiction since x is the supremum of S. We conclude
that x = b, and therefore b ∈ S. �

In addition to the Heine-Borel theorem, the following proof will use the Riemann
integral and characteristic functions. If S is any subset of R, the characteristic
function (or indicator function) for S is the function χS : R→ R defined by

χS(x) =

{
1 if x ∈ S,
0 if x /∈ S.

Note that if I is an interval then∫ ∞
−∞

χI(x) dx = `(I).

Proposition 8 Measure of an Interval

If J is any interval in R, then m(J) = `(J).

PROOF Note first that, for every ε > 0, there exists an open interval J ′ containing
J so that `(J ′) ≤ `(J) + ε. Then the singleton collection {J ′} of open intervals
covers J , so

m(J) ≤ `(J ′) ≤ `(J) + ε.

Since ε was arbitrary, it follows that m(J) ≤ `(J).
Now let C be any collection of open intervals that covers J . Let ε > 0, and let K

be a closed subinterval of J such that `(K) ≥ `(J)− ε. By the Heine-Borel theorem,
there exists a finite subcollection {I1, . . . , In} of C that covers K. Then

χI1 + · · ·+ χIn ≥ χK

so∑
I∈C

`(I) ≥ `(I1) + · · ·+ `(In) =

∫ ∞
−∞

χI1(x) dx+ · · ·+
∫ ∞
−∞

χIn(x) dx

=

∫ ∞
−∞

(
χI1(x) + · · ·+ χIn(x)

)
dx ≥

∫ ∞
−∞

χK(x) dx = `(K) ≥ `(J)− ε.
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Since ε was arbitrary, it follows that∑
I∈C

`(I) ≥ `(J)

which proves that m(J) ≥ `(J). �

Exercises

1. If {En} is a sequence of measurable sets, prove that the intersection
⋂

n∈NEn is
measurable.

2. Prove that if S ⊆ R and m∗(S) = 0, then S is measurable.

3. a) If E ⊆ F are measurable sets, prove that F − E is measurable.

b) Prove that if m(E) <∞ then m(F − E) = m(F )−m(E).

4. If E and F are measurable sets with finite measure, prove that

m(E ∪ F ) = m(E) +m(F )−m(E ∩ F ).

5. Suppose that E ⊆ S ⊆ F , where E and F are measurable. Prove that if
m(E) = m(F ) and this measure is finite, then S is measurable as well.

6. Prove that every countable subset of R is measurable and has measure zero.

7. Given a nested sequence E1 ⊆ E2 ⊆ · · · of measurable sets, prove that

m

( ⋃
n∈N

En

)
= sup

n∈N
m(En).

8. a) Let E1 ⊇ E2 ⊇ · · · be a nested sequence of measurable sets with⋂
n∈N

En = ∅.

Prove that if m(E1) <∞, then m(En)→ 0 as n→∞.

b) Let E1 ⊇ E2 ⊇ · · · be a nested sequence of measurable sets, and suppose
that m(E1) <∞. Prove that

m

( ⋂
n∈N

En

)
= inf

n∈N
m(En).

c) Give an example of a nested sequence E1 ⊇ E2 ⊇ · · · of measurable sets
such that m(En) =∞ for all n but

m

( ⋂
n∈N

En

)
< ∞.


