Measures In General

Lebesgue measure on R is just one of many important measures in mathematics. In
these notes we introduce the general framework for measures.

Definition: o-Algebra
Let X be a set. A collection M of subsets of X is called a o-algebra if it satisfies
the following conditions:

1. 0 e M.

2. If E € M, then the complement £ = X — E also lies in M.

3. If {E,} is a sequence of sets in M, then the union (J,.y E» also lies in M.

The first axiom is almost unnecessary, for if M contains any set F, then it follows
that ) = (F U E°)° lies in M. Thus, the first axiom is equivalent to the requirement
that the collection M is nonempty.

For example, the collection of Lebesgue measurable subsets of R forms a o-algebra.
The following proposition states some basic properties of o-algebras, with the proofs
left to the reader.

Proposition 1

Let X be a set, and let M be a o-algebra on X.
1. If B\, Ey € M, then E1 U Ey and Ey N Ey lie in M.

2. If{E,} is a sequence of sets in M, then the intersection (), oy En also lies
in M.
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We can now define the general notion of a measure, with the elements of some
o-algebra being the collection of measurable sets.

Definition: Measure
Let X be a set. A measure on X is a function u: M — [0, 00|, where M is a
o-algebra of subsets of X, satisfying the following conditions:

L. pu(@)=0.
2. (Countable Additivity) For every sequence {E,} of pairwise disjoint sets
in M,
(W) = S
neN neN
Again, the first axiom is almost unnecessary. Since the sequence 0,0,0, ... is

pairwise disjoint, it follows from the second axiom that

(@) = > (o)

neN

and therefore p(() is either 0 or co. If p(0)) = oo, it follows that u(FE) = oo for every
set E, so the first axiom serves only to disallow this “infinity-only” measure.

The prototypical example of a measure is Lebesgue measure on R, but many
other measures are possible. For a simple example, if X is any set, then the function
w: P(x) — [0, 00| defined by p(E) = |E| (the cardinality of E) is a measure, known
as counting measure on X. For another example, there is a measure on R? that
essentially measures the area of a subset, and more generally there is a measure o R"
that measures n-dimensional volume.

As we will see in our construction, the Lebesgue integral can be defined on any
set X that has been equipped with a measure. In the case of counting measure, the
Lebesgue integral turns out to be the same as the sum of the function, i.e.

/Xf -3 f@)

zeX

for any function f: X — [—00, 00]. In the case of area measure on R?, the Lebesgue
integral turns out the be a Lebesgue version of the usual double integral.

Incidentally, if ©: M — [0,00] is a measure on X, then the triple (X, M, u) is
known as a measure space. A measure space is a very general notion of a set on
which one can integrate, in the same way that a topological space is a very general
notion of a set on which one can take limits.

The following proposition lists some of the most important properties of any mea-
sure. The proofs are left to the reader.
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Proposition 2 Properties of Measures

Let (X, M, i) be a measure space.

1. IfE,Fe M and ECF, then u(E) < pu(F).

2. IfE,FeM, then f(EUF)+ w(ENF) = p(E)+ u(F).
3. If{E,} is any sequence in M, then

u( U En) < D (B

neN neN

4. If E; C Ey C -+ is a nested sequence in M, then

u( U En) = sup u(Ey,).

neN neN

5. If E1 D Ey O --- is a nested sequence in M and at least one E, has finite

measure, then
o) = e

neN

Outer Measures

Our construction of the Lebesgue measure began by defining the Lebesgue outer
measure m*, and then using it to determine which sets are measurable. This sort of

construction can be carried out in general.

Definition: Quter Measure

the following conditions:
1. p*(0) =0.
2. (Monotonicity) If S C T C X, then p*(S5) < p*(T).
3. (Countable Subadditivity) If {S,} is any sequence of subsets of X, then

u*( U Sn> <> p(Sh).

neN neN

Let X be aset. An outer measure on X is a function p*: P(X) — [0, oo] satisfying
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The following theorem generalizes our construction of Lebesgue measure. The
proof of this theorem is almost word-for-word the same as our proofs in the construc-
tion of Lebesgue measure.

Theorem 3 Carathéodory's Extension Theorem

Let X be a set, and let p* be an outer measure on X. Let M be the collection
of all subsets E C X satisfying

w(TNE)+p(TNEY) = p(T)

for every T C X. Then M is a o-algebra, and the restriction of u* to M 1is a
measure.

A set E that lies in the o-algebra M defined in this theorem is said to be
Carathéodory measurable with respect to p*. For example, a set £ C R is
Carathéodory measurable with respect to Lebesgue outer measure m* if and only if
it is Lebesgue measurable.

Carathéodory’s extension theorem makes it easy to construct measures. For ex-
ample, consider the function p*: P(R?) — [0, 0o] defined by the formula

p*(S) = inf { > A(D)

C is a collection of open disks that covers S } .
DeC

where A(D) denotes the area of an open disk D. It is quite easy to show that p*
is an outer measure on R?, and using the above theorem we immediately obtain a
measure 4 on R2.

What is hard to prove is that u actually measures area on R? i.e. that u(D) =
A(D) for any open disk D. This involves the geometry of disks in a significant way,
similar to how we needed to use the geometry of intervals in a significant way to prove
that the Lebesgue measure of an interval is its length. In general, Carathéodory’s
extension theorem makes it easy to construct measures, but the construction is en-
tirely abstract, and it’s often difficult to determine the actual geometric meaning of
the resulting measure.
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Complete Measures

For many measures, sets of measure zero have a special property which is often useful.

Definition: Complete Measure
Let (X, M, u) be a measure space. We say that p is complete if for every Z € M
with p(Z) = 0, every subset of Z also lies in M.

That is, a measure is complete if every subset of a set of measure zero is measur-
able. A subset of a set of measure zero is sometimes called a null set, so a measure
is complete if and only if every null set is measurable.

Proposition 4 Completeness of Carathéodory Extensions

Any measure obtained from Carathéodory’s extension theorem is complete. In
particular, Lebesque measure is complete.

PROOF Let X be a set, let u* be an outer measure on X, and let u: M — [0, o0]
be the measure obtained from p* via Carathéodory’s extension theorem. Let N C X
be a null set, so N C Z for some Z € M with u(Z) = 0. Then p*(N) < p*(Z) =0,
so u*(N) = 0. Then for any set 7' C X, we have

p(TON)+p (TN < p'(N)+p™(T) = p'(T).
But p*(T'NN) + p*(T N N€) > p*(N) by the subadditivity of u*, and therefore N is

Carathéodory measurable. [

The following proposition shows that any measure can be extended to a complete
measure in a canonical way.

Proposition 5 Completion of a Measure

Let (X, M, i) be a measure space, and let
M ={EUN|FE e Mand N C X is a null set}.

Then M’ is a o-algebra, and there exists a unique measure p': M’ — [0, o0 that
agrees with p on M. Furthermore, this measure p' is complete.
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PROOF Note first that any countable union of null sets is a null set. For given a
sequence { N, } of null sets, let {Z,,} be a sequence of sets of measure zero in M such
that N, C Z, for each n. Then the union |J, _y Z, has measure zero and contains
U,hen Vn, so the latter is a null set.

We claim that M’ is a sigma algebra. Clearly M’ is nonempty. Next, given an
element EUN € M’, let Z € M be a set of measure zero that contains N. Then

(EUN) = (EUZ)°U(Z — N).

neN

But (EUZ)® € M and Z — N is a null set, so (FU N)® € M. Finally, given a
sequence {E, U N,,} in M’ we have

UE.uN,) = (UEH> U (UNn)

neN neN neN

The first term on the right lies in M and the second is a null set, so the whole union
lies in M’.

Now define a function p': M’ — [0, 00] by p/(EUN) = u(E) for every E € M and
every null set N. To prove this function is well-defined, suppose that F1UN; = E;UN,
for some Ei, F, € M and some null sets N; and N,. Then E; C Ey U Ny C Ey U Zs,
where Z, € M is a set of measure zero that contains N, so

w(Er) < p(E2UZy) < p(Es) + u(Z2) = p(Es).

A similar proof shows that u(Es) < pu(Er), so p(Er) = p(Es).
To prove that y is a measure, observe first that p/(0) = u(@) = 0. Next, if
{E, U N,} is a sequence of pairwise disjoint elements of M’, let £ = ), . £, and

N =,,cny Nn- Then E € M and N is a null set, so

W(WEUN)) = HEUN) = u(B) = T uB) = S (BN

neN neN neN

which proves that p’ is a measure.
To prove that y' is unique, suppose p”’: M’ — [0, 0] is any measure that agrees
with g on M. Then for any EUN € M’, we have

p(E) = p'"(E) < W(EUN) < p'(BEUZ) = W(BUZ) = u(E),

where Z € M is a set of measure zero that contains N. It follows that p/(EUN) =
w(E) =/ (EUN), and thus p” = 1.

All that remains is to prove that p' is complete, so let S be any null set with
respect to /. Then S C FUN for some EUN € M’ for which p/(EUN) = 0. Note
then that p(E) = p/(EF U N) = 0. Furthermore, since N is a null set with respect
to u, we know that N C Z for some set Z € M with measure zero. Then FUZ € M
and has measure zero and S C F'U Z, so S is a null set with respect to y, and hence

SeM. [ ]
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The measure ' constructed in the above proposition is known as the completion
of p. Note that the completion of u is entirely determined by w, but admits more
measurable sets. In most contexts, this makes the completion of a measure strictly
better than the original measure, and when constructing measures it is common to
immediately pass from any non-complete measure to the corresponding completion.



