
Measures In General

Lebesgue measure on R is just one of many important measures in mathematics. In
these notes we introduce the general framework for measures.

Definition: σ-Algebra
Let X be a set. A collectionM of subsets of X is called a σ-algebra if it satisfies
the following conditions:

1. ∅ ∈ M.

2. If E ∈M, then the complement Ec = X − E also lies in M.

3. If {En} is a sequence of sets in M, then the union
⋃

n∈NEn also lies in M.

The first axiom is almost unnecessary, for ifM contains any set E, then it follows
that ∅ = (E ∪ Ec)c lies in M. Thus, the first axiom is equivalent to the requirement
that the collection M is nonempty.

For example, the collection of Lebesgue measurable subsets of R forms a σ-algebra.
The following proposition states some basic properties of σ-algebras, with the proofs
left to the reader.

Proposition 1

Let X be a set, and let M be a σ-algebra on X.

1. If E1, E2 ∈M, then E1 ∪ E2 and E1 ∩ E2 lie in M.

2. If {En} is a sequence of sets in M, then the intersection
⋂

n∈NEn also lies
in M.
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We can now define the general notion of a measure, with the elements of some
σ-algebra being the collection of measurable sets.

Definition: Measure
Let X be a set. A measure on X is a function µ : M → [0,∞], where M is a
σ-algebra of subsets of X, satisfying the following conditions:

1. µ(∅) = 0.

2. (Countable Additivity) For every sequence {En} of pairwise disjoint sets
in M,

µ

( ⊎
n∈N

En

)
=
∑
n∈N

µ(En).

Again, the first axiom is almost unnecessary. Since the sequence ∅, ∅, ∅, . . . is
pairwise disjoint, it follows from the second axiom that

µ(∅) =
∑
n∈N

µ(∅)

and therefore µ(∅) is either 0 or ∞. If µ(∅) =∞, it follows that µ(E) =∞ for every
set E, so the first axiom serves only to disallow this “infinity-only” measure.

The prototypical example of a measure is Lebesgue measure on R, but many
other measures are possible. For a simple example, if X is any set, then the function
µ : P(x) → [0,∞] defined by µ(E) = |E| (the cardinality of E) is a measure, known
as counting measure on X. For another example, there is a measure on R2 that
essentially measures the area of a subset, and more generally there is a measure o Rn

that measures n-dimensional volume.
As we will see in our construction, the Lebesgue integral can be defined on any

set X that has been equipped with a measure. In the case of counting measure, the
Lebesgue integral turns out to be the same as the sum of the function, i.e.∫

X

f =
∑
x∈X

f(x)

for any function f : X → [−∞,∞]. In the case of area measure on R2, the Lebesgue
integral turns out the be a Lebesgue version of the usual double integral.

Incidentally, if µ : M → [0,∞] is a measure on X, then the triple (X,M, µ) is
known as a measure space. A measure space is a very general notion of a set on
which one can integrate, in the same way that a topological space is a very general
notion of a set on which one can take limits.

The following proposition lists some of the most important properties of any mea-
sure. The proofs are left to the reader.
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Proposition 2 Properties of Measures

Let (X,M, µ) be a measure space.

1. If E,F ∈M and E ⊆ F , then µ(E) ≤ µ(F ).

2. If E,F ∈M, then µ(E ∪ F ) + µ(E ∩ F ) = µ(E) + µ(F ).

3. If {En} is any sequence in M, then

µ

( ⋃
n∈N

En

)
≤
∑
n∈N

µ(En).

4. If E1 ⊆ E2 ⊆ · · · is a nested sequence in M, then

µ

( ⋃
n∈N

En

)
= sup

n∈N
µ(En).

5. If E1 ⊇ E2 ⊇ · · · is a nested sequence in M and at least one En has finite
measure, then

µ

( ⋂
n∈N

En

)
= inf

n∈N
µ(En).

Outer Measures

Our construction of the Lebesgue measure began by defining the Lebesgue outer
measure m∗, and then using it to determine which sets are measurable. This sort of
construction can be carried out in general.

Definition: Outer Measure
LetX be a set. An outer measure onX is a function µ∗ : P(X)→ [0,∞] satisfying
the following conditions:

1. µ∗(∅) = 0.

2. (Monotonicity) If S ⊆ T ⊆ X, then µ∗(S) ≤ µ∗(T ).

3. (Countable Subadditivity) If {Sn} is any sequence of subsets of X, then

µ∗
( ⋃

n∈N

Sn

)
≤
∑
n∈N

µ∗(Sn).
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The following theorem generalizes our construction of Lebesgue measure. The
proof of this theorem is almost word-for-word the same as our proofs in the construc-
tion of Lebesgue measure.

Theorem 3 Carathéodory’s Extension Theorem

Let X be a set, and let µ∗ be an outer measure on X. Let M be the collection
of all subsets E ⊆ X satisfying

µ∗(T ∩ E) + µ∗(T ∩ Ec) = µ∗(T )

for every T ⊆ X. Then M is a σ-algebra, and the restriction of µ∗ to M is a
measure.

A set E that lies in the σ-algebra M defined in this theorem is said to be
Carathéodory measurable with respect to µ∗. For example, a set E ⊆ R is
Carathéodory measurable with respect to Lebesgue outer measure m∗ if and only if
it is Lebesgue measurable.

Carathéodory’s extension theorem makes it easy to construct measures. For ex-
ample, consider the function µ∗ : P(R2)→ [0,∞] defined by the formula

µ∗(S) = inf

{∑
D∈C

A(D)

∣∣∣∣∣ C is a collection of open disks that covers S

}
.

where A(D) denotes the area of an open disk D. It is quite easy to show that µ∗

is an outer measure on R2, and using the above theorem we immediately obtain a
measure µ on R2.

What is hard to prove is that µ actually measures area on R2, i.e. that µ(D) =
A(D) for any open disk D. This involves the geometry of disks in a significant way,
similar to how we needed to use the geometry of intervals in a significant way to prove
that the Lebesgue measure of an interval is its length. In general, Carathéodory’s
extension theorem makes it easy to construct measures, but the construction is en-
tirely abstract, and it’s often difficult to determine the actual geometric meaning of
the resulting measure.
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Complete Measures

For many measures, sets of measure zero have a special property which is often useful.

Definition: Complete Measure
Let (X,M, µ) be a measure space. We say that µ is complete if for every Z ∈M
with µ(Z) = 0, every subset of Z also lies in M.

That is, a measure is complete if every subset of a set of measure zero is measur-
able. A subset of a set of measure zero is sometimes called a null set, so a measure
is complete if and only if every null set is measurable.

Proposition 4 Completeness of Carathéodory Extensions

Any measure obtained from Carathéodory’s extension theorem is complete. In
particular, Lebesgue measure is complete.

PROOF Let X be a set, let µ∗ be an outer measure on X, and let µ : M→ [0,∞]
be the measure obtained from µ∗ via Carathéodory’s extension theorem. Let N ⊆ X
be a null set, so N ⊆ Z for some Z ∈ M with µ(Z) = 0. Then µ∗(N) ≤ µ∗(Z) = 0,
so µ∗(N) = 0. Then for any set T ⊆ X, we have

µ∗(T ∩N) + µ∗(T ∩N c) ≤ µ∗(N) + µ∗(T ) = µ∗(T ).

But µ∗(T ∩N) + µ∗(T ∩N c) ≥ µ∗(N) by the subadditivity of µ∗, and therefore N is
Carathéodory measurable. �

The following proposition shows that any measure can be extended to a complete
measure in a canonical way.

Proposition 5 Completion of a Measure

Let (X,M, µ) be a measure space, and let

M′ = {E ∪N | E ∈M and N ⊆ X is a null set}.

ThenM′ is a σ-algebra, and there exists a unique measure µ′ : M′ → [0,∞] that
agrees with µ on M. Furthermore, this measure µ′ is complete.
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PROOF Note first that any countable union of null sets is a null set. For given a
sequence {Nn} of null sets, let {Zn} be a sequence of sets of measure zero inM such
that Nn ⊆ Zn for each n. Then the union

⋃
n∈N Zn has measure zero and contains⋃

n∈NNn, so the latter is a null set.
We claim that M′ is a sigma algebra. Clearly M′ is nonempty. Next, given an

element E ∪N ∈M′, let Z ∈M be a set of measure zero that contains N . Then

(E ∪N)c = (E ∪ Z)c ∪ (Z −N).

But (E ∪ Z)c ∈ M and Z − N is a null set, so (E ∪ N)c ∈ M′. Finally, given a
sequence {En ∪Nn} in M′, we have⋃

n∈N

(En ∪Nn) =

( ⋃
n∈N

En

)
∪
( ⋃

n∈N

Nn

)
.

The first term on the right lies inM and the second is a null set, so the whole union
lies in M′.

Now define a function µ′ : M′ → [0,∞] by µ′(E∪N) = µ(E) for every E ∈M and
every null set N . To prove this function is well-defined, suppose that E1∪N1 = E2∪N2

for some E1, E2 ∈M and some null sets N1 and N2. Then E1 ⊆ E2 ∪N2 ⊆ E2 ∪ Z2,
where Z2 ∈M is a set of measure zero that contains N2, so

µ(E1) ≤ µ(E2 ∪ Z2) ≤ µ(E2) + µ(Z2) = µ(E2).

A similar proof shows that µ(E2) ≤ µ(E1), so µ(E1) = µ(E2).
To prove that µ′ is a measure, observe first that µ′(∅) = µ(∅) = 0. Next, if

{En ∪ Nn} is a sequence of pairwise disjoint elements of M′, let E =
⊎

n∈NEn and
N =

⊎
n∈NNn. Then E ∈M and N is a null set, so

µ′
( ⊎

n∈N

(En ∪Nn)

)
= µ′(E ∪N) = µ(E) =

∑
n∈N

µ(En) =
∑
n∈N

µ′(En ∪Nn)

which proves that µ′ is a measure.
To prove that µ′ is unique, suppose µ′′ : M′ → [0,∞] is any measure that agrees

with µ on M. Then for any E ∪N ∈M′, we have

µ(E) = µ′′(E) ≤ µ′′(E ∪N) ≤ µ′′(E ∪ Z) = µ(E ∪ Z) = µ(E),

where Z ∈M is a set of measure zero that contains N . It follows that µ′′(E ∪N) =
µ(E) = µ′(E ∪N), and thus µ′′ = µ′.

All that remains is to prove that µ′ is complete, so let S be any null set with
respect to µ′. Then S ⊆ E ∪N for some E ∪N ∈M′ for which µ′(E ∪N) = 0. Note
then that µ(E) = µ′(E ∪ N) = 0. Furthermore, since N is a null set with respect
to µ, we know that N ⊆ Z for some set Z ∈M with measure zero. Then E∪Z ∈M
and has measure zero and S ⊆ E ∪Z, so S is a null set with respect to µ, and hence
S ∈M′. �
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The measure µ′ constructed in the above proposition is known as the completion
of µ. Note that the completion of µ is entirely determined by µ, but admits more
measurable sets. In most contexts, this makes the completion of a measure strictly
better than the original measure, and when constructing measures it is common to
immediately pass from any non-complete measure to the corresponding completion.


