
More Measure Theory

In this set of notes we sketch some results in measure theory that we don’t have time
to cover in full. Most of the results can be found in Rudin’s Real & Complex Analysis.

Some of the results here require a certain technical assumption on measures.

Definition: σ-Finite Measure Space
A measure space (X,µ) is said to be σ-finite if X can be expressed as a countable
union of measurable sets of finite measure.

For example, the real line is σ-finite with respect to Lebesgue measure, since

R =
⋃
n∈N

[−n, n]

and each set [−n, n] has finite measure. Similarly, the natural numbers N are σ-finite
with respect to counting measure.

Not every measure space is σ-finite. For example, if we put counting measure
on R, then the resulting measure space is not σ-finite, since R cannot be expressed as
a countable union of finite sets. However, most measure spaces that are important in
mathematics are σ-finite, and it is considered a very reasonable restriction to place
on a measure space. Throughout these notes we will assume that all measure
spaces under consideration are σ-finite.

Product Measures

We would like to be able to use the Lebesgue integral to integrate functions on R2

and R3. This involves defining measures on R2 and R3 that correspond to areas and
volume, respectively. The following theorem treats this construction from a general
point of view.
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Theorem 1 Product Measures

Let (X, E , µ) and (Y,F , ν) be measure spaces, and let E ⊗F be the σ-algebra on
X × Y generated by the following collection of sets:

{E × F | E ∈ E , F ∈ F}.

Then there exists a unique measure ξ : E ⊗ F → [0,∞] such that

ξ(E × F ) = ξ(E) ξ(F )

for all E ∈ E and F ∈ F .

The measure ξ is called the product of the measures µ and ν. This is often
denoted

ξ = µ× ν
or sometimes

dξ = dµ× dν.

EXAMPLE 1 Lebesgue Measure on Rn

If m denotes Lebesgue measure on R, then the n-fold product

µ = m× · · · ×m︸ ︷︷ ︸
n times

is a measure on Rn. This measure has the property that

µ(E1 × · · ·En) = m(E1) · · ·m(En)

for any measurable subsets E1, . . . , En ⊆ R, so µ essentially measures the n-dimensional
volume of set. This measure µ is sometimes referred to as Lebesgue measure
on Rn. �

One flaw in our definition of a product measure is that the product µ×ν may not
be complete, even if µ and ν are themselves complete measures. For this reason, the
product of µ and ν is sometimes defined to be the completion of the measure defined
above. In particular, Lebesgue measure on Rn is usually defined to be the completion
of the n-fold product m× · · · ×m.

Whenever we construct a new measure, a basic question to ask is what the asso-
ciated Lebesgue integral looks like. For a product measure ξ = µ × ν, the obvious
guess is that∫

X×Y
f dξ =

∫
Y

∫
X

f(x, y) dµ(x) dν(y) =

∫
X

∫
Y

f(x, y) dµ(y) dν(x)
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for every measurable function f on X × Y . The integrals on the right are known
as iterated integrals, and intuitively they should always be equal. Unfortunately,
there are simple examples where this is not the case.

EXAMPLE 2 Unequal Iterated Integrals
Define a piecewise constant function f : R2 → R as follows. In the first quadrant,
f is constant on each lattice square [j, j + 1) × [k, k + 1), with values shown in the
following picture:
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The function f is zero in the second, third, and fourth quadrants.
Now, since each 1 cancels horizontally with a −1, we see that∫

R
f(x, y) dm(x) = 0

for all y ∈ R, and therefore∫
R

∫
R
f(x, y) dm(x) dm(y) = 0.

In the vertical direction, each 1 cancels with a −1 except for the first, so∫
R
f(x, y) dm(y) =

{
1 if x ∈ [0, 1)

0 otherwise.

It follows that ∫
R

∫
R
f(x, y) dm(y) dm(x) = 1,

so the iterated integrals are different. In this case, the Lebesgue integral∫
R2

f dµ

does not exist, since f+ and f− each have infinite integral. �
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Note that this example was really about iterated sums. In particular, if

aij =


1 if i = j,

−1 if i = j + 1,

0 otherwise,

then ∑
j∈N

∑
i∈N

aij = 0 and
∑
i∈N

∑
j∈N

aij = 1.

Thus some hypotheses will be necessary if we want to understand integrals with
respect to product measures.

Theorem 2 Fubini’s Theorem

Let (X, E , µ) and (Y,F , ν) be measure spaces, and let ξ = µ × ν. Let f be a
measurable function on X × Y , and suppose that either f ≥ 0 or f ∈ L1(R2).
Then the integrals∫

X

f(x, y) dµ(x) and

∫
Y

f(x, y) dν(y)

are defined for almost all x ∈ X and y ∈ Y , the functions

x 7→
∫
Y

f(x, y) dν(y) and y 7→
∫
X

f(x, y) dµ(x)

are measurable, and∫
X×Y

f dξ =

∫
X

∫
Y

f(x, y) dν(y) dµ(x) =

∫
Y

∫
X

f(x, y) dµ(x) dν(y)

In some textbooks, the name Fubini’s theorem refers only the case where f
is L1, whereas the case where f ≥ 0 is known as Tonelli’s theorem.
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Radon-Nikodym Derivatives

Recall the following definition.

Definition: Weighted Measures
Let (X,M, µ) be a measure space and let f be a non-negative measurable function
on X. The resulting weighted measure ν : M→ [0,∞], denoted

dν = f dµ

is the measure defined by

ν(E) =

∫
E

f dµ

for all E ∈M.

This definition takes the point of view that we start with f and use it to con-
struct ν. If instead we start with ν, it is common to use slightly different terminology.

Definition: Absolute Continuity, Radon-Nikodym Derivative
Let (X,M, µ) be a measure space and let ν : M → [0,∞] be a measure. We say
that ν is absolutely continuous with respect to µ if there exists a non-negative
measurable function f on X such that

dν = f dµ.

In this case, the function f is called the Radon-Nikodym derivative of ν with
respect to µ, denoted

f =
dν

dµ
.

The most important case is when µ is Lebesgue measure on R. For this case, ν is
absolutely continuous with respect to µ if the “distribution of mass” on R correspond-
ing to ν can be described by a density function. The following example describes a
measure on R that is not absolutely continuous with respect to Lebesgue measure.

EXAMPLE 3 δ-Measure
Let δ : M→ [0,∞] be the function defined by

δ(E) =

{
1 if 0 ∈ E,
0 if 0 /∈ E.
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It is easy to check that this is a measure on R. Intuitively, this corresponds to a point
mass at the origin with a measure of 1, with no mass anywhere else on the real line.

Since δ({0}) = 1, this measure cannot be absolutely continuous with respect to
Lebesgue measure m. In particular, if f is any non-negative measurable function,
then ∫

{0}
f dm = 0 6= 1

and hence f dm 6= dδ.
Incidentally, the measure δ has the property that∫

R
f dδ = f(0)

for any measurable function f . �

The following theorem characterizes absolute continuity.

Theorem 3 Radon-Nikodym Theorem

Let (X,M, µ) be a measure space and let ν : M→ [0,∞] be a measure. Then ν
is absolutely continuous with respect to µ if and only if for all E ∈M,

µ(E) = 0 ⇒ ν(E) = 0.

In the case where µ is Lebesgue measure, there is a simple formula for the Radon-
Nikodym derivative.

Theorem 4 Lebesgue Differentiation Theorem

Let f be a non-negative measurable function on R, and let dν = f dm. Then for
almost all x ∈ R,

f(x) = lim
h→0+

ν
(
[x− h, x+ h]

)
2h

That is, if ν is a measure on R and ν is absolutely continuous with respect to
Lebesgue measure, then

dν

dm
(x) = lim

h→0+

ν
(
[x− h, x+ h]

)
2h

.
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EXAMPLE 4 Let I denote the interval [0, 1], and let dν = χI dm. Note then that

ν(E) = m(E ∩ I)

for any measurable set E ⊆ R. It is easy to check that

lim
h→0+

ν
(
[x− h, x+ h]

)
2h

=


1 if x ∈ (0, 1)

1/2 if x = ±1,

0 otherwise.

In particular, this limit is equal to χI(x) for almost all x ∈ R. �

Pushforward Measures

There is one more measure-theoretic construction you should be aware of.

Definition: Pushforward of a Measure
Let (X,M, µ) be a measure space, let Y be a set, and let f : X → Y be a function.

1. The pushforward σ-algebra f(M) on Y is the collection

{S ⊆ Y | f−1(S) ∈M}.

2. The pushforward of µ by f is the measure ν : f(M)→ [0,∞] defined by

ν(S) = µ
(
f−1(S)

)
.

The pushforward of µ by f is sometimes denoted f∗µ.

EXAMPLE 5 Arc Length on the Circle
Let S1 be the unit circle in R2, and let f : [−π, π]→ S1 be the function

f(θ) = (cos θ, sin θ).

Then the pushforward f∗m of Lebesgue measure on [−π, π] is a measure on the circle
with the property that the measure of any arc is equal to the length of the arc. That
is, f∗m is length measure on the circle. �

EXAMPLE 6 Area on the Sphere
Let S2 be the unit sphere in R3, let R be the rectangle [−π, π] × [0, π], and let
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f : R→ S2 be the function

f(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ).

Let µ denote Lebesgue measure on R. Then the pushforward f∗µ is not a good area
measure on S2, for it weighs area near the north and south poles more heavily than
area near the equator. However, if we let ν be the weighted measure

dν = sinφ dµ

on R, then the pushforward f∗ν is a good measure of area on the sphere. �

The following proposition is quite helpful for evaluating integrals with respect
to a pushforward measure. It can be used, for example, to integrate a real-valued
measurable function on the sphere.

Proposition 5 Integration Using Pushforward Measures

Let (X,M, µ) be a measure space, let f : X → Y be a function, and let ν be the
pushforward of µ by f . Then∫

Y

g dν =

∫
X

(g ◦ f) dµ.

for every measurable function g on Y .


