
Non-Measurable Sets

In these notes we will consider the algebraic structure of R with respect to the rational
numbers Q, which has very little to do with the usual geometric and topological struc-
tures on R. Using this structure, we will be able to prove some very counterintuitive
results about R, including the existence of non-measurable subsets.

Cosets of QQQ
Let Q denote the set of rational numbers. A coset of QQQ in R is any set of the form

x+ Q = {x+ q | q ∈ Q}

where x ∈ R. It is easy to see that the cosets of Q form a partition of R. In particular:

1. If x, y ∈ R and y − x ∈ Q, then x+ Q = y + Q.

2. If x, y ∈ R and y − x /∈ Q then x+ Q and y + Q are disjoint.

Note also that each coset x+Q is dense in R, meaning that every open interval (a, b)
in R contains a point from x+ Q.

The collection of all the cosets of Q in R is usually1 denoted R/Q. Note that there
exists a surjection p : R→ R/Q defined by

p(x) = x+ Q

for all x ∈ R. This function p is known as the canonical surjection.
Cosets of Q are interesting because the corresponding partition of R is almost

entirely divorced from the geometry and topology of the real line. Using these cosets,
we can create many other structures on R that violate our geometric intuition. As a
simple example of this technique, we give a quick proof of the following proposition.

1Those familiar with group theory will recognize R/Q as an example of a quotient group, but
we will have no need for the group structure on R/Q here.
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Proposition 1

There exists a function f : R → R such that the image of every open interval
(a, b) is all of R.

PROOF Note first that

|R| =
∣∣Q× (R/Q)

∣∣ = |R/Q|

The first bijection should be obvious, while the second is an instance of the well-known
fact that |C × S| = |S| for any countable set C and any infinite set S.

Thus there exists a bijection g : R/Q → R. Let p : R → R/Q be the canonical
surjection, and let f = g ◦ p. Then for every y ∈ R, the preimage f−1(y) is a coset
of Q in R, so every open interval (a, b) contains a point in f−1(y). �

Note that the graph
Γ(f) =

{(
x, f(x)

) ∣∣ x ∈ R
}

of the function f constructed in the last example is dense in R2, in the sense that
every open disk in R2 contains a point of the graph. Geometrically, this means that
the graph is just a “fog” that fills the plane. The intersection of this fog with each
vertical line is a single point (since it is the graph of a function), and the intersection
of this fog with each horizontal line is dense on the line.

A Non-Measurable Set

We can use the cosets of Q in R described in the last section to construct a subset
of R that is not Lebesgue measurable. The example we give here was first described
by Giuseppe Vitali in 1905.

Definition: Vitali Set
A subset V ⊆ [0, 1] is called a Vitali set if V contains a single point from each
coset of Q in R.

It is easy to construct a Vitali set using the axiom of choice, simply by choosing one
element of (x+Q)∩ [0, 1] for each coset x+Q ∈ R/Q. Of course this “construction” is
difficult to describe algorithmically, since we are making uncountably many arbitrary
choices. Indeed, the axiom of choice is required for the construction of a Vitali set,
as we will discuss below.
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We now turn to the proof that Vitali sets are non-measurable. Given any S ⊆ R
and t ∈ R let

t+ S = {t+ s | s ∈ S}.

That is, t + S is the translation of S obtained shifting every point t units to the
right on the real line. It is easy to prove that

m∗(t+ S) = m∗(S)

for all S ⊆ R and t ∈ R. It follows that t + E is measurable for every measurable
set E ⊆ R.

Our goal is to prove the following theorem.

Theorem 2 A Non-Measurable Set

If V ⊆ [0, 1] is a Vitali set, then V is not Lebesgue measurable.

We begin with a couple of lemmas.

Lemma 3

Let V ⊆ [0, 1] be a Vitali set. Then the sets

{q + V | q ∈ Q}

are pairwise disjoint, and

R =
⊎
q∈Q

(q + V ).

PROOF Suppose first that x ∈ (q+V )∩ (q′+V ) for some q, q′ ∈ Q. Then x = q+v
and x = q′ + v′ for some v, v′ ∈ V . Then v = x + (−q) and v′ = x + (−q′), so v and
v′ both lie in x+ Q. But V has only one point from each coset of Q, so we conclude
that v = v′, and hence q = q′. This proves that the sets {q + V | q ∈ Q} are pairwise
disjoint.

Next, observe that for any x ∈ R there exists a point v ∈ V so that v ∈ x + Q.
Then v = x+ q for some q ∈ Q, so x = (−q) + v, and hence x ∈ (−q) + V . It follows
that R =

⋃
q∈Q(q + V ). �
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Lemma 4

Let V ⊆ [0, 1] be a Vitali set, let C = Q ∩ [−1, 1], and let

U =
⊎
q∈C

(q + V ).

Then
[0, 1] ⊆ U ⊆ [−1, 2].

PROOF First, since V ⊆ [0, 1], we know that q+V ⊆ [−1, 2] for all q ∈ [−1, 1] and
hence U ⊆ [−1, 2]. To prove that [0, 1] ⊆ U , let x ∈ [0, 1]. Since V is a Vitali set,
there exists a v ∈ V so that v ∈ x+Q. Then v = x+ q for some q ∈ Q. But v and x
both lie in [0, 1], so it follows that q = v − x lies in the interval [−1, 1]. Thus q ∈ C
and x ∈ q + V , which proves that x ∈ U . �

PROOF OF THEOREM 2 Let V be a Vitali set, and suppose to the contrary that
V is measurable. Let C = Q ∩ [−1, 1], and let U =

⊎
q∈C(q + V ). Then U is a

countable union of measurable sets, and is hence measurable. By the Lemma 1, we
know that

[0, 1] ⊆ U ⊆ [−1, 2].

and therefore 1 ≤ m(U) ≤ 3. But

m(U) = m

( ⊎
q∈C

(q + V )

)
=
∑
q∈C

m(q + V ) =
∑
q∈C

m(V ).

If m(V ) = 0, then it follows that m(U) = 0, and if m(V ) > 0, then it follows that
m(U) =∞, both of which contradict the statement that 1 ≤ m(U) ≤ 3. �

It follows from this theorem that Lebesgue outer measure m∗ is not even finitely
additive. In particular, recall from the homework that any set E ⊆ [0, 1] satisfying

m∗(E) + m∗
(
[0, 1]− E

)
= 1

is Lebesgue measurable. It follows that

m∗(V ) + m∗
(
[0, 1]− V

)
6= 1

for any Vitali set V .
As we discussed previously, a set V of finite outer measure is measurable if and

only if m∗(V ) = m∗(V ), where m∗ is the Lebesgue inner measure. Since a Vitali set
V is not measurable, these two quantities must in fact be different. The following
proposition clarifies the situation.
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Proposition 5

If V is a Vitali set then m∗(V ) = 0 and m∗(V ) > 0.

PROOF Let V be a Vitali set, le C = Q ∩ [−1, 1], and let U =
⊎

q∈C(q + V ). By
Lemma 1,we know that [0, 1] ⊆ U ⊆ [−1, 2], so 1 ≤ m∗(U) ≤ m∗(U) ≤ 3. But

m∗(U) ≤
∑
q∈C

m∗(q + V ) =
∑
q∈C

m∗(V )

and it follows that m∗(V ) > 0.
As for the inner measure, recall that m∗ is countably superadditive, i.e.

m∗

( ⊎
n∈N

Sn

)
≥
∑
n∈N

m∗(Sn)

for any sequence {Sn} of disjoint subsets of R. It follows that

m∗(U) ≥
∑
q∈C

m∗(q + V ) =
∑
q∈C

m∗(V ),

and hence m∗(V ) = 0. �

Of course, this proposition doesn’t tell us what the outer measure measure m∗(V )
of a Vitali set V actually is. It turns out that it depends on the Vitali set: though
we will not prove it here, it is known that for any r ∈ (0, 1] there exists a Vitali set
V ⊆ [0, 1] such that m∗(V ) = r.

As mentioned previously, our construction of a non-measurable set depends criti-
cally on the axiom of choice. Indeed, Robert Solovay proved in 1970 that it is impos-
sible to construct a non-measurable set without the axiom of choice. That is, Solovay
proved that the statement “every subset of R is Lebesgue measurable” is consistent
with the ZF (Zermelo-Fraenkel) axioms of set theory, i.e. all the axioms of ZFC minus
the axiom of choice. Thus the axiom of choice is required for the construction of any
non-measurable set.

RRR as a Vector Space over QQQ
The partition of R into cosets of Q that we have been exploiting is essentially a
manifestation of the fact that the rational numbers Q are an additive subgroup of the
real numbers R. In this section, we show how to increase the power of this technique
by viewing R as a vector space over Q. First, recall the following definition.
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Definition: Vector Space
Let F be a field. A vector space over F is an abelian group (V,+) together with
an operation

F× V → V, denoted (λ, v) 7→ λv

called scalar multiplication, satisfying the following axioms:

1. λ(µv) = (λµ)v for all λ, µ ∈ F and v ∈ V .

2. λ(v + w) = λv + λw for all λ ∈ F and v, w ∈ V .

3. (λ+ µ)v = λv + µv for all λ, µ ∈ F and v ∈ V .

4. 1v = v for all v ∈ V , where 1 denotes the multiplicative identity of F.

Using this definition, it is not hard to prove that the real numbers RRR form a
vector space over QQQ, where the scalar multiplication function

Q× R→ R

is simply the usual multiplication of a rational number and a real number. All four
of the axioms for a vector space are immediate.

As we shall see, this structure has many surprising consequences for R. Before we
prove anything, though, we must consider what various standard notions from linear
algebra mean in this context.

Definition: Linear Independence
Let V be a vector space over a field F, and let I ⊆ V . We say that I is linearly
independent (over F) if

λ1v1 + · · ·+ λnvn = 0 ⇒ λ1 = · · · = λn = 0

for every finite subset {v1, . . . , vn} of I and all λ1, . . . , λn ∈ F.

It is quite possible for a subset of R to be linearly independent over Q. For
example, if α is an irrational number, then the set {1, α} is linearly independent
over Q. For if

q1(1) + q2α = 0

for some rational numbers q1, q2, then clearly q2 must be zero, since otherwise we
would have α = −q1/q2, and it follows that q1 is zero as well.

Similar arguments can be used to prove, say, that the set
{

1,
√

2,
√

3
}

is linearly
independent over Q. That is, if

q1 + q2
√

2 + q3
√

3 = 0
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for some rational numbers q1, q2, q3, then it follows that q1 = q2 = q3 = 0. Interest-
ingly, it is an open question whether the set {1, π, e} is linearly independent over Q.
Indeed, it is not even known whether π + e is rational.

Definition: Basis
Let V be a vector space over a field F. A subset B ⊆ V is said to be a basis for V
(over F) if B is linearly independent and every element of V can be written as a
finite linear combination of elements of B.

If B is a basis for V , then every nonzero v ∈ V can be expressed uniquely as a
finite linear combination of some elements of B with nonzero coefficients.

Now the question arises whether R might have a basis over Q. Such a basis would
be a set B of real numbers such that every nonzero real number could be written
uniquely as

q1b1 + · · ·+ qnbn

for some finite subset {b1, . . . , bn} ⊆ B and some nonzero q1, . . . , qn ∈ Q.
It turns out that R does have a basis over Q, though such a basis requires the

axiom of choice to construct.

Theorem 6 Existence of Bases

Let V be a vector space over a field F. Then there exists a basis for V . Indeed, for
any linearly independent set I ⊆ V , there exists a basis B for V that contains I.

PROOF This theorem requires the axiom of choice, and indeed is equivalent to the
axiom of choice over ZF. See Chapter III, Section 5 of Lang’s Algebra for a complete
proof. �

The existence of a basis for R over Q has many unexpected consequences. We
give two examples.

Proposition 7

There exists an uncountable set of irrational numbers that is closed under addi-
tion.

PROOF Since {1} is linearly independent over Q, it follows from Theorem 6 that
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there exists a basis B for R over Q that contains 1. It is easy to prove that B must
be uncountable, since the set of finite linear combinations of the members of any
countable set is countable.

Let S be the set of all real numbers of the form

q0 + q1b1 + · · ·+ qnbn

where {b1, . . . , bn} is a finite subset of B − {1} (with n ≥ 1) and q0, q1, . . . , qn are
positive rational numbers. Then each element of S is irrational, and it is easy to see
that S is both uncountable and closed under addition. �

Incidentally, the set S that we constructed in the previous proposition has an
unexpected extra property: every real number can be expressed as a difference s1−s2
for some s1, s2 ∈ S.

Proposition 8

The additive groups of R and R2 are isomorphic. That is, there exists a bijection
f : R→ R2 such that f(x+ y) = f(x) + f(y) for all x, y ∈ R.

PROOF Let B be a basis for R as a vector space over Q, and let

B′ = {(b, 0) | b ∈ B} ∪ {(0, b) | b ∈ B}.

Then clearly B′ is a basis for R2 over Q. However,

|B′| = |{0, 1} ×B| = |B|

where the latter equality follows from the well-known fact that |{0, 1} × S| = |S| for
any infinite set S. Thus there exists a bijection g : B → B′. Let f : R → R2 be the
function defined by f(0) = (0, 0) and

f(q1b1 + · · ·+ qnbn) = q1g(b1) + · · ·+ qng(bn)

for any finite subset {b1, . . . , bn} of B and any q1, . . . , qn ∈ Q − {0}. Then it is easy
to check that f is a bijection, and that it satisfies f(x + y) = f(x) + f(y) for all
x, y ∈ R. �

Similar arguments can be used to show that the additive groups of Rm and Rn

are isomorphic for all m,n ∈ N.
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Complementary Subgroups to Q
We are now ready to give another example of a non-measurable set. First recall that
a nonempty set S ⊆ R is called a subgroup of R if it is closed under addition and
negation.

Definition: Complementary Subgroups to Q
A subgroup S of R is said to be complementary to QQQ if S contains exactly one
element from each coset of Q in R.

That is, S is complementary to Q if and only if every x ∈ R can be written
uniquely as s + q for some s ∈ S and q ∈ Q. From a group-theoretic point of view,
this is equivalent to saying that R is the internal direct sum of S and Q.

Proposition 9

There exists a subgroup S of R that is complementary to Q.

PROOF Let B be a basis for R over Q that contains 1, and let S be the set of all
real numbers that can be written as a finite linear combination of elements of B−{1}.
Then S is clearly a subgroup of R, and it is easy to see that S must be complementary
to Q. �

Proposition 10 A Non-Measurable Subgroup

Let S be a subgroup of R. If S is complementary to Q, then S is not Lebesgue
measurable.

PROOF Suppose to the contrary that S is Lebesgue measurable, and let

U =
⊎
n∈Z

(n+ S).

The U should be Lebesgue measurable as well. We claim that U ∩ [0, 1) is a Vitali
set.

Let x+Q be a coset of Q in R. Since S is complementary to Q, it intersects x+Q
at a unique point s. Then

(x+ Q) ∩ (n+ S) = {n+ s}
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for each n ∈ Z, so
(x+ Q) ∩ U = s+ Z.

But s+Z intersects the interval [0, 1) at a single point, and therefore x+Q intersects
U ∩ [0, 1) at a single point, which proves that U ∩ [0, 1) is a Vitali set. Then U ∩ [0, 1)
is not Lebesgue measurable, a contradiction. �

Exercises

1. Prove that for any set S ⊆ R there exists a function f : R→ R with the property
that f(I) = S for every open interval I.

2. Prove that for every ε > 0 there exists a Vitali set V such that m∗(V ) < ε.

3. Prove that the interval [0, 1] is a countable union of Vitali sets.

4. Prove that there exists a subset S ⊆ R with the following properties:

(i) S is dense in R, and

(ii) S contains exactly one point from each coset of Q in R.

5. Prove that the Cantor set C ⊆ [0, 1] does not contain a Vitali set.

6. Prove that the set
{

1,
√

2,
√

3
}

is linearly independent over Q.


