
Appendix: Norms and Inner

Products

In these notes we discuss two different structures that can be put on vector spaces:

norms and inner products. For the purposes of these notes, all vector spaces are

assumed to be over the real numbers.

Normed Vector Spaces

Definition: Norm

Let V be a vector space. A norm on V is a function ‖−‖ : V → R satisfying the

following conditions:

1. ‖v‖ ≥ 0 for all v ∈ V , and ‖v‖ = 0 if and only if v = 0.

2. ‖λv‖ = |λ| ‖v‖ for all v ∈ V and λ ∈ R.

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v,w ∈ V .

If ‖−‖ is a norm on V , then the pair (V, ‖−‖) is called a normed vector space.

The first condition is sometimes called positive definiteness. The third condi-

tion is the triangle inequality.

We begin by proving some elementary statements about any normed vector space.
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Proposition 1 Reverse Triangle Inequality

Let V be a normed vector space. Then

‖v −w‖ ≥ ‖v‖ − ‖w‖

for all v,w ∈ V .

PROOF By the triangle inequality,

‖v‖ = ‖(v −w) + w‖ ≤ ‖v −w‖+ ‖w‖,

and the desired conclusion follows. �

Definition: Unit Vector

Let V be a normed vector space. A vector v ∈ V is called a unit vector if ‖v‖ = 1.

Proposition 2 Normalization

Let V be a normed vector space, and let v be a nonzero vector in V . Then the

vector

v̂ =
1

‖v‖
v

is a unit vector.

PROOF We have

‖v̂‖ =

∥∥∥∥ 1

‖v‖
v

∥∥∥∥ =
1

‖v‖
‖v‖ = 1. �

The vector v̂ defined above is sometimes called the normalization of v. Note

that

v = ‖v‖ v̂

and hence every vector in V is a scalar multiple of a unit vector.

For the following proposition, recall that a metric on a set X is a function

d : X ×X → R

satisfying the following conditions:



3

1. d(x, y) ≥ 0 for all x, y ∈ X, and d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X.

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Note that these conditions are very similar to those in the definition of a norm, and

indeed a norm can be viewed as the most natural form of metric on a vector space.

Proposition 3 Metric from a Norm

Let V be a vector space, let ‖−‖ be a norm on V , and let d : V × V → R be the

function

d(v,w) = ‖v −w‖

Then d is a metric on V .

PROOF For condition (1), we clearly have d(v,w) ≥ 0 for all v,w ∈ V , and

d(v,v) = ‖v − v‖ = ‖0‖ = 0. Moreover, if d(v,w) = 0, then ‖v − w‖ = 0. By

the first condition for a norm, it follows that v − w = 0, and hence v = w. For

condition (2), if v,w ∈ V , then

d(w,v) = ‖w − v‖ = ‖(−1)(v −w)‖ = | − 1| ‖v −w‖ = ‖v −w‖ = d(v,w).

Finally, for condition (3), we have

d(u,w) = ‖u−w‖ = ‖(u− v) + (v −w)‖

≤ ‖u− v‖+ ‖v −w‖ = d(u,v) + d(v,w).

for all u,v,w ∈ V . �

If X is a set and d is a metric on X, then the pair (X, d) is called a metric space.

According to the above definition, every normed vector space is automatically a metric

space, which lets us define notions such as continuity and convergence.

Finally, there is a natural notion of equivalence for normed metric space. For

the following definition, recall that an isomorphism between two vector spaces V

and W is any bijective linear transformation V → W . Two vector spaces V and W

are isomorphic if there exists an isomorphism between them, which occurs if and

only if V and W have the same dimension.
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Definition: Isometric Isomorphism

Let V and W be normed vector spaces. An isomorphism T : V → W is said to be

isometric if

‖T (v)‖ = ‖v‖

for all v ∈ V . We say that V and W are isometrically isomorphic if there exists

an isometric isomorphism from V to W .

In general, a bijection f : X → Y between two metric spaces X and Y is said to

be isometric if

d
(
f(x1), f(x2)

)
= d(x1, x2)

for all x1, x2 ∈ X. For an isomorphism between normed vector spaces, this is equiva-

lent to the condition given above.

Inner Product Spaces

Definition: Inner Product

Let V be a vector space. An inner product on V is a function 〈−,−〉 : V ×V → R
satisfying the following conditions:

1. 〈v,v〉 ≥ 0 for all v ∈ V , and 〈v,v〉 = 0 if and only if v = 0.

2. 〈v,w〉 = 〈w,v〉 for all v,w ∈ V .

3. 〈v, λw〉 = λ〈v,w〉 for all v,w ∈ V and λ ∈ R.

4. 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉 for all u,v,w ∈ V .

If 〈−,−〉 is an inner product on V , then the pair (V, 〈−,−〉) is called an inner

product space.

Note that combining conditions (2) and (3) gives the equation

〈λv,w〉 = λ〈v,w〉

for all λ ∈ R and v,w ∈ V . Similarly, combining conditions (2) and (4) gives the

equation

〈u + v,w〉 = 〈u,w〉+ 〈v,w〉
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for all u,v,w ∈ V .

Note also that

〈v,0〉 = 〈v, 0v〉 = 0〈v,v〉 = 0

for any vector v ∈ V .

Definition: Associated Norm

If V is an inner product space, the associated norm on V is the function

‖−‖ : V → R defined by

‖v‖ =
√
〈v,v〉.

It is not immediately clear that the associated norm is actually a norm. In par-

ticular, it is by no means obvious that the triangle inequality√
〈v + w,v + w〉 ≤

√
〈v,v〉+

√
〈w,w〉

holds for any inner product 〈−,−〉. We will prove this below, but in the meantime

we will use the notation ‖v‖ to mean
√
〈v,v〉, without making the assumption that

‖−‖ satisfies the triangle inequality.

Proposition 4 Square Formulas

Let V be an inner product space. Then for any v,w ∈ V ,

‖v + w‖2 = ‖v‖2 + 2〈v,w〉+ ‖w‖2.

and

‖v −w‖2 = ‖v‖2 − 2〈v,w〉+ ‖w‖2.

PROOF We have

‖v + w‖2 = 〈v + w,v + w〉 = 〈v + w,v〉+ 〈v + w,w〉

= 〈v,v〉+ 〈w,v〉+ 〈v,w〉+ 〈w,w〉 = 〈v,v〉+ 2〈v,w〉+ 〈w,w〉

= ‖v‖2 + 2〈v,w〉+ ‖w‖2.

The second formula follows by substituting −w for w. �
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Corollary 5 Pythagorean Theorem

Let V be an inner product space. If v,w ∈ V and 〈v,w〉 = 0, then

‖v + w‖2 = ‖v‖2 + ‖w‖2.

Definition: Parallel and Orthogonal Vectors

Let V be an inner product space, and let w ∈ V be a nonzero vector.

1. We say that a vector v ∈ V is parallel to w if v = λw for some λ ∈ R.

2. We say that a vector v ∈ V is orthogonal to w if 〈v,w〉 = 0.

Proposition 6 Orthogonal Decomposition

Let V be an inner product space, and let w ∈ V be a nonzero vector. Then any

vector v ∈ V can be written uniquely as a sum

v = p + n

where p is parallel to w and n is orthogonal to w.

PROOF Let v ∈ V , and let

p =
〈v,w〉
〈w,w〉

w and n = v − p

so v = p + n. Clearly p is parallel to w, and

〈p,w〉 =

〈
〈v,w〉
〈w,w〉

w,w

〉
=
〈v,w〉
〈w,w〉

〈w,w〉 = 〈v,w〉

so

〈n,w〉 = 〈v − p,w〉 = 〈v,w〉 − 〈p,w〉 = 0.

and hence n is orthogonal to w.

To prove this decomposition is unique, suppose p = λw is any vector parallel to

w and n is any vector orthogonal to w such that v = p + n. Then

0 = 〈n,w〉 = 〈v − p,w〉 = 〈v,w〉 − 〈p,w〉 = 〈v,w〉 − λ〈w,w〉.

It follows that λ = 〈v,w〉/〈w,w〉, which means that p is the same as the vector given

above. It follows that n = v − p is the same as well. �
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The vector

p =
〈v,w〉
〈w,w〉

w

from the previous proposition is usually called the projection of v onto w.

Theorem 7 Cauchy-Schwarz Inequality

If V is an inner product space, then

|〈v,w〉| ≤ ‖v‖ ‖w‖

for all v,w ∈ V .

PROOF If w = 0 then the inequality clearly holds, so suppose that w 6= 0. Then

v = p + n,

where p is the projection of v onto w, and n is orthogonal to w. By the Pythagorean

theorem,

‖v‖2 = ‖p‖2 + ‖n‖2

and hence ‖v‖ ≥ ‖p‖. But since p is parallel to w, we know that p = λw for some

λ ∈ R, and thus

〈p,w〉 = λ〈w,w〉 = λ‖w‖2 = ‖p‖ ‖w‖.

Then

〈v,w〉 = 〈p,w〉 = ‖p‖ ‖w‖ ≤ ‖v‖ ‖w‖. �

Theorem 8 A Norm from an Inner Product

Let V be a vector space, and let 〈−,−〉 be an inner product on V . Then the

function ‖−‖ : V → R defined by

‖v‖ =
√
〈v,v〉

is a norm on V .

PROOF Clearly ‖v‖ ≥ 0 for all v ∈ V , with ‖0‖ =
√
〈0,0〉 =

√
0 = 0. Moreover,

if v ∈ V and ‖v‖ = 0, then 〈v,v〉 = 0, and it follows that v = 0. Next, if v ∈ V and
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λ ∈ R, then

‖λv‖ =
√
〈λv, λv〉 =

√
λ2〈v,v〉 =

√
λ2
√
〈v,v〉 = |λ| ‖v‖.

Finally, if v,w ∈ V , then by the Cauchy-Schwarz inequality

〈v,w〉 ≤
√
〈v,v〉

√
〈w,w〉 = ‖v‖‖w‖

so by the square formula

‖v + w‖2 = ‖v‖2 + 2〈v,w〉+ ‖w‖2

≤ ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2 =
(
‖v‖+ ‖w‖

)2
,

and hence ‖v + w‖ ≤ ‖v‖+ ‖w‖. �

Recovering the Inner Product

So far we have shown that an inner product on a vector space always leads to a norm.

The following proposition shows that we can get the inner product back if we know

the norm.

Proposition 9 Polarization Identity

Let V be a vector space, let 〈−,−〉 be an inner product on V , and let ‖−‖ be

the corresponding norm. Then for any v,w ∈ V ,

〈v,w〉 =
‖v + w‖2 − ‖v −w‖2

4

PROOF This follows immediately from the square formulas in Proposition 4. �

As a consequence of the polarization identity, we obtain a characterization of

isometric isomorphisms between inner product spaces.
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Proposition 10 Isometric Isomorphisms and Inner Products

Let V and W be inner product spaces. Then an isomorphism T : V → W is

isometric if and only if 〈
T (v1), T (v2)

〉
= 〈v1,v2〉

for all v1,v2 ∈ V .

PROOF Suppose first that the given identity holds. Then

‖T (v)‖ =
√〈

T (v), T (v)
〉

=
√
〈v,v〉 = ‖v‖

for all v ∈ V , and hence T is isometric. For the converse, suppose that T is isometric,

and let v1,v2 ∈ V . Then by the polarization identity,

〈
T (v1), T (v2)

〉
=
‖T (v1) + T (v2)‖2 + ‖T (v1)− T (v2)‖2

4

=
‖T (v1 + v2)‖2 + ‖T (v1 − v2)‖2

4

=
‖v1 + v2‖2 + ‖v1 − v2‖2

4
= 〈v1,v2〉 �

Since the polarization identity allows us to recover the inner product from the

norm, a natural question is whether any norm can be used to define an inner product

via the polarization identity. The answer to this question is no, as suggested by the

following proposition.

Proposition 11 Parallelogram Law

Let V be a vector space, let 〈−,−〉 be an inner product on V , and let ‖−‖ be

the corresponding norm. Then

‖v‖2 + ‖w‖2 =
‖v + w‖2 + ‖v −w‖2

2

for all v,w ∈ V .
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PROOF Again, this follows immediately from the two square formulas given in

Proposition 4. �

There is no reason that an arbitrary norm would obey the parallelogram law, and

hence most norms do not correspond to an inner product. For example, it is easy

to check that the p-norm on Rn obeys the parallelogram law if and only if p = 2,

and thus the Euclidean norm is the only p-norm that can be obtained from an inner

product.

Incidentally, it is possible to prove that any norm that obeys the parallelogram

law can be derived from an inner product. See http://math.stackexchange.com/

questions/21792.

Orthonormal Bases

Definition: Orthonormal Vectors, Orthonormal Basis

Let V be an inner product space, and let U be a set of vectors in V . We say that

the vectors in U are orthonormal if every vector in U is a unit vector and every

pair of distinct vectors in U are orthogonal. If U is also a basis for V , then U is

called an orthonormal basis for V .

It is easy to prove that any orthonormal set U of vectors must be linearly inde-

pendent (see Exercise 14).

Proposition 12 Existence of Orthonormal Bases

Every finite-dimensional vector space has an orthonormal basis.

PROOF Let V be a finite-dimensional inner product space of dimension n. We

proceed by induction on n. If n = 0, then the empty set is a basis for V , and clearly

this is orthonormal.

For n ≥ 1, let {b1, . . . ,bn} be any basis for V . By our induction hypothesis,

the (n − 1)-dimensional subspace S = Span{b1, . . . , bn−1} has an orthonormal basis

{u1, . . . ,un−1}. Let p1, . . . ,pn−1 be the projections of bn onto u1, . . . ,un−1, respec-

http://math.stackexchange.com/questions/21792
http://math.stackexchange.com/questions/21792
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tively, and let pn = bn − (p1 + · · · + pn−1). Since p1, . . .pn−1 ∈ S and bn /∈ S, we

know that pn 6= 0. Let un = pn/‖pn‖ be the normalization of pn. Then un is a unit

vector and

〈ui,un〉 =
〈
ui,bn − (p1 + · · ·+ pn−1)

〉
= 〈ui,bn〉 −

(
〈ui,p1〉+ · · ·+ 〈ui,pn−1〉

)
= 〈ui,bn〉 − 〈ui,pi〉 = 0

for all i ∈ {1, . . . , n− 1}, so the set U = {u1, . . . ,un−1,un} is orthonormal. Since U

is linearly independent and has n elements, it is a basis for V , and thus V has an

orthonormal basis. �

This theorem actually does not extend to infinite-dimensional vector spaces. That

is, there exists an infinite-dimensional inner product space that does not have any

orthonormal basis. For this reason we shall restrict ourselves to finite-dimensional

spaces.

Proposition 13 Formulas Involving Coefficients

Let V be an finite-dimensional inner product space, let {u1, . . . ,un} be an or-

thonormal basis for V , and let

v = v1u1 + · · ·+ vnun and w = w1u1 + · · ·+ wnun

be vectors in V . Then:

1. 〈v,w〉 = v1w1 + · · ·+ vnwn.

2. ‖v‖ =
√
v21 + · · · v2n.

3. vi = 〈ui,v〉 for each i.

PROOF For (1), we have

〈v,w〉 =

〈
n∑

i=1

viui,

n∑
j=1

wjuj

〉
=

n∑
i=1

n∑
j=1

viwi〈ui,uj〉.
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But 〈ui,uj〉 is equal to 1 if i = j and 0 otherwise, so

〈v,w〉 =
n∑

i=1

viwi.

Statement (2) follows immediately from (1) and the fact that ‖v‖ =
√
〈v,v〉. State-

ment (3) also follows immediately from statement (1). �

For the following theorem, recall that the Euclidean norm on Rn refers to the

usual 2-norm.

Theorem 14 Structure of Finite-Dimensional Inner Product Spaces

If n ∈ N, then every n-dimensional inner product space is isometrically isomor-

phic to Rn under the Euclidean norm.

PROOF Let V be an n-dimensional inner product space, let {u1, . . . ,un} be an

orthonormal basis for Rn, and define a function T : Rn → V by

T (x1, . . . , xn) = x1u1 + · · ·+ xnun.

It is easy to check that T is linear and is a bijection. Furthermore,

‖T (x1, . . . , xn)‖ = ‖x1u1 + · · ·+ xnun‖ =
√
x21 + · · ·+ x2n = ‖(x1, . . . , xn)‖

for all (x1, . . . , xn) ∈ Rn, so T is isometric. �

Incidentally, it is sometimes helpful to relax the conditions on orthonormal bases.

If V is an inner product space, an orthogonal basis for V is any basis of orthogonal

vectors (which may or may not be unit vectors). If {b1, . . . ,bn} is an orthogonal

basis for V , then the normalizations{
b1

‖b1‖
, . . . ,

bn

‖bn‖

}
form an orthonormal basis for V . From this one can derive the following formulas:

1. If v = v1b1 + · · ·+ vnbn and w = w1b1 + · · ·+ wnbn, then

〈v,w〉 = v1w1 ‖b1‖2 + · · · + vnwn ‖bn‖2.
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2. If v = v1b1 + · · ·+ vnbn, then

‖v‖ =
√
v21 ‖b1‖2 + · · · + v2n ‖bn‖2.

3. If v = v1b1 + · · ·+ vnbn, then

vi =
〈bi,v〉
〈bi,bi〉

for each i. That is v is the sum of its projections onto b1, . . . ,bn:

v =
〈b1,v〉
〈b1,b1〉

b1 + · · · +
〈bn,v〉
〈bn,bn〉

bn.

Exercises

1. Prove that “isometrically isomorphic” is an equivalence relation on normed

vector spaces.

2. Prove that any isometric isomorphism is a homeomorphism.

3. Let V and W be normed vector spaces, let T : V → W be a linear transforma-

tion, and suppose there exists a λ > 0 so that

‖T (v)‖ ≤ λ ‖v‖

for all v ∈ V . Prove that T is continuous.

4. If V is a normed vector space, prove that the norm ‖−‖ : V → R is a continuous

function on V .

5. If V and W are normed vector spaces, prove that

‖(v,w)‖ = ‖v‖+ ‖w‖

is a norm on V ×W .

6. If V is a normed vector space, prove that addition V × V → V and scalar

multiplication R× V → V are continuous functions.

7. Let V be an inner product space, and let v1,v2 ∈ V . Prove that if

〈v1,w〉 = 〈v2,w〉

for all w ∈ V , then v1 = v2.
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8. If V and W are inner product spaces, prove that〈
(v1,w1), (v2,w2)

〉
= 〈v1,v2〉+ 〈w1,w2〉

is an inner product on V ×W .

9. If V is an inner product space, prove that the inner product 〈−,−〉 : V ×V → R
is a continuous function.

10. Let V be an inner product space, let v,w ∈ V be nonzero vectors, and let p be

the projection of v onto w. Prove that p is the closest point in Span{w} to v.

11. Let V be an inner product space, let S be a linear subspace of V , and let

S⊥ = {v ∈ V | 〈v, s〉 = 0 for all s ∈ S}.

Prove that S⊥ is a linear subspace of V .

12. Find vectors v and w in R2 for which

‖v‖21 + ‖w‖21 6=
‖v + w‖21 + ‖v −w‖21

2
,

where ‖−‖1 denotes the 1-norm on R2. What does this prove about the 1-norm?

13. Let ABCD be a parallelogram in the Euclidean plane, where A is opposite C.

Given that AB = 5, BC = 5, and AC = 8, use the parallelogram law to

find BD.

14. Let V be an inner product space. Prove that any orthonormal set of vectors in

V is linearly independent.

15. Let V and W be n-dimensional inner product spaces, let {u1, . . . ,un} be an

orthonormal basis for V , and let T : V → W be an isometric isomorphism.

Prove that {T (u1), . . . , T (un)} is an orthonormal basis for W .

16. Let V be the vector space of all polynomials of the form p(x) = ax2 + bx + c,

where a, b, c ∈ R, and let 〈−,−〉 be the inner product on V defined by

〈p, q〉 =

∫ 1

0

p(x) q(x) dx.

Find an orthonormal basis for V .
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