
Probability Theory II

These notes begin with a brief discussion of independence, and then discuss the three
main foundational theorems of probability theory: the weak law of large numbers,
the strong law of large numbers, and the central limit theorem. Though we have
included a detailed proof of the weak law in Section 2, we omit many of the proofs in
Sections 3 and 4.

Independence

Consider an experiment where we flip a coin twice. We begin by flipping once, and
the coin comes up heads. How will this outcome affect the second flip?

The answer, of course, is that it doesn’t. The second flip is completely independent
from the first one. This idea is captured by the following definition:

Definition: Independent Events
Let (Ω, E , P ) be a probability space. Two events A,B ⊂ Ω are independent if

P (A ∩B) = P (A)P (B).

This definition can be phrased in terms of conditional probabilities. If A and B
are events and P (B) 6= 0, the probability of A given B is

P (A given B) =
P (A ∩B)

P (B)
.

This represents the probability that A occurs, given the information that B occurs.
Using this formula, the definition of independence can be rewritten as

P (A given B) = P (A).

That is, A and B are independent if the information that B occurs does not affect
the probability of A.
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The definition of independence can be generalized to more than two events:

Definition: Multiple Independent Events
Events {En} are independent if

P (Ei1 ∩ · · · ∩ Eik) = P (Ei1) · · ·P (Eik)

for all i1 < · · · < ik.

Note that the following statements are different:

1. The events {En} are independent.

2. Ei and Ej are independent for all i 6= j.

That is, independence for multiple events is not the same thing as pairwise indepen-
dence. The following example illustrates this.

EXAMPLE 1 Three Pairwise Independent Events
Consider the following three events for a pair of coin flips:

E1: The first coin shows heads.

E2: The second coin shows heads.

E3: The two coins show the same result.

Each of these events has probability 1/2, and any two of these events are independent.
However, all three events together are not independent. In particular,

P (E1 ∩ E2 ∩ E3) =
1

4
6= P (E1)P (E2)P (E3). �

The notion of independence can also be defined for random variables. Roughly
speaking, two random variables are independent if knowledge about the value of the
first variable has no effect on the value of the second variable. The following definition
formalizes this notion:

Definition: Independent Random Variables
Let X : Ω → S and Y : Ω → T be random variables. We say that X and Y are
independent if

P (X ∈ A and Y ∈ B) = P (X ∈ A)P (Y ∈ B)

for all measurable subsets A ⊂ S and B ⊂ T .
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More generally, a sequence {X1, X2, X3, . . .} of random variables is independent if

P
(
Xi ∈ Ai for each i ∈ {1, . . . , n}

)
=

n∏
i=1

P (Xi ∈ Ai)

for any n ∈ N and any finite sequence A1, . . . , An of measurable sets.

Proposition 1 Functions Preserve Independence

Let X : Ω → S and Y : Ω → T be random variables, and let f : S → S ′ and
g : T → T ′ be measurable functions. If X and Y are independent, then f(X)
and g(Y ) are independent as well.

PROOF Let A ⊂ S ′ and B ⊂ T ′ be measurable. Then

P
(
f(X) ∈ A and g(Y ) ∈ B

)
= P

(
X ∈ f−1(A) and Y ∈ g−1(B)

)
Since X and Y are independent, we can rewrite the quantity on the right to give

P
(
f(X) ∈ A and g(Y ) ∈ B

)
= P

(
X ∈ f−1(A)

)
P
(
Y ∈ g−1(B)

)
= P

(
f(X) ∈ A

)
P
(
g(Y ) ∈ B

)
. �

It is possible to express the criterion for independence in terms of distributions.
If X : Ω→ S and Y : Ω→ T are random variables, the joint variable (X, Y ) is the
Cartesian product (X, Y ) : Ω→ S×T . The probability distribution P(X,Y ) for (X, Y )
is called the joint distribution.

Using these definitions, two random variables X and Y are independent if and
only if

P(X,Y )(A×B) = PX(A)PY (B)

for all measurable subsets A ⊂ S and B ⊂ T . That is, X and Y are independent if
the joint distribution P(X,Y ) is the product of the measures PX and PY . We use this
criterion to prove the following theorem:

Proposition 2 Expectation of a Product

Let X, Y : Ω → R be independent random variables with finite expected values.
Then

E[XY ] = (EX)(EY ).
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PROOF Observe that∫
R

∫
R
|xy| dPX(x) dPY (y) =

(∫
R
|x| dPX(x)

)(∫
R
|y| dPY (y)

)
= E|X|E|Y | < ∞.

That is, the function f(x, y) = xy is L1 with respect to the measure P(X,Y ). Therefore,
by Fubini’s theorem

E[XY ] =

∫
R2

xy dP(X,Y )(x, y) =

∫
R

∫
R
xy dPX(x) dPY (y)

=

(∫
R
x dPX(x)

)(∫
R
y dPY (y)

)
= (EX)(EY ). �

This theorem has the following consequence:

Proposition 3 Variance of a Sum

Let X, Y : Ω → R be independent random variables with finite expected values.
Then

Var(X + Y ) = Var(X) + Var(Y ).

PROOF Let X0 = X − EX and Y0 = Y − EY , and note that X0 and Y0 are
independent. Then

Var(X + Y ) = E
[
(X0 + Y0)2

]
= E[X2

0 ] + 2E[X0Y0] + E[Y 2
0 ].

But E[X0Y0] = (EX0)(EY0) = (0)(0) = 0 by the previous theorem, so

Var(X + Y ) = E[X2
0 ] + E[Y 2

0 ] = Var(X) + Var(Y ). �

The above formula can be generalized to the sum of any number of independent
random variables. Specifically, if {Xn} is a sequence of independent random variables,
then

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+ Var(Xn).

In particular, if all of the variables Xi have the same variance σ2, then the sum
X1 + · · ·+Xn has variance σ2n, and therefore has standard deviation σ

√
n.
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Weak Law of Large Numbers

Suppose we perform the same experiment several times, generating a sequence {Xn}
of random variables. For example, we might roll a die repeatedly, writing down the
result each time. In this case, each iteration of the experiment is called a trial, and
the resulting random variables {Xn} will have the following properties:

1. They will all be independent.

2. They will be identically distributed, i.e. all the Xn’s will have the same
distribution.

In probability textbooks, the phrase “independent and identically distributed” is
so commonplace that it is sometimes abbreviated “i.i.d.” (We will not follow this
practice.)

If {Xn} is a sequence of independent, identically distributed random variables,
the sample mean Xn is the average value of the first n results:

Xn =
X1 + · · ·+Xn

n
.

It is a basic tenet of probability theory that the sample mean Xn should approach
the mean µ as n→∞. This principle is known as the law of large numbers:

The Law of Large Numbers

Let {Xn} be a sequence of independent, identically distributed random variables
with finite mean µ, and let

Xn =
X1 + · · ·+Xn

n
.

Then Xn should approach µ as n→∞.

For example, Figure 1 shows the sample means Xn for a sequence of 100,000 die
rolls. As you might expect, the samples means for the trials approach 3.5, which is
the expected value of a single die roll.

Unfortunately, the law of large numbers stated above is not precise. In particular,
the word “approach” is ambiguous—in what sense must the random variables Xn

approach the mean µ? This must involve some notion of convergence of random
variables, but we have not been clear about which notion of convergence we intend.
In fact, several different notions of convergence are possible, which leads to several
different versions of the law of large numbers.



6

1 10 100 1000 104 105

3.0

3.5

4.0

4.5

5.0

Figure 1: A logarithmic plot showing the sample means for 100,000 die rolls.

In this section, our goal is to prove a version of this law known as the weak law
of large numbers. This involves the following notion of convergence:

Definition: Convergence in Probability
Let {Xn} be a sequence of random variables, and let X be a random variable. We
say that Xn → X in probability if for every ε > 0,

P
(
|Xn −X| > ε

)
→ 0 as n→∞.

We will spend the remainder of the section proving the following theorem:

Weak Law of Large Numbers

Let {Xn} be a sequence of independent, identically distributed random variables
with finite expected value µ. For each n, let

Xn =
X1 + · · ·+Xn

n
.

Then Xn → µ in probability as n→∞.

To prove this theorem, we must find some bound on P
(
|Xn − µ| ≥ ε

)
that goes

to zero as n→∞. We shall use the following two inequalities:
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Theorem 4 Markov’s Inequality

Let X be a random variable with E|X| <∞, and let a ∈ (0,∞). Then

P (|X| > a) ≤ E|X|
a

.

PROOF We may assume that X is nonnegative, so that |X| = X. Then

EX =

∫
[0,∞)

x dPX(x) ≥
∫

(a,∞)

x dPX(x)

≥
∫

(a,∞)

a dPX = aPX

(
(a,∞)

)
= aP (X > a). �

Theorem 5 Chebyshev’s Inequality

Let X be a random variable with mean µ and standard deviation σ. Then for
any k ∈ (0,∞),

P
(
|X − µ| > kσ

)
≤ 1

k2
.

PROOF Let Y = (X − µ)2. By Markov’s Inequality,

P
(
|X − µ| > kσ

)
= P

(
Y > k2σ2

)
≤ E|Y |

k2σ2
=

σ2

σ2k2
=

1

k2
. �

Chebyshev’s inequality uses the variance of a random variable to bound the prob-
ability that it is far away from the mean. We can use this inequality to prove the
weak law in the case where the variables have finite variance:

Theorem 6 Weak Law—Finite Variance Version

Let {Xn} be a sequence of independent, identically distributed random variables
with finite mean µ and finite variance σ2, and let

Xn =
X1 + · · ·+Xn

n
.

Then Xn → µ in probability as n→∞.
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PROOF Observe that EXn = µ and

Var(Xn) =
Var(X1) + · · ·+ Var(Xn)

n2
=

σ2

n
,

so Xn has standard deviation σ/
√
n. Therefore, by Chebyshev’s Inequality

P
(∣∣Xn − µ

∣∣ > ε
)

= P

(∣∣Xn − µ
∣∣ > (ε√n

σ

) σ√
n

)
≤ σ2

ε2n
.

This approaches 0 as n→∞, and the theorem follows. �

Truncation and the General Case

So far, we have succeeded in proving the weak law for random variables that have finite
variance. These are sometimes referred to as L2 variables, since they are precisely
the random variables that lie in L2(Ω). However, the law holds true for any random
variables with finite mean (i.e. for L1 random variables). To prove this more general
case, we must find a way to extend our result to variables with infinite variance.

Given a general variable X ∈ L1(Ω), our plan is to “truncate” X to produce a
variable with finite variance:

Definition: Truncation
Let X : Ω → R be a random variable, and let N > 0. The truncation of X at N
is the variable Y : Ω→ [−N,N ] defined by

Y =

{
X if |X| ≤ N

0 if |X| > N.

Note that any truncation of X is bounded, and therefore has finite variance.

Lemma 7 Truncation Lemma

Let X : Ω → R be a random variable with finite expected value, and let ε > 0.
Then there exists a truncation Y of X so that E|X − Y | < ε.

PROOF For each N ∈ N, let YN be the truncation of X at N . It suffices to show
that E|X − YN | → 0 as N →∞.

We shall use the dominated convergence theorem, applied to integrals over Ω.
Clearly |X − YN | → 0 pointwise as N → ∞. Further, all of the functions |X − YN |
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are bounded by |X|, and ∫
Ω

|X| dP = E|X| < ∞.

Therefore, it follows from the dominated convergence theorem that∫
Ω

|X − YN | dP → 0 as N →∞.

That is, E|X − YN | → 0 as N →∞. �

Theorem 8 Weak Law of Large Numbers

Let {Xn} be a sequence of independent, identically distributed random variables
with finite mean µ, and let

Xn =
X1 + · · ·+Xn

n
.

Then Xn → µ in probability as n→∞.

PROOF Let ε1 > 0 and ε2 > 0. We will prove that

P
(∣∣Xn − µ

∣∣ > ε1
)
< ε2

for sufficiently large values of n.
For convenience of notation, let X be a random variable with same distribution

as the Xn’s, and let Y be a truncation of X for which

E|X − Y | < max
(ε1ε2

6
,
ε1
3

)
.

For each n, let Yn be the corresponding truncation of Xn, and let

Y n =
Y1 + · · ·+ Yn

n
.

By the triangle inequality, we have:∣∣Xn − EX
∣∣ ≤ ∣∣Xn − Y n

∣∣ +
∣∣Y n − EY

∣∣ + |EY − EX|.

We establish a bound for each of these three terms.



10

1. For the first term, observe that

E
∣∣Xn − Y n

∣∣ ≤ E|X1 − Y1|+ · · ·+ E|Xn − Yn|
n

= E|X − Y | < ε1ε2
6
.

By Markov’s inequality, it follows that

P
(∣∣Xn − Y n

∣∣ > ε1
3

)
≤

E
∣∣Xn − Y n

∣∣
ε1/3

<
ε1ε2/6

ε1/3
=

ε2
2
.

2. For the second term, observe that the variables {Yn} are independent, identically
distributed, and have finite variance. It follows that Y n → EY in probability as
n→∞. In particular,

P
(∣∣Y n − EY

∣∣ > ε1
3

)
<

ε2
2

for sufficiently large n.

3. For the third term, observe that

|EX − EY | = |E(X − Y )| ≤ E|X − Y | < ε1
3
.

In particular,

P
(
|EX − EY | > ε1

3

)
= 0.

Combining our results for each of the three terms, we have

P
(∣∣Xn − EX

∣∣ > ε1
)

≤ P
(∣∣Xn − Y n

∣∣ > ε1
3

or
∣∣Y n − EY

∣∣ > ε1
3

or |EY − EX| > ε1
3

)
≤ P

(∣∣Xn − Y n

∣∣ > ε1
3

)
+ P

(∣∣Y n − EY
∣∣ > ε1

3

)
+ P

(
|EY − EX| > ε1

3

)
<

ε2
2

+
ε2
2

+ 0 = ε2

for sufficiently large values of n. �

Finally, we end this section with a “counterexample” to the weak law of large
numbers in the case where the variables Xn do not have an expected value.
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Figure 2: (a) The standard Cauchy distribution. (b) Sample means Xn for 100,000
trials using the Cauchy distribution.

EXAMPLE 2 Cauchy Distribution
Let {Xn} be an independent sequence of variables with the standard Cauchy dis-
tribution

fX(x) =
1

π(1 + x2)
.

A plot of this probability density function is shown in Figure 2a. Since the integral∫
R
x dPX(x) =

∫
R

x

π(1 + x2)
dm(x)

does not exist, the expected value for this distribution is undefined.
As you might imagine, the sample means Xn for this distribution do not tend to

converge. Indeed, all of the sample means Xn have precisely the same distribution,
which is again the standard Cauchy distribution! Figure 2b shows experimental values
of Xn for 100,000 trials using this distribution. �

The Strong Law of Large Numbers

The strong law of large numbers is a version of the law of large numbers that is strictly
more powerful than the weak law. It is based on the following notion of convergence:

Definition: Almost Sure Convergence
Let {Xn} be a sequence of random variables, and let X be a random variable. We
say that Xn → X almost surely if

P (Xn → X) = 1.
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That is, Xn → X almost surely if the functions Xn converge to X pointwise
almost everywhere on the sample space. In general, probabilists say that an event
occurs almost surely if the probability of the event is 1. This is the same as the
measure-theoretic notion of “almost everywhere”.

The goal of this section is to prove the following theorem:

Strong Law of Large Numbers

Let {Xn} be a sequence of independent, identically distributed random variables
with finite expected value µ. For each n, let

Xn =
X1 + · · ·+Xn

n
.

Then Xn → µ almost surely as n→∞.

Before we begin to prove this theorem, we should discuss the difference between
almost sure convergence and convergence in probability. The following lemma is
crucial to understanding this difference:

Theorem 9 Borel-Cantelli Lemma

Let {En} be a sequence of events on a probability space, and suppose that

∞∑
n=1

P (En) < ∞.

Then, almost surely, only finitely many of the events En occur.

PROOF Let N be a random variable whose value is the number of events En that
occur. Then

N =
∞∑
n=1

χEn ,

where χEn is the characteristic function of En. By the monotone convergence theorem,
it follows that

EN =
∞∑
n=1

E[χEn ] =
∞∑
n=1

P (En) < ∞.

Since EN has finite expected value, it must be the case that P (N <∞) = 1. �
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This lemma gives us a nice test for almost sure convergence:

Theorem 10 Almost Sure Convergence Test

Let {Xn} be a sequence of random variables, and let X be a random variable.
Suppose that for every ε > 0,

∞∑
n=1

P
(
|Xn −X| > ε

)
< ∞.

Then Xn → X almost surely.

PROOF For each k, let

Ek = “|Xn −X| ≥
1

k
for infinitely many n.”

By the Borel-Cantelli Lemma, P (Ek) = 0 for each k. Then P (
⋃∞

k=1 Ek) = 0, so
Xn → X almost surely. �

The following example shows that variables may converge in probability without
converging almost surely:

EXAMPLE 3 Convergence in Probability, but not Almost Surely
Let Xn : Ω → [1,∞) be a sequence of independent, identically distributed random
variables with

fX(x) =
1

x2
,

and let Yn = Xn/n. Then Yn → 0 in probability, with

P (Yn > ε) = P (Xn > nε) =
1

εn

Since
∑
P (Yn > ε) = ∞, these random variables do not satisfy the hypothesis of

Theorem 10. Indeed, these random variables do not converge to zero almost surely.
In particular,

P (Yn ≤ ε for all n ≥ N) =
∞∏

n=N

(
1− 1

εn

)
= 0

for all ε > 0 and all N ∈ N. �
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Proof of the Strong Law

We now turn to the proof of the strong law of large numbers. Before we begin, recall
that our proof of the weak law used Chebyshev’s inequality to give us the bound

P
(
|Xn − µ| > ε

)
≤ σ2

ε2n
.

Since
∑

1/n diverges, this bound is not useful for proving almost sure convergence.
To prove the strong law, we will need a better bound than Chebyshev’s inequality
can provide.

To obtain a stronger bound, we need a more sensitive measure of variability than
variance. The following definition generalizes the notion of variance:

Definition: Moments
Let X : Ω → R be a random variable with finite mean µ. If k ∈ {2, 3, 4 . . .}, the
kth moment of X is the quantity

E
[
(X − µ)k

]
.

For example, the 2nd moment of X is the same as the variance of X. The moments
of X break into two main types:

1. If k is even, then the kth moment is a measure of dispersion, similar to the
variance or standard deviation. However, larger values of k give greater weight
to values of X that are farther from the mean.

2. If k is odd, then the kth moment counts values less than the mean as negative,
and evaluates to zero for distributions that are symmetric about the mean. In
this case, the kth moment can be thought of as a measure of the skewness (or
asymmetry) of a distribution.

Since we are interested in dispersion, we will skip over the third moment and use
the fourth moment of a random variable. The following lemma is an analogue of
Chebyshev’s inequality for the fourth moment:

Lemma 11 Fourth Moment Estimate

Let X be a random variable with finite mean µ and finite fourth moment τ 4.
Then for any k ∈ (0,∞),

P
(
|X − µ| > kτ

)
≤ 1

k4
.
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PROOF Let Y = (X − µ)4. By Markov’s Inequality,

P
(
|X − µ| > kτ

)
= P

(
Y > k4τ 4

)
≤ E|Y |

k4τ 4
=

τ 4

τ 4k4
=

1

k4
. �

Theorem 12 Strong Law—Finite Fourth Moment Version

Let {Xn} be a sequence of independent, identically distributed random variables
with finite mean µ, finite variance σ2, and finite fourth moment τ 4, and let

Xn =
X1 + · · ·+Xn

n
.

Then Xn → µ almost surely as n→∞.

PROOF The first step is to calculate the fourth moment of Xn. This is tedious but
straightforward, and leads to the following result:

E
[
(Xn − µ)4

]
=

nτ 4 + 6
(
n
2

)
σ4

n4
=

τ 4 + 3
2
(n− 1)σ4

n3
.

In particular,

E
[
(Xn − µ)4

]
≤ C

n2

where C = τ 4 + 3
2
σ4. Therefore, by the lemma,

P
(∣∣Xn − µ

∣∣ > ε
)

= P

(∣∣Xn − µ
∣∣ > 4

√
ε4n2

C
· 4

√
C

n2

)
≤ C

ε4n2
.

Since
∞∑
n=1

C4

ε4n2
< ∞,

it follows from Proposition 10 that Xn → µ almost surely as n→∞. �

This proves the strong law for random variables with finite fourth moment, i.e. for
variables in L4(Ω). However, like the weak law, the strong law is true for any random
variable with finite expected value. Indeed, it is possible to extend the strong law to
arbitrary L1 variables using a truncation argument, similar to our approach to the
weak law. Unfortunately, the details are a bit involved, so we will not pursue the
strong law any further.
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The Central Limit Theorem

The third major foundational theorem of probability is the central limit theorem.
Roughly speaking, this theorem states that the distribution of the sample mean Xn

tends to converge to a normal distribution as n→∞.
To state this idea more precisely, we must discuss the idea of convergence of

probability measures:

Definition: Weak Convergence
Let {Pn} be a sequence of probability measures on R, and let P be a probability
measure on R. We say that Pn converges weakly to P if∫

R
g dPn →

∫
R
g dP

for every bounded, continuous function g : R→ R.

The following examples should clarify this notion of convergence:

EXAMPLE 4 Discrete Approximations to Lebesgue Measure
For each n, let Pn be the probability measure on R satisfying

Pn

({k
n

})
=

1

n
for k ∈ {1, 2, . . . , n},

and let P be Lebesgue measure restricted to the interval [0, 1]. Then the measures
Pn converge weakly to P . In particular, if g : R → R is any bounded, continuous
function, then

n∑
k=1

1

n
g
(k
n

)
→
∫

[0,1]

g dm as n→∞. �

EXAMPLE 5 Convergence of Continuous Distributions
In general, a probability density function on R is an L1 function f : R → [0,∞]
satisfying

∫
R f = 1. Every density function f has an associated probability measure

Pf defined by

Pf(S) =

∫
S

f dm,

where m is Lebesgue measure.
Now let fn be a sequence of probability density functions, let f be a probability

density function, and suppose that fn → f in the L1 norm. In this case, the mea-
sures Pfn converge to Pf in probability. In particular, if g : R → R is any bounded,
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continuous function, then∣∣∣∣∫
R

g dPfn −
∫
R
g dPf

∣∣∣∣ =

∣∣∣∣∫
R

fgn dm−
∫
R

fg dm

∣∣∣∣
≤
∫
R
|fng − fg| dm

≤ ‖fn − f‖1 ‖g‖∞

which goes to 0 as n→∞. �

EXAMPLE 6 Converging to the Delta Measure
For each n, let Pfn be the continuous probability measure on R with density function

fn(x) =

{
n/2 if |x| ≤ 1/n

0 if |x| > 1/n,

and let δ be the measure

δ(S) =

{
1 if 0 ∈ S
0 if 0 /∈ S.

Then the measures Pfn converge weakly to δ. In particular, if g : R → R is any
bounded, continuous function, then

n

2

∫
[− 1

n
, 1
n

]

g dm → g(0) as n→∞. �

For the following theorem, recall that the standard normal distribution is the
probability measure on R defined by the density function

f(x) =
1√
2π

exp

(
−1

2
x2

)
.

Theorem 13 Central Limit Theorem

Let Xn : Ω → R be a sequence of independent, identically distributed random
variables with finite mean µ and finite variance σ2. For each n, let

Yn =
X1 + · · ·Xn − nµ

σ
√
n

,

so Yn has mean 0 and variance 1. Then PYn converges weakly to the standard
normal distribution as n→∞.
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Figure 3: Symmetric binomial distributions corresponding to (a) n = 20 (b) n = 100
and (c) n = 1000.

EXAMPLE 7 Binomial Distributions
Let Cn : Ω→ {0, 1} be a sequence of independent coin flips, and let

Xn = C1 + · · ·+ Cn.

Then Xn is a discrete random variable, with probability distribution given by

PXn({k}) =
1

2n

(
n

k

)
for k ∈ {0, 1, . . . , n}.

This probability distribution is known as the symmetric binomial distribution,
named after the binomial coefficients appearing in the formula. Plots of the distribu-
tions of X20, X100, and X1000 are shown in Figure 3.

From the figure, it appears that the binomial distributions converge to a normal
distribution as n→∞. Indeed, according to the central limit theorem, the probability
distributions for the variables

Xn − n/2√
n/2

converge weakly to the standard normal distribution as n→∞. �

Though we are not in a position to prove the central limit theorem, we can try to
convey some of the intuition behind it. In a fundamental way, the central limit theo-
rem involves the distribution of a sum of variables. The following theorem describes
the distribution of a sum in the case where one of the variables is continuous:

Proposition 14 Distribution of a Sum

Let X, Y : Ω → R be independent random variables, and let Z = X + Y . If X
is continuous, then Z is continuous, with

fZ(z) =

∫
R
fX(z − y) dPY (y).
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PROOF Let f : R → R be the function defined the integral above, and let S ⊂ R
be measurable. By Fubini’s Theorem,∫

S

f dm =

∫
S

∫
R
fX(z − y) dPY (y) dm(z)

=

∫
R

∫
S

fX(z − y) dm(z) dPY (y)

=

∫
R

∫
R
fX(z − y)χS(z) dm(z) dPY (y).

Substituting x = z − y in the last integral gives∫
S

f dm =

∫
R

∫
R
fX(x)χS(x+ y) dm(x) dPY (y) =

∫
R

∫
R
χS(x+ y) dPX(x) dPY (y).

Since X and Y are independent, the product measure dPX × dPY is the same as the
joint distribution dP(X,Y ). Therefore, by Fubini’s theorem,∫

S

f dm =

∫
R2

χS(x+ y) dP(X,Y )(x, y) = P (X + Y ∈ S) = P (Z ∈ S).

Since S ⊂ R was an arbitrary measurable set, this proves that Z is continuous and f
is a probability density function for Z. �

In the case where both X and Y are continuous and Z = X + Y , the proposition
above gives the formula

fZ(z) =

∫
R
fX(z − y) fY (y) dm(y) = (fX ∗ fY )(z).

That is, fZ is the convolution fX and fY .
In particular, if {Xn} is a sequence of independent, identically distributed, contin-

uous random variables, then the probability density function for the sum X1+· · ·+Xn

is nth the iterated convolution

fX ∗ fX ∗ · · · ∗ fX

where fX is the probability density function for each Xn. According to the central
limit theorem, this iterated convolution tends to converge to a normal distribution as
n→∞.

The following proposition explains why this might be the case:

Proposition 15 Stability of Normal Distributions

The sum of two or more independent, normally distributed random variables is
normally distributed.
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PROOF Let X and Y be normally distributed random variables, and let Z = X+Y .
Then

fX(x) = Ae−p(x) and fY (y) = Be−q(y),

where A and B are positive constants, and p(t) and q(t) are quadratic polynomials
with positive leading coefficients. Then

fZ(z) = (fX ∗ fY )(z) =

∫
R
fX(z − y)fY (y) dm(y) =

∫
R
Ae−p(z−y)Be−q(y) dm(y).

Now, if we complete the square, we can find quadratic polynomials P (t) and Q(t)
with positive leading coefficients so that

p(z − y) + q(y) = P (z) + Q(z − y).

for all y, z ∈ R. Then

fZ(z) =

∫
R
Ae−P (z)Be−Q(z−y) dm(y) =

(∫
R
ABe−Q(z−y) dm(y)

)
e−P (z)

=

(∫
R
ABe−Q(x) dm(x)

)
e−P (z) = Ce−P (z). �

In general, a probability distribution is said to be stable if the sum of two in-
dependent variables with that distribution again has the same distribution (up to
translation and rescaling). For a continuous distribution, this says that

(f ∗ f)(x) =
1

a
f(ax+ b)

for some constants a and b, where f is the probability density function. According to
the above proposition, normal distributions are stable in this sense.

In fact, it can be shown that the normal distribution is the only stable distribution
with finite mean and variance. That is, the normal distribution is the unique fixed
point for the operation of self-convolution. Thus the central limit theorem can be
thought of as saying that probability distributions tend to converge to this fixed
point under repeated applications of this operation.

Exercises

1. If E and F are independent events, prove that E and F c are independent.

2. Let E and F be events, and suppose that P (E) = p and P (F ) = q. What is
the maximum possible probability of P (E∩F )? What is the minimum possible
probability of P (E ∩ F )?
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3. Let E be an event, let F1 ⊂ F2 ⊂ F3 ⊂ · · · be an increasing sequence of events,
and suppose that E and Fn are independent for each n. Prove that E and⋃∞

n=1 Fn are independent.

4. Let X : Ω→ R be a random variable, let a, b ∈ R, and let Y = aX + b.

a) IfX has mean µ and standard deviation σ, what are the mean and standard
deviation of Y ?

b) If X is continuous with probability density function fX, what is the prob-
ability density function for Y ?

5. Suppose we flip a coin three times. Find four events E1, E2, E3, E4 for this
experiment such that any three are independent, but all four together are not
independent.

6. An experiment has 100 possible outcomes, all equally likely. Suppose that
{E1, . . . , En} is a collection of independent events for this experiment, each
with probability strictly between 0 and 1. What is the maximum possible value
for n?

7. Let {X1, . . . , X100} be a sequence of elements of [0, 1], chosen uniformly at
random, and let Y = X1 + · · ·+X100. Prove that

P (40 ≤ Y ≤ 60) ≥ 11

12
.

8. Let {Xn} be a sequence of independent, identically distributed continuous ran-
dom variables with probability density function

fX(x) =
1

(1 + |x|)3
,

and let Yn = X1 + · · ·+Xn. Prove that

P (−100 ≤ Y10 ≤ 100) ≥ 9

10
.

9. Let X : Ω→ [0,∞) be a continuous random variable with finite expected value,
and suppose that the probability density function fX : [0,∞) → [0,∞] is de-
creasing. Prove that

fX(x) ≤ 2EX

x2

for all x > 0.
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10. Let X and Y be independent random variables with EX = EY = 0. Prove
that

E
[
(X + Y )4

]
= E

[
X4] + E

[
Y 4
]

+ 6 Var(X) Var(Y ).

11. Let N be the number of heads in 10,000 coin flips.

a) Find the standard deviation of N .

b) Use the central limit theorem to estimate P (4950 ≤ N ≤ 5050).

12. In general, a Bernoulli random variable is any variable B : Ω → {0, 1}
satisfying

PB({0}) = 1− p and PB({1}) = p

for some p ∈ (0, 1).

Let {Bn} be a sequence of independent, identically distributed Bernoulli random
variables, and let Xn = B1 + · · · + Bn. Then Xn is said to have a binomial
distribution

a) Compute the mean and standard deviation of Xn. Your answers should
be formulas involving n and p.

b) If k ∈ {0, 1, . . . , n}, compute P (Xn = k).
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