
Structure of Measurable Sets

In these notes we discuss the structure of Lebesgue measurable subsets of R from sev-
eral different points of view. Along the way, we will see several alternative character-
izations of measurability which might help to make the concept seem more intuitive.

We begin by discussing the measures of open sets. First, recall the following
definition.

Definition: Open Set
A subset U ⊆ R is said to be open if there exists a collection C of open intervals
whose union is U .

Note that R is itself open, being the union of the intervals (n−1, n+1) for n ∈ Z.
The empty set ∅ is also open, being the union of the empty collection of intervals.

The following proposition highlights the important role that open sets play in
analysis.

Proposition 1 Continuity Using Open Sets

Let f : R → R. Then f is continuous if and only if f−1(U) is open for every
open set U ⊆ R.

PROOF Suppose first that f−1(U) is open for every open set U ⊆ R. Let x ∈ R,
and let ε > 0. Then U =

(
f(x) − ε, f(x) + ε

)
is open, so f−1(U) is open. Since

x ∈ f−1(U), there must be an open interval that contains x and is contained in
f−1(U). Indeed, there must exist a δ > 0 so that (x− δ, x+ δ) ⊆ f−1(U). Then

|y − x| < δ ⇒
∣∣f(x)− f(y)

∣∣ < ε

for all y ∈ R, which proves that f is continuous at x.
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For the converse, suppose that f is continuous. Let U ⊆ R be any open set, and
let x ∈ f−1(U). Since U is open, there is an open interval containing f(x) that is
contained in U . In particular, there exists an ε > 0 so that

(
f(x)− ε, f(x) + ε

)
⊆ U .

But since f is continuous at x, there exists a δ > 0 so that

|x− y| < δ ⇒
∣∣f(x)− f(y)

∣∣ < ε

for all y ∈ R. It follows that f(y) ∈
(
f(x) − ε, f(x) + ε

)
for all y ∈ (x − δ, x + δ).

Then (x− δ, x+ δ) ⊆ f−1(U), which proves that f−1(U) is open. �

A priori, there is no reason to think that every open set must be measurable, since
by the definition an open set might involve an uncountable union of open intervals.
However, the following structure theorem shows that every open set is a countable
union of open intervals.

Theorem 2 Structure of Open Sets

Every proper open subset of R is a countable, disjoint union of open intervals
and open rays.

PROOF Let U be a proper open subset of R. Put an equivalence relation ∼ on U
by x ∼ y if U contains every point between x and y. The equivalence classes under
this relation are called the components of U . We claim that each component of U
is either an open interval or an open ray.

Let C be a component of U , and let a = inf(U) and b = sup(U), with a = −∞ if
U has no lower bound and b =∞ if U has no upper bound. If x ∈ (a, b), then there
must exist points c1, c2 ∈ C so that a < c1 < x and x < c2 < b. Since c1 ∼ c2 and
x lies between c1 and c2, it follows that x ∈ C. This proves that (a, b) ⊆ C, and we
know that C ⊆ [a, b]. But if b ∈ C, then since b ∈ U and U is open there exists an
open interval (d, e) ⊆ U that contains b. Then it is easy to see that all of (a, b)∪ (d, e)
must lie in C, a contradiction since e > b. Thus b /∈ C, and similar reasoning shows
that a /∈ C, so C = (a, b). Clearly C 6= R since U is a proper subset of R, so C is
either an open interval or an open ray.

Finally, observe that each component of U must contain at least one rational num-
ber, and therefore U has only countably many components. Thus U is the countable,
disjoint union of its components. �
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Corollary 3

Every open subset of R is Lebesgue measurable.

Based on the structure of open sets described in Theorem 2, the measure m(U) of
an open set U can be interpreted as simply the sum of the lengths of the components
of U . Note, however, that an open set may have infinitely many components, and
these may form a fairly complicated structure on the real line. Indeed, the following
example illustrates that open sets can behave in very counterintuitive ways.

Proposition 4 Small Open Sets Containing Q

For every ε > 0, there exists an open set U ⊆ R such that m(U) ≤ ε and U
contains the set Q of rational numbers.

PROOF Let ε > 0, let q1, q2, . . . be an enumeration of the rational numbers, and let

U =
⋃
n∈N

(
qn −

ε

2n+1
, qn +

ε

2n+1

)
.

Then U is open, and

m(U) ≤
∑
n∈N

m

((
qn −

ε

2n+1
, qn +

ε

2n+1

))
=
∑
n∈N

ε

2n
= ε. �

Closed Sets

Recall the following definition.

Definition: Closed Set
A subset F ⊆ R is closed if, for every convergent sequence {xn} of points in F ,
the point x ∈ R that {xn} converges to also lies in F .

That is, a closed set is a set that it closed under the operation of taking limits
of sequences. For example, any closed interval [a, b] is closed, since any convergent
sequence in [a, b] must converge to a point in [a, b]. The entire real line R is also closed,
and technically the empty set ∅ is closed as well, since the condition is vacuously
satisfied.
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The following description of closed sets is fundamental.

Proposition 5 Complements of Closed Sets

Let F ⊆ R. Then F is closed if and only if F c is open.

PROOF Suppose first that F is not closed. Then there exists a sequence {xn} of
points in F that converges to a point x ∈ F c. Then every open interval (a, b) that
contains x must contain a point of the sequence, and therefore no open interval (a, b)
that contains x is contained in F c. It follows that F c is not open.

Conversely, suppose that F c is not open. Then there must exist a point x ∈ F c

that does not lie an any open interval contained in F c. In particular, each of the open
intervals (x−1/n, x+ 1/n) must contain a point xn ∈ F . Then the sequence {xn}n∈N
in F converges to the point x ∈ F c, so F is not closed. �

Corollary 6

Every closed subset of R is Lebesgue measurable.

We now turn to unions and intersections of open and closed sets. Students of
point-set topology will recognize parts (1) and (2) of the following proposition as
essentially the definition of a topological space.

Proposition 7 Unions and Intersections of Open and Closed Sets

1. The union of any collection of open sets in R is open.

2. The intersection of finitely many open sets in R is open.

3. The intersection of any collection of closed sets in R is closed.

4. The union of finitely many closed sets in R is closed.

PROOF For (1), let C be a collection of open sets. For each U ∈ C, let IU be a
collection of open intervals whose union is U . Then I =

⋃
U∈C IU is a collection of

open intervals whose union is
⋃
C, and therefore

⋃
C is open.
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For (2), it suffices to prove that U ∩ V is open if U and V are open. Given such
a U and V , let I and J be collections of open intervals whose unions are U and V
respectively. Then

{I ∩ J | I ∈ I, J ∈ J , and I ∩ J 6= ∅}

is a collection of open intervals whose union is U ∩ V , and therefore U ∩ V is open.
Parts (3) and (4) follow immediately from parts (1) and (2) by taking comple-

ments. �

Though every open set in R is a disjoint union of countably many open intervals,
it is not true that every closed set is a disjoint union of closed intervals. Indeed, there
exists a very famous closed set called the Cantor set whose structure is much more
interesting. To construct the Cantor set, we start with the unit interval:

C0 = [0, 1].

Next we remove the middle third of this interval, leaving a union of two closed inter-
vals:

C1 =
[

0,
1

3

]
]
[ 2

3
, 1
]
.

Next we remove the middle third of each of these intervals, leaving a union of four
closed intervals:

C2 =
[

0,
1

9

]
]
[ 2

9
,

1

3

]
]
[ 2

3
,

7

9

]
]
[ 8

9
, 1
]
.

Proceeding in this fashion, we obtain a nested sequence C0 ⊇ C1 ⊇ C2 ⊇ · · · of closed
sets, where Cn is the union of 2n closed intervals, as illustrated in Figure 1. Then the
intersection

C =
⋂
n∈N

Cn

is the aforementioned Cantor set.

Figure 1: The first six stages in the construction of the Cantor set.
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Proposition 8 Properties of the Cantor Set

The Cantor set C has the following properties:

1. C is closed.

2. C is uncountable. Indeed, |C| = |R|.

3. m(C) = 0.

PROOF Since C is the intersection of the closed sets Cn, it follows from Propo-
sition 7 that C is closed. Furthermore, since Cn is the disjoint union of 2n closed
intervals of length 3−n, we know that m(Cn) = 2n3−n = (2/3)n, and it follows that

m(C) = inf
n∈N

m(Cn) = inf
n∈N

(2/3)n = 0.

Finally, to show that C is uncountable, let {0, 1}∞ be the (uncountable) set of all
infinite binary sequences, and define a function f : {0, 1}∞ → R by

f(b1, b2, b3, . . .) =
∑
n∈N

2bn
3n
.

It is easy to check that f is injective and the image of f lies in the Cantor set (in
fact, f is a bijection from {0, 1}∞ to C), and therefore C is uncountable. Indeed, we
have

|R| =
∣∣{0, 1}∞∣∣ ≤ |C| ≤ |R|

and hence |C| = |R|. �

Corollary 9

Let M be the collection of all Lebesgue measurable subsets of R. Then

|M| =
∣∣P(R)

∣∣.
PROOF Clearly |M| ≤

∣∣P(R)
∣∣. But since the Cantor set C has Lebesgue measure

zero, every subset of the Cantor set is Lebesgue measurable, i.e. P(C) ⊆ M. But
since |C| = |R|, it follows that

∣∣P(C)
∣∣ =

∣∣P(R)
∣∣, and hence

∣∣P(R)
∣∣ ≤ |M|. �

Incidentally, there is some sense in which the structure of the Cantor set is fairly
typical for closed sets. In particular, Theorem 2 tells us that any open set can be
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described as the union of a nested sequence

U1 ⊆ U2 ⊆ U3 ⊆ · · ·

where each Un is a finite disjoint union of open intervals and open rays. Taking
complements, we find that any closed set can be described as the intersection of a
nested sequence

F1 ⊇ F2 ⊇ F3 ⊇ · · ·

where each Fn is a finite disjoint union of closed intervals and closed rays.

Open Sets and Measurability

We are now ready to use open sets and closed sets to give a few alternative descriptions
of Lebesgue outer measure and Lebesgue measurability. We begin by describing the
Lebesgue outer measure in terms of open sets.

Proposition 10 Open Sets and Outer Measure

If S ⊆ R, then

m∗(S) = inf{m(U) | U is open and S ⊆ U}.

PROOF Let x be the value of the infimum. Clearly m∗(S) ≤ m(U) for every open
set U that contains S, and therefore m∗(S) ≤ x. For the opposite inequality, let
ε > 0, and let C be a cover of S by open intervals so that∑

I∈C

`(I) ≤ m∗(S) + ε.

Then U =
⋃
C is an open set that contains S, so

x ≤ m(U) ≤
∑
I∈C

m(I) =
∑
I∈C

`(I) ≤ m∗(S) + ε.

Since ε was arbitrary, it follows that x ≤ m∗(S). �

We shall now use open sets to give a nice characterization of measurability.
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Proposition 11 Measurability Using Open Sets

Let S ⊆ R. Then S is Lebesgue measurable if and only if for every ε > 0 there
exists an open set U containing S so that m∗(U − S) < ε.

PROOF Suppose first that S is measurable, and let ε > 0. For each n ∈ N, let
Sn = S ∩ [−n, n], and let Un be an open set containing Sn so that

m(Un) < m(Sn) +
ε

2n
.

Let U =
⋃
n∈N Un. Then U is an open set containing S and U − S ⊆

⋃
n∈N(Un − Sn),

so
m(U − S) ≤

∑
n∈N

m(Un − Sn) ≤
∑
n∈N

ε

2n
= ε.

For the converse, let S ⊆ R, and suppose that for every n ∈ N there exists an
open set Un containing S so that m∗(Un − S) < 1/n. Let E =

⋂
n∈N Un, and note

that E is a measurable set containing S. But E − S ⊆ Un − S for each n, so

m∗(E − S) ≤ m∗(Un − S) ≤ 1

n

for each n. We conclude that m∗(E − S) = 0, and therefore E − S is Lebesgue
measurable. Then S = E − (E − S) is Lebesgue measurable as well. �

Corollary 12 Measurability Using Closed Sets

Let S ⊆ R. Then S is Lebesgue measurable if and only if for every ε > 0 there
exists a closed set F ⊆ S containing S so that m∗(S − F ) < ε.

PROOF Observe that F is a closed set contained in S if and only if U = F c is an
open set containing Sc. Moreover, S − F = U − Sc, so m∗(S − F ) < ε if and only if
m∗(U −Sc) < ε, and hence this statement follows directly from applying the previous
proposition to Sc. �

Combining this corollary with the previous proposition yields the following nice
result.
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Corollary 13

Let S ⊆ R. Then S is Lebesgue measurable if and only if there exists a closed
set F and an open set U so that F ⊆ S ⊆ U and m(U − F ) < ε.

Incidentally, there is another function similar to Lebesgue outer measure that is
more closely related to closed sets.

Definition: Inner Measure
If S ⊆ R, the Lebesgue inner measure of S is defined by

m∗(S) = sup{m(F ) | F is closed and F ⊆ S}.

It follows immediately from Corollary 12 that m∗(E) = m(E) for any measurable
set E. It is also apparent that m∗(S) ≤ m∗(S) for any set S ∈ R. The following
proposition gives a nice characterization of measurability for sets of finite measure.

Proposition 14 Measurability Using Inner and Outer Measures

Let S ⊆ R, and suppose that m∗(S) <∞. Then S is measurable if and only if

m∗(S) = m∗(S).

PROOF If S is measurable, then m∗(S) = m(S) = m∗(S). Conversely, suppose
that m∗(S) <∞ and m∗(S) = m∗(S). Let ε > 0, and let F ⊆ S be a closed set and
U ⊆ R and open set containing S so that

m∗(S) ≤ m(F ) +
ε

2
and m(U) ≤ m∗(S) +

ε

2
.

Then

m(U − F ) = m(U)−m(F ) ≤
(
m∗(S) +

ε

2

)
−
(
m∗(S)− ε

2

)
= ε.

Since ε was arbitrary, it follows from Corollary 13 that S is measurable. �
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Fσ and Gδ Sets

As we have seen, every open or closed subset of R is Lebesgue measurable. The
following definition provides many more examples of measurable sets.

Definition: Fσ and Gδ Sets

1. A subset of R is Fσ if it is a countable union of closed sets.

2. A subset of R is Gδ if it is a countable intersection of open sets.

Here F stands for fermé, which is French for “closed”, and σ stands for somme,
which is the French word for a union of sets. Similarly, G stands for Gebiet, which is
the German word for an open set, and δ stands for Durchschnitt, which is the German
word for an intersection of sets.

The following proposition lists some of the basic properties of Fσ or Gδ sets. The
proofs are left to the exercises.

Proposition 15 Properties of Fσ and Gδ Sets

1. An Fσ or Gδ set is measurable.

2. If S ⊆ R, then S has type Fσ if and only if Sc has type Gδ.

3. Every countable set is Fσ. In particular, the set Q of rational numbers is Fσ,
and the set R−Q of irrational numbers is Gδ.

4. Every open or closed set is both Fσ and Gδ.

The rational numbers provide an example of an Fσ set that is neither open nor
closed. Incidentally, it is possible to prove that the rational numbers are not a Gδ set
using the Baire category theorem (see §48 of Munkres’ Topology).

Of course, most Fσ sets are not countable. The following example describes an
uncountable Fσ set that is neither open nor closed, whose structure is more “typical”
for sets of this type.

EXAMPLE 1 Let C ⊆ [0, 1] be the Cantor set. Note that any closed interval [a, b]
contains a scaled copy of C whose left endpoint is a and whose right endpoint is B.
We now define a sequence F0 ⊆ F1 ⊆ F2 ⊆ · · · of sets as follows:

• We start with F0 = C.
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• Let F1 be the set obtained from C by pasting a scaled copy of C into each
interval of [0, 1]− C.

• For each n ≥ 2, let Fn be the set obtained from Fn−1 by pasting a scaled copy
of C into each interval of [0, 1]− Fn−1.

Note that each Fn is a closed set, since the complement F c
n is a union of open intervals.

The union F =
⋃
n∈N Fn is thus an Fσ set. It is not hard to see that neither F nor

F c contains any open intervals, so F is neither open nor closed. Note also that each
Fn has measure zero, and therefore F has measure zero.

This set F has a nice description in ternary (base 3). First, observe that the
Cantor set C consists of all points x ∈ [0, 1] that have a ternary expansion consisting
only of 0’s and 2’s, with no 1’s. Then for each n, the set Fn consists of all points
x ∈ [0, 1] that have a ternary expansion with at most n digits that are 1. For example,
the number

475

972
= 0.1110120202020 · · ·

lies in F4 but not F3. Then the Fσ set F consists of all points x ∈ [0, 1] that have a
ternary expansion with at most finitely many 1’s. �

We can reinterpret some of our criteria for measurability involving open and closed
sets in terms of Fσ and Gδ sets.

Proposition 16 Measurability Using Fσ and Gδ Sets

Let E ⊆ R. Then the following are equivalent:

1. E is Lebesgue measurable.

2. E = F ∪ Z for some Fσ set F and some set Z ⊆ R of measure zero.

3. E = G− Z for some Gδ set G and some set Z ⊆ G of measure zero.

PROOF Clearly (2) and (3) both imply (1). For the converse, suppose that E is
Lebesgue measurable. For every n ∈ N, let Fn be a closed set and Un be an open set
so that Fn ⊆ E ⊆ Un and m(Un − Fn) ≤ 1/n. Then F =

⋃
n∈N Fn is an Fσ set and

G =
⋂
n∈N Un is a Gδ set such that F ⊆ E ⊆ G. Moreover, since G − F ⊆ Gn − Fn

for all n, we know that m(G−F ) = 0. Then E = F ∪ (E−F ) = G− (G−E), where
m(E − F ) = m(G− E) = 0. �
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Borel Sets

If X is a set, recall that a σ-algebra on X is any nonempty collection of subsets of
X that is closed under taking complements and countable unions. For example, the
Lebesgue measurable subsets of R form a σ-algebra on R.

Proposition 17 Intersection of σ-Algebras

Let X be a set, and let C be any collection of σ-algebras on X. Then the inter-
section

⋂
C is also a σ-algebra on X.

PROOF Since ∅ ∈ M for every M ∈ C, it follows that ∅ ∈
⋂
C. Next, if S ∈

⋂
C,

then S ∈ M for every M ∈ C. Then Sc ∈ M for every M ∈ C, and hence
Sc ∈

⋂
C. Finally, if {Sn} is a sequence in

⋂
C, then each M ∈ C must contain

the entire sequence {Sn}. It follows that
⋃
n∈N Sn ∈ M for each M ∈ C, and hence⋃

n∈N Sn ∈
⋂

C. �

You have probably seen propositions similar to this one in other fields of mathe-
matics. For example, a similar fact from group theory is that the intersection of any
collection of subgroups of a group G is again a subgroup of G. Similarly, in topology
the intersection of any collection of topologies on a set X is again a topology on X.

Definition: Generators for a σ-Algebra
Let X be a set, and let C be any collection of subsets of X. The σ-algebra
generated by C is the intersection of all σ-algebras on X that contain C.

It is important for this definition that there is always at least one σ-algebra that
contains C, namely the collection P(X) of all subsets of X.

EXAMPLE 2 Let X be a set, and let C be the collection of singleton sets in X, i.e.

C =
{
{x}

∣∣ x ∈ X}.
Then it is not hard to check that the σ-algebra generated by C consists of all sets
S ⊆ X for which either S or Sc is countable. �

Definition: Borel Sets
The Borel algebra B is the σ-algebra on R generated by the collection of all open
sets. A set B ⊆ R is called a Borel set if B ∈ B.
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By definition every open set is a Borel set. Moreover, since the Borel sets are a
σ-algebra, the complement of any Borel set is a Borel set, and any countable union
of Borel sets is a Borel set.

Proposition 18 Properties of Borel Sets

1. Every Borel set is measurable.

2. Every open set, closed set, Fσ set, or Gδ set is a Borel set.

3. The Borel algebra is generated by the collection of all open intervals.

PROOF For (1), observe that the collection M of all Lebesgue measurable sets
is a σ-algebra that contains the open sets. Since B is the intersection of all such
σ-algebras, it follows that B ⊆M.

For (2), every open set lies in B by definition. Since B is a σ-algebra, it follows
immediately that closed sets, Fσ sets, and Gδ sets lie in B as well.

For (3), let A be the σ-algebra generated by the open intervals. Since B contains
the open intervals, we know that A ⊆ B. But since every open set is a countable
union of open intervals, A contains every open set, and hence B ⊆ A. �

As we will see, open sets, closed sets, Fσ sets, and Gδ sets are among the simplest
of the Borel sets. In the rest of this section, we describe the overall structure of the
Borel algebra. We will not prove any of the theorems below, and indeed any of the
proofs would be beyond the scope of this course.

Definition: Finite Borel Hierarchy
The finite Borel hierarchy consists of two sequences {Σn} and {Πn} of subsets
of B defined as follows:

• Σ1 is the collection of all open sets in R, and Π1 is the collection of all closed
sets in R.

• For each n ≥ 1, the collection Σn+1 consists of all countable unions of sets
from Πn, and the collection Πn+1 consists of all countable intersections of sets
from Σn.

For example, Σ2 is the collection of all Fσ sets, and Π2 is the collection of all Gδ

sets. Similarly, Σ3 is the collection of all countable unions of Gδ sets, and Π3 is the
collection of all countable intersections of Fσ sets. Thus every set in Σ3 can be written
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as ⋃
m∈N

⋂
n∈N

Um,n

for some open sets Um,n and every set in Π3 can be written as⋂
m∈N

⋃
n∈N

Fm,n

for some closed sets Fm,n.
As mentioned in the previous section, every open or closed set is both Fσ and Gδ.

Thus we have

Σ1 ⊆ Σ2, Σ1 ⊆ Π2, Π1 ⊆ Σ2, and Π1 ⊆ Π2.

Moreover, all four of these inclusions are proper. In particular, Q is in both Σ2 − Σ1

and Σ2 − Π1, and R − Q is in both Π2 − Σ1 and Π2 − Π1. The following theorem
generalizes all of this.

Theorem 19 Properties of Σn and Πn

For each n ∈ N, the following statements hold.

1. For all S ⊆ R, we have S ∈ Σn if and only if Sc ∈ Πn.

2. We have

Σn ⊆ Σn+1, Σn ⊆ Πn+1, Πn ⊆ Σn+1, and Πn ⊆ Πn+1.

Moreover, all four of these inclusions are proper.

If B ⊆ R is a Borel set, the Borel rank of B is the minimum n such that B lies
in Σn ∪ Πn. Thus sets that are open or closed have Borel rank 1, sets that are Fσ or
Gδ have Borel rank 2, and so forth.

Amazingly, it is not true that every Borel set has finite rank. For example if {Sn}
is a sequence of Borel sets such that each Sn is contained in (n, n+1) and has rank n,
then the union

S = S1 ∪ S2 ∪ S3 ∪ · · ·

cannot have any finite rank. Such a set S is said to have rank ω, and the collection
of all such sets is known as Σω. The complement of any set in Σω is also said to have
rank ω, and the collection of all such sets is known as Πω.

The Borel hierarchy continues even beyond ω. For example, Σω+1 consists of all
countable unions of sets from Πω, and Πω+1 consists of all countable intersections of
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sets from Σω. Indeed, we have a sequence of sets

Σ1 ⊆ Σ2 ⊆ Σ3 ⊆ · · · ⊆ Σω ⊆ Σω+1 ⊆ Σω2 ⊆ · · · ⊆ Σ2ω ⊆ Σ2ω+1 ⊆ · · ·

and similarly for the Π’s. The result is that the sets Σα and Πα can be defined for
each countable ordinal α (i.e. for each element of a minimal uncountable well-ordered
set SΩ). The resulting families {Σα}α∈SΩ

and {Πα}α∈SΩ
constitute the full Borel

hierarchy, and the Borel algebra B is the union of these:

B =
⋃
α∈SΩ

Σα =
⋃
α∈SΩ

Πα.

Incidentally, it is not too hard to prove that each of the sets Σα and Πα has the
same cardinality as R. Since |SΩ| ≤ |R|, it follows that the full Borel algebra B has
cardinality |R| as well.

Theorem 20 Cardinality of the Borel Algebra

Let B be the Borel σ-algebra in R. Then

|B| = |R|.

By Corollary 9, the cardinality of the collection of measurable sets is equal to |P(R)|,
which is greater than the cardinality of the Borel algebra. This yields the following
corollary.

Corollary 21

There exists a Lebesgue measurable set that is not a Borel set.

Since the Borel algebra is a σ-algebra, we could of course restrict Lebesgue measure
to the Borel algebra, yielding a measure m|B : B → R. However, this measure is not
complete, since there exist Borel sets of measure zero (such as the Cantor set) whose
subsets are not all Borel. Indeed, by Proposition 16, Lebesgue measure is precisely
the completion of the measure m|B.

Exercises

1. Prove that every nonempty open set has positive measure.
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2. a) Let S ⊆ R, and let C be a collection of open sets that covers S. Prove that
C has a countable subcollection that covers S.

b) A set S ⊆ R is locally measurable if for every point x ∈ S there exists
an open set U containing x so that S ∩U is measurable. Prove that every
locally measurable set is measurable.

3. A subset of R is totally disconnected if it does not contain any open intervals
(e.g. the Cantor set). Give an example of a closed, totally disconnected subset
of [0, 1] that has positive measure.

4. a) If S ⊆ R, prove that m∗(S) = inf{m(E) | E is measurable and S ⊆ E}.
b) If S ⊆ R, prove that m∗(S) = sup{m(E) | E is measurable and E ⊆ S}.

5. Let E ⊆ R be a measurable set with m(E) <∞, and let S ⊆ E. Prove that

m∗(S) = m(E)−m∗(E − S).

6. If {Sn} is a sequence of pairwise disjoint subsets of R, prove that

m∗

( ⊎
n∈N

Sn

)
≥
∑
n∈N

m∗(Sn).

7. Prove that a set S ⊆ R is Fσ if and only if its complement is Gδ.

8. Prove that every countable subset of R is Fσ.

9. Prove that the intersection of two Fσ sets is Fσ.

10. Prove that every open set is both Fσ and Gδ. Deduce that the same holds true
for closed sets.

11. Give an example of a set which is both Fσ and Gδ but is neither open nor closed.

12. Let C be the collection of all uncountable subsets of R. Prove that the σ-algebra
generated by C is the power set of R.

13. Prove that the σ-algebra generated by the collection {(a,∞) | a ∈ R} is the
Borel sets.

14. Let M be the collection of Lebesgue measurable sets in R. Prove that M is
the σ-algebra generated by the open intervals together with all sets of measure
zero.


