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Several equations have been proposed to describe ontogenetic
growth trajectories for organisms justi®ed primarily on the good-
ness of ®t rather than on any biological mechanism1±6. Here, we
derive a general quantitative model based on fundamental prin-
ciples7±9 for the allocation of metabolic energy between main-
tenance of existing tissue and the production of new biomass. We
thus predict the parameters governing growth curves from basic
cellular properties10 and derive a single parameterless universal
curve that describes the growth of many diverse species. The
model provides the basis for deriving allometric relationships for
growth rates and the timing of life history events2,11,12.

Ontogenetic development is fuelled by metabolism and occurs
primarily by cell division. Incoming energy and materials from the
environment are transported through hierarchical branching net-
work systems to supply all cells. These resources are transformed
into metabolic energy, which is used for life-sustaining activities.
During growth, some fraction of this energy is allocated to the
production of new tissue. Thus, the rate of energy transformation is
the sum of two terms, one of which represents the maintenance of
existing tissue, and the other, the creation of new tissue. This is
expressed by the conservation of energy equation:

B �

ĉ

NcBc � Ec

dNc

dt

� �
�1�

The incoming rate of energy ¯ow, B, is the average resting metabolic
rate of the whole organism at time t, Bc is the metabolic rate of a
single cell, Ec is the metabolic energy required to create a cell and Nc

is the total number of cells; the sum is over all types of tissue.
Possible differences between tissues are ignored and some average
typical cell is taken as the fundamental unit. The ®rst term, NcBc, is
the power needed to sustain the organism in all of its activities,
whereas the second is the power allocated to production of new cells
and therefore to growth. Ec, Bc, and the mass of a cell, mc, are
assumed to be independent of m remaining constant throughout
growth and development.

At any time t the total body mass m � mcNc, so equation (1) can
be written as

dm

dt
�

mc

Ec

� �
B 2

Bc

Ec

� �
m �2�

Now, if B � B0m3=4, where B0 is constant for a given taxon, then

dm

dt
� am3=4 2 bm �3�

with a [ B0mc=Ec and b [ Bc=Ec. The 3/4 exponent is well supported
by data on mammals1,13, birds14, ®sh15,16, molluscs17 and plants18.
Although some mammals may show ¯uctuations around 3/4-power
scaling owing to `growth spurts' (ref. 1), the 3/4 exponent describes
the overall allometry of B from birth to reproductive maturity. For
altricial birds, hatchlings are supplied with a store of metabolically
inert water which is expended during growth, and when this is taken

into account in relating Nc to m, B ~ m3=4 (ref. 14).
Recently, a model was developed for understanding the 3/4

exponent and, more generally, the ubiquitous 1/4 power occurring
in biological allometry7,8. It is based on the premise that the
tendency of natural selection to optimize energy transport has led
to the evolution of fractal-like distribution networks. The 3/4
exponent was shown to be related to the scaling of the total
number (Nt) of terminal units (capillaries) in the network:
B ~ N t ~ m3=4. In contrast, the total number of cells, Nc ~ m.
Thus, the reason for the different exponents of m in the two
terms on the right-hand side of equation (3) is that the network
constrains the total number of supply units (capillaries) to scale
differently from the total number of cells supplied7,8. This imbalance
between supply and demand ultimately limits growth. If the
exponents were the same, then dm=dt Þ 0 and organisms would
continue to grow inde®nitely. We therefore have a fundamental
explanation for the origin of determinate growth in which an
asymptotic maximum body size (M) is reached. This occurs when
dm=dt � 0, giving M � �a=b�4 � �B0mc=Bc�

4. Thus, the variation in
M among species within a taxon, where B0 and mc do not change, is
determined by the systematic variation of the in vivo cellular
metabolic rate, Bc, which scales as M-1/4. Within a taxon B0, mc

and Ec are approximately constant, so a should be approximately
independent of M, whereas b (� a=M1=4) should scale as M-1/4.
Between groups, however, a should vary, principally re¯ecting
variations in B0. Equation (3) can therefore be re-expressed as

dm

dt
� am3=4 1 2

m

M

� �1=4
� �

�4�

Although equations (3) and (4) are super®cially similar in structure
to that of von Bertalanffy6, they differ signi®cantly in that they are
derived from basic principles so that the parameters governing
growth, a and b, are directly calculable from fundamental cellular
parameters.

A classical sigmoidal curve (see Supplementary Information) is
obtained from integrating equation (4):

m

M

� �1=4

� 1 2 1 2
m0

M

� �1=4
� �

e2at=4M1=4

�5�

Here, m0 is the mass at birth (t � 0). In Fig. 1 we plot some
examples of m versus t for four very different animals and ®t the data
using equation (5). Values of a, m0 and M for these and several other
species can be found in Table 1. Consistent with our predictions, a
varies only modestly within a taxon, whereas across taxa, a ~ B0, as
is con®rmed by a positive correlation with B0 (coef®cient of
correlation, r2 � 0:82; n � 5; P � 0:035)11. Perhaps more signi®-
cantly, the magnitudes of a and b can be independently determined
from fundamental parameters of the cell. The energy content of
mammalian tissue has been measured to be about 7 3 106 J Kg21

(refs 11, 19), so, if mc < 3 3 1029 g, the energy needed to create a cell
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Table 1 Values of several parameters for various organisms

Organism a m0 M Slope
.............................................................................................................................................................................

Cow 0.28 33.3 kg 442 kg 1.08
Pig 0.31 0.90 kg 320 kg 1.08
Rabbit 0.36 0.12 kg 1.35 kg 1.34
Guinea pig 0.21 5 g 840 g 0.91
Rat 0.23 8 g 280 g 1.07
Shrew 0.83 0.3 g 4.2 g 0.98
Heron 1.56 3 g 2.7 kg 1.04
Hen 0.47 43 g 2.1 kg 0.72
Robin 1.9 1 g 22 g 1.03
Cod 0.017 0.1 g 25 kg 1.01
Salmon 0.026 0.01 g 2.4 kg 1.01
Guppy 0.10 0.008 g 0.15 g 1.04
Shrimp 0.027 0.0008 g 0.075 g 0.82
.............................................................................................................................................................................

a, see equation (3); m0, birth mass; M, asymptotic mass. Also shown are the negative mean values
of the slopes of plots of ln[R(t)/R(0)] versus at/4M1/4 which is predicted to have a universal value of 1;
R [ �1 2 �m=M�1=4� is the proportion of metabolic power devoted to growth.
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in vivo, Ec < 2:1 3 1025 J. Taking B0 < 1:9 3 1022 W (ref. 11) then
gives a [ B0mc=Ec < 0:25 g1=4 per day, in good agreement with data
(Table 1). Asymptotic masses, M, or equivalently b, could be
predicted if Bc in vivo were independently known.

Equation (5) suggests powerful ways of plotting the data that
reveal universal properties of growth. If the dimensionless mass
ratio, r [ �m=M�1=4, is plotted against a dimensionless time variable,
t [ at=4M1=4 2 ln�1 2 �m0=M�1=4�, then equation (5) predicts that
all species, regardless of taxon, cellular metabolic rate (Bc), or
mature body size (M), should fall on the same parameterless
universal curve r � 1 2 e2t. Data for a wide variety of animals
(mammals, birds, ®sh, crustacea) clearly show such universal
properties, as illustrated by Fig. 2. We note that t includes an
adjustment for m being non-zero at birth (t � 0). An alternative
way of exhibiting this universality is to introduce R[
�1 2 �m=M�1=4� � 1 2 r, in which case equation (5) becomes
R�t� � R�0�e2at=4M1=4

. A plot of ln[R(t)/R(0)] versus at/4M1/4

should yield a universal straight line of slope -1. The slopes for 13
species of animals are all very close to -1, their mean being
2 0:99 6 0:04; see Table 1.

The quantities, r and R, have an elegant interpretation as
the relative proportions of total available metabolic power (B)
that, respectively, fuel maintenance and growth. To see this,
note that from equation (1), relative maintenance is given
by NcBc=B � �Bc=B0mc�m

1=4 � �b=a�m1=4 � �m=M�1=4 � r, indepen-
dently of any other parameter. Thus, Fig. 2 represents the
proportion of power devoted to maintenance and other activities
plotted as a function of dimensionless time, t. Similarly, the
proportion of total metabolic power devoted to growth is
1 2 r � �1 2 �m=M�1=4� � R. This therefore has a universal expo-
nentially decreasing behaviour as a function of at/4M1/4 throughout

ontogeny. Consequently, the proportion of B used for growth is the
same for all species at the same stage of development, as measured
relative to their asymptotic mass, M. For example, for all organisms,
R < 50% (R � 1 2 �1=15�1=4 < 0:49) when m � M=15, whereas it is
around 16%, when m � M=2. These occur at very different tem-
poral stages of ontogenetic development for different species. For
example, at birth, a cow weighing about 40 kg (,M=15 if
M < 600 kg; ref. 1), is expending about half of its metabolic
power growing. After one year it has reached about half of its
adult size (m � M=2 < 300 kg) and is allocating only 16% to
growth. A cod®sh, however, almost always dies well before reaching
M/2 (M < 25 kg; ref. 20); its maximum size is typically 6 kg (,M=4)
reached at an age of around 10 years. Furthermore, it is already
about 6 years old when its mass is only M=15 �,1:5 kg�, at which
stage it is still using about half of its metabolic power in continuing
to grow.

For an organism with indeterminate growth, a substantial
percentage of total metabolic energy is allocated to growth when
its energy is integrated over its total lifespan. The lifetime alloca-
tion to growth is Eg � e Ec�dNc=dt�dt � �Ec=mc� e �dm=dt�dt �
�Ec=mc��mm 2 m0�, where mm is the maximum mass reached by
the organism. As mm q m0 and Ec=mc � B0=a, Eg < �B0M=a�r4

m,
where rm � �mm=M�1=4. The total metabolic energy used in a lifetime
is Etot � e Bdt < 2 4�B0M=a��r3

m=3 � r2
m=2 � rm� ln�1 2 rm��. For

cod this gives Eg=Etot < 0:41, so 41% of its total lifetime energy is
spent on growth. For an organism with determinate growth, rm < 1,
so Eg < �B0M=a�. To calculate their Etot, we ®rst integrate B up to
a time, tm, corresponding to m � �1 2 e�M with e p 1; typically
e is chosen to be 0.01 or 0.05. This gives a contribution
�4B0M=a��ln�4=e� 2 11=6�. To this is added the energy used from
tm until death at t � td. Neglecting growth during this period gives
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Figure 1 Four typical examples of ®ts to growth curves (solid lines) using equation (5). For de®nition of growth parameter a, see equation (3). M, asymptotic mass; m0, birth mass.
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�B0M=a�b�td 2 tm�. Typically, b�td 2 tm�q 4�ln�4=e� 2 11=6� so
Eg=Etot < b�td 2 tm�p 1. For example, for a cow that lives for 20
years, we obtain Eg=Etot < 1%. On the other hand, growth accounts
for almost 10% of its total metabolic energy expended before
maturity.

R is maximal at birth, where R�0� � 1 2 �m0=M�1=4. If
m0=M , 1=16, then R�0� . 1=2, so, for the vast majority of
organisms, more than half of their metabolic power at birth is
used for growth. For ®sh with external fertilization, and m0 p M,
R�0� < 1, so nearly all metabolism at hatching is used for
growth. The point of in¯ection, where growth rate is maximal
(d2m=dt2 � 0), occurs when m � �3=4�4M < �1=3�M at which point
dm=dt � �27=256�aM3=4 and R � 1=4, independent of M. For some
indeterminate growers this is never reached and growth continues
to accelerate throughout life. On the other hand, for a 1 kg
determinate growing mammal this gives dm=dt < 6 g per day, in
good agreement with data1.

Three important points need clari®cation. The ®rst is cell
replacement. Throughout ontogeny cells are dying and being
replaced by mitosis. The power required for this is included in Bc,
the average metabolic rate of a cell in vivo. If dNd

c =dt is the cellular
mortality rate, then the power required to replace cells that have
died is EcdNd

c =dt. The cell death rate is proportional to the number
of cells present, so dNd

c =dt � gNc, where g is the inverse lifetime of a
typical cell. Thus, an amount gEc must be contributed from Bc to
replace the average cell; b � Bc=Ec, so g represents that portion of b
attributable to cell replacement. For a 50 kg mammal, a typical cell
lives for around 2 months10, although there is considerable variation
among tissue types; thus, g < 0:02 days21. Taking Ec < 2 3 1025 J
gives gEc < 4 3 10212 W, which is comparable to Bc � B0mc=M

1=4.
Thus, g < Bc=Ec � b � aM21=4 so, across species, the lifetime of cells

increases as M1/4. Moreover, once growth ceases, a substantial
proportion of metabolism is devoted to cell replacement.

The second point is the difference between determinate and
indeterminate growth. The two cases are distinguished by
whether the organism reaches tm and approaches an asymptotic
size, M, before death (see Supplementary Information). From
equation (5), tm < �4M1=4=a� ln�4{1 2 �m0=M�1=4}=e�. Except for a
small logarithmic modulation, tm ~ M1=4, in agreement with
data2,11. A related time is the doubling time, T, which is the
time taken to increase from m to 2m. This is given by
T � �4a=M1=4� ln�{1 2 �m=M�1=4}={1 2 �2m=M�1=4}�, which, when
�m=M�1=4 p 1, reduces to T < �4a��21=4 2 1�m1=4, scaling as empiri-
cally observed4,5. Organisms with determinate growth typically
reproduce only after attaining nearly asymptotic size (m < M,
when t . tm) (ref. 2). For them, tm can be equated with the age to
®rst reproduction and there is no need during growth to modify the
above equations to re¯ect energy allocation to reproduction. After
maturation, reproduction is assumed to be fuelled by metabolic
scope where metabolic rate is increased severalfold above the resting
level to fuel activities such as thermoregulation and migration, as
well as reproduction11.

The third point concerns energy allocation to reproduction in
indeterminate growth. Once such organisms reach their age for ®rst
reproduction (tr), a signi®cant fraction of metabolic rate is devoted
to reproduction, and the growth rate is reduced. Consider the case
of oviparous organisms2,3. Egg production can be incorporated into
equation (1) by adding a term EedNe=dt to the right-hand side when
t $ tr; Ee is the energy needed to create a single egg cell and Ne the
number created by time t. Data from oviparous ectothermic
invertebrates and vertebrates11,21 support the assumption that,
during a spawning period Dt � ts, the mass of a clutch,
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mk � meDNe, is a constant fraction, l, of body mass: mk < lm.
Thus EedNe=dt < EeDNe=Dt < lEem=mets. The energy density of
egg and other cells are similar, Ee=me < Ec=mc, so this additional
term becomes EedNe=dt < �lEc=ts�Nc. This is proportional to Nc

and so has the identical structure to the maintenance term, NcBc, in
equation (1). Thus, the solution, equation (5), is the same after
reproduction (t . tr) as before (t , tr), except that Bc is replaced by
(Bc � lEc=ts). In subsequent equations, a therefore remains the
same before and after tr , whereas b changes to b9 [ �b � l =ts�.
Consequently, because egg production continues throughout life,
the actual asymptotic mass decreases from M � �a=b�4 to
M9 � �a=b9�4 � �1 � l=bts�

24M. As an example, our ®t to cod
data (M9 < 25 kg) gives b9 < 1:3 3 1023 days21. To get a rough
estimate for the reproductive contribution we take l < 10% (refs
11, 21) and ts < 100 days and obtain l=ts < 1 3 1023 days21, giving
b < 0:3 3 1023 days21. This value indicates that reproduction
represents a signi®cant portion of energy allocation. Thus, the
proportion of maintenance energy allocated to reproduction rela-
tive to other activities, Ee�dNe=dt�=NcBc < l =bts, could be as much
as a factor of 3. Consequently M9=M � �1 � l =bts�

24 could be as
small as 10-2. Thus M q m, so, for times before ®rst reproduction
(t , tr), the solution is insensitive to b � a=M1=4 and growth is
determined primarily by a. In general, separate equations operate
before and after tr; for most indeterminate growers, however, tr is
much smaller than lifespan, tr p td, so growth is well approximated
by a single equationÐequations (4) or (5)Ðfor all t but with b9
(and M9) replacing b (and M). These equations therefore apply to
indeterminate and determinate growers with maintenance includ-
ing reproduction and M being interpreted as M9 in Table 1 and Fig.
2.

We have derived a very general growth equation from ®rst
principles on the basis of the conservation of metabolic energy,
the allometric scaling of metabolic rate, and the energetic cost of
producing and maintaining biomass (cells). The framework differs
from recent work that has focused more on trade-offs involving
reproduction and mortality2±4,22,23. Our model attributes the slowing
of growth as body size increases to limitations on the capacity of
networks to supply suf®cient resources to support further increase
in body mass. Its power is demonstrated by its ability to quantita-
tively predict growth curves for both determinate and indetermi-
nate growers, oviparous and viviparous species, ectotherms and
endotherms, vertebrates and invertebrates (Fig. 2). The model
can be extended to plants. Previously24, a simpler version was
presented for trees that included only the second term in
equation (1). This was adequate largely because the ®rst term
only becomes important at large body sizes and only a small
proportion of the trees had masses that approached the asymp-
totic value. Perhaps the most appealing and powerful feature of
our model is that the parameters of the growth equation can be
derived from fundamental cellular properties and predicted
quantitatively from metabolic measurements that are not directly
related to growth. M
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Sour taste is initiated by protons acting at receptor proteins or
channels. In vertebrates, transduction of this taste quality involves
several parallel pathways1±5. Here we examine the effects of sour
stimuli on taste cells in slices of vallate papilla from rat. From a
subset of cells, we identi®ed a hyperpolarization-activated current
that was enhanced by sour stimulation at the taste pore. This
current resembled Ih found in neurons and cardio-myocytes6,7, a
current carried by members of the family of hyperpolarization-
activated and cyclic-nucleotide-gated (HCN) channels8±13. We
show by in situ hybridization and immunohistochemistry that
HCN1 and HCN4 are expressed in a subset of taste cells. By
contrast, gustducin, the G-protein involved in bitter and sweet

© 2001 Macmillan Magazines Ltd


