Classification of Finite Fields

In these notes we use the properties of the polynomial $x^{p^{d}}-x$ to classify finite fields. The importance of this polynomial is explained by the following basic proposition.

Proposition 1 Factorization of $x^{p^{d}}-x$ over \mathbb{F}

Let \mathbb{F} be a finite field with p^{d} elements, where p is prime and $d \geq 1$. Then every element of \mathbb{F} is a root of $x^{p^{d}}-x$, and hence

$$
x^{p^{d}}-x=\prod_{a \in \mathbb{F}}(x-a)
$$

PROOF If $a \in \mathbb{F}$, then by Fermat's little theorem for fields $a^{p^{d}}=a$, so a is a root of $x^{p^{d}}-x$. Since \mathbb{F} has p^{d} elements, these are all of the roots of $x^{p^{d}}-x$, and the given factorization follows.

This is a generalization of our previous observation that

$$
x^{p}-x \equiv(x-1)(x-2) \cdots(x-p)(\bmod p)
$$

for any prime p. Indeed, this is the special case where $d=1$ (and hence $\mathbb{F}=\mathbb{Z}_{p}$).
Though $x^{p^{d}}-x$ factors into linear factors over \mathbb{F}, the same is not true over \mathbb{Z}_{p}. Instead, the factorization of $x^{p^{d}}-x$ in $\mathbb{Z}_{p}[x]$ gives us information about the minimal polynomials for elements of \mathbb{F}.

Proposition 2 Minimal Polynomials for Elements of \mathbb{F}

Let \mathbb{F} be a finite field with p^{d} elements, where p is prime and $d \geq 1$, and let

$$
x^{p^{d}}-x=m_{1}(x) m_{2}(x) \cdots m_{n}(x)
$$

be the factorization of $x^{p^{d}}-x$ into irreducible polynomials in $\mathbb{Z}_{p}[x]$. Then:

1. The minimal polynomial for each element of \mathbb{F} is one of the polynomials $m_{1}(x), m_{2}(x), \ldots, m_{n}(x)$.
2. For each i, the number of elements of \mathbb{F} with minimal polynomial $m_{i}(x)$ is equal to the degree of $m_{i}(x)$.

PROOF Since the elements of \mathbb{F} are precisely the roots of $x^{p^{d}}-x$, each $m_{i}(x)$ must have a number of roots in \mathbb{F} equal to its degree. Since $m_{i}(x)$ is irreducible, it must be the minimal polynomial for each of these roots.

EXAMPLE 1 Factors of $x^{9}-x$ over \mathbb{Z}_{3}
The polynomial $x^{9}-x$ factors over \mathbb{Z}_{3} as follows:

$$
x^{9}-x=x(x-1)(x+1)\left(x^{2}+1\right)\left(x^{2}+x-1\right)\left(x^{2}-x-1\right) .
$$

Thus any field with 9 elements must have the elements 0,1 , and -1 as well as two roots of $x^{2}+1$, two roots of $x^{2}+x-1$, and two roots of $x^{2}-x-1$.

EXAMPLE 2 Factors of $x^{16}-x$ over \mathbb{Z}_{2}
Over \mathbb{Z}_{2}, the polynomial $x^{16}-x$ factors into irreducible polynomials as follows:

$$
x^{16}-x=x(x+1)\left(x^{2}+x+1\right)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)
$$

Then any field \mathbb{F} with 16 elements must consist of the following:

- The elements 0 and 1 ,
- Two roots of $x^{2}+x+1$,
- Four roots of $x^{4}+x+1$,
- Four roots of $x^{4}+x^{3}+1$, and
- Four roots of $x^{4}+x^{3}+x^{2}+x+1$.

In particular, \mathbb{F} must have two elements of degree 1 (the prime subfield), two elements of degree 2 , and twelve elements of degree 4 , which are the generators for \mathbb{F}.

As we can see from these examples, Proposition 2 gives quite a lot of information about any finite field. Indeed, we are ready to prove the following part of the classification.

Theorem 3 Uniqueness of Finite Fields

Any two finite fields with the same number of elements are isomorphic.

PROOF Suppose that \mathbb{F}_{1} and \mathbb{F}_{2} are two fields with p^{d} elements, where p is prime and $d \geq 1$. Let a be a generator for \mathbb{F}_{1}, and recall that a must have degree d. By Proposition 2, the minimal polynomial $m(x)$ for a must be an irreducible factor of $x^{p^{d}}-x$ in $\mathbb{Z}_{p}[x]$. Then by Proposition 2, there is at least one element $b \in \mathbb{F}_{2}$ whose minimal polynomial is $m(x)$. Then b has degree d, so b is a generator for \mathbb{F}_{2}, and therefore \mathbb{F}_{1} and \mathbb{F}_{2} are both isomorphic to $\mathbb{Z}_{p}[x] /(m(x))$.

Because of this uniqueness theorem, it is common to denote "the" finite field with p^{d} elements as $\mathbb{F}_{p^{d}}$. For example, the finite field with 9 elements is usually denoted \mathbb{F}_{9} (instead of the notation $\mathbb{Z}_{3}[i]$ that we have been using).

Irreducible Polynomials

All that remains of the classification theorem is to prove that there exists a finite field with p^{d} elements for every prime p and every $d \geq 1$. Equivalently, we must show that for every prime p, there exist irreducible polynomials in $\mathbb{Z}_{p}[x]$ of every possible degree. We will prove this using the following theorem.

Theorem 4 Factorization of $x^{p^{d}}-x$

Let p be a prime and let $d \geq 1$. Then $x^{p^{d}}-x$ is the product of all irreducible polynomials in $\mathbb{Z}_{p}[x]$ whose degree divides d.

The proof of this theorem consists of two lemmas.

Lemma 5 Irreducible Factors of $x^{p^{d}}-x$

Let p be a prime, let $d \geq 1$, and let $m(x)$ be an irreducible polynomial over \mathbb{Z}_{p} of degree k. Then

$$
m(x) \mid x^{p^{d}}-x \quad \text { if and only if } \quad k \mid d .
$$

PROOF Let \mathbb{F} be the field $\mathbb{Z}_{p}[x] /(m(x))$, and let $a \in \mathbb{F}$ be the residue class of x modulo $m(x)$. Then $m(x)$ is the minimum polynomial for a, so $m(x)$ divides $x^{p^{d}}-x$ if and only if a is a root of $x^{p^{d}}-x$. Let $\varphi: \mathbb{F} \rightarrow \mathbb{F}$ be the Frobenius automorphism. Then

$$
\varphi^{d}(a)=a^{p^{d}}
$$

so a is a root of $x^{p^{d}}-x$ if and only if $\varphi^{d}(a)=a$. But a is a generator for \mathbb{F} and \mathbb{F} has p^{k} elements, so $\varphi^{d}(a)=a$ if and only if $k \mid d$.

Lemma $6 x^{p^{d}}-x$ is Square-Free

If p is prime and $d \geq 1$, then all of the irreducible factors of $x^{p^{d}}-x$ are distinct.

We give a direct proof of this lemma using fields. Many sources instead use the fact that a polynomial $f(x)$ is square-free if and only if $f(x)$ and its derivative $f^{\prime}(x)$ have no common factor. This is fairly obvious for polynomials over \mathbb{C}, but it can be proven for polynomials over any field.

PROOF Let $m(x) \in \mathbb{Z}_{p}[x]$ be an irreducible polynomial that divides $x^{p^{d}}-x$. We must prove that $m(x)^{2}$ does not divide $x^{p^{d}}-x$.

Let k be the degree of $m(x)$, and note that $k \mid d$ by the previous lemma. Then

$$
x^{p^{d}}-x=\left(x^{p^{k}}-x\right) g(x)
$$

where $g(x)$ is the polynomial

$$
g(x)=\frac{x^{p^{d}}-x}{x^{p^{k}}-x}=\frac{x^{p^{d}-1}-1}{x^{p^{k}-1}-1}=\sum_{i=0}^{j-1} x^{i\left(p^{k}-1\right)}
$$

with $j=\left(p^{d}-1\right) /\left(p^{k}-1\right)$. (Here we have used the formula for the sum of a geometric progression.)

Now consider the field $\mathbb{F}=\mathbb{Z}_{p}[x] /(m(x))$, whose elements are the roots of the polynomial $x^{p^{k}}-x$. Since $x^{p^{k}}-x$ has no repeated roots over \mathbb{F}, it must be divisible by $m(x)$ but not $m(x)^{2}$. As for $g(x)$, let a be an element of \mathbb{F} whose minimal polynomial is $m(x)$. By Fermat's little theorem for fields,

$$
a^{p^{d}-1}=1
$$

and hence

$$
g(a)=\sum_{i=0}^{j-1} a^{i\left(p^{k}-1\right)}=\sum_{i=0}^{j-1} 1^{i}=j .
$$

Since $j=\left(p^{d}-1\right) /\left(p^{k}-1\right)$ is not divisible by p, we have that $g(a) \neq 0$ in \mathbb{F}, and therefore $m(x)$ does not divide $g(x)$. We conclude that $x^{p^{d}}$ is divisible by $m(x)$ but not $m(x)^{2}$.

PROOF OF THEOREM 4 By Lemma 5, the irreducible factors of $x^{p^{d}}$ are precisely the irreducible polynomials in $\mathbb{Z}_{p}[x]$ of degree dividing d. By Lemma 6 , each of these factors appears exactly once in the irreducible factorization of $x^{p^{d}}-1$.

EXAMPLE 3 Factorization of $x^{25}-x$ over \mathbb{Z}_{5}
There are exactly five irreducible linear polynomials over \mathbb{Z}_{5} :

$$
x, \quad x-1, \quad x-2, \quad x-3, \quad x-4 .
$$

There are also ten irreducible quadratics. In particular, since 2 is not a quadratic residue modulo 5 , the polynomials

$$
x^{2}-2, \quad(x-1)^{2}-2, \quad(x-2)^{2}-2, \quad(x-3)^{2}-2, \quad(x-4)^{2}-2
$$

are irreducible in $\mathbb{Z}_{5}[x]$, and since 3 is not a quadratic residue modulo 5 , the polynomials

$$
x^{2}-3, \quad(x-1)^{2}-3, \quad(x-2)^{2}-3, \quad(x-3)^{2}-3, \quad(x-4)^{2}-3
$$

are irreducible in $\mathbb{Z}_{5}[x]$. According to Theorem 4, the product of these fifteen polynomials is $x^{25}-x$.

EXAMPLE 4 Factorization of $x^{81}-x$ over \mathbb{Z}_{3}
Since $81=3^{4}$, Theorem 4 tells us that $x^{81}-x$ should be the product in $\mathbb{Z}_{3}[x]$ of all irreducible polynomials of degree 1,2 , or 4 . As we have seen, there are three
irreducible linear polynomials and three irreducible quadratic polynomials over \mathbb{Z}_{3}, with their product being $x^{9}-x$:

$$
x^{9}-x=x(x-1)(x+1)\left(x^{2}+1\right)\left(x^{2}+x-1\right)\left(x^{2}-x-1\right) .
$$

Then

$$
\frac{x^{81}-x}{x^{9}-x}=x^{72}+x^{64}+x^{56}+x^{48}+x^{40}+x^{32}+x^{24}+x^{16}+x^{8}+1
$$

should be the product of all irreducible polynomials of degree 4 in $\mathbb{Z}_{3}[x]$. Since $72 / 4=18$, there are 18 such polynomials.

It follows from this that the field \mathbb{F}_{81} with 81 elements has 3 elements of degree 1 (the prime subfield), 6 elements of degree 2 , and 72 elements of degree 4 , which are the generators for \mathbb{F}_{81}.

One quick corollary to Theorem 4 is the following.

Corollary 7 Degrees of Elements of $\mathbb{F}_{p^{d}}$

Let \mathbb{F} be a field with p^{d} elements, where p is prime and $d \geq 1$. Then the degree of every element of \mathbb{F} is a divisor of d.

PROOF By Theorem 4, every irreducible factor of $x^{p^{d}}-x$ has degree dividing d, and by Proposition 2 these are precisely the minimal polynomials for the elements of $\mathbb{F}_{p^{d}}$.

Indeed, there is a nice characterization of degrees in terms of the Frobenius automorphism.

Corollary 8 Degrees and the Frobenius Automorphism

Let \mathbb{F} be a finite field, let $a \in \mathbb{F}$, and let $\varphi: \mathbb{F} \rightarrow \mathbb{F}$ be the Frobenius automorphism. Then the degree of a is equal to the smallest positive integer d for which $\varphi^{d}(a)=a$.

PROOF Let p be the characteristic of \mathbb{F}, and let $m(x)$ be the minimal polynomial for a. Then the degree of a is equal to the degree of $m(x)$, which by Theorem 4 is
the smallest value of d for which $m(x) \mid x^{p^{d}}-x$. But $m(x) \mid x^{p^{d}}-x$ if and only if a is a root of $x^{p^{d}}-x$, i.e. if and only if $\varphi^{d}(a)=a$.

We are finally ready to prove the existence of finite fields.

Theorem 9 Existence of Finite Fields

Let p be a prime and let $d \geq 1$. Then there exists an irreducible polynomial in $\mathbb{Z}_{p}[x]$ of degree d, and hence there exists a finite field with p^{d} elements.

PROOF Suppose to the contrary that there are no irreducible polynomials in $\mathbb{Z}_{p}[x]$ of degree d. Then every irreducible factor of $x^{p^{d}}-x$ must have degree less than d, so $x^{p^{d}}-x$ must divide the product

$$
\prod_{k=0}^{d-1}\left(x^{p^{k}}-x\right)
$$

But the degree of this product is

$$
\sum_{k=0}^{d-1} p^{k}=\frac{p^{d}-1}{p-1}<p^{d}
$$

a contradiction. Thus there is at least one irreducible polynomial of degree d.

Quadratic Reciprocity

As an application of finite fields, we provide a proof of quadratic reciprocity using Gauss sums. Really the only result about finite fields that we need is the following.

Proposition 10 Existence of Roots of Unity

Let p be a prime, and let n be a positive integer not divisible by p. Then there exists exists a finite field \mathbb{F} of characteristic p that has an element of order n.

PROOF Since p and n are relatively prime, there exists a $d \geq 1$ so that

$$
p^{d} \equiv 1(\bmod n) .
$$

Then n divides $p^{d}-1$, so the field with p^{d} elements has an element of order n.

For any prime q, let $g_{q}(x)$ be the Gauss polynomial

$$
g_{q}(x)=\sum_{k=1}^{q-1}\left(\frac{k}{q}\right) x^{k} .
$$

Recall that

$$
g_{q}(\omega)^{2}=\left(\frac{-1}{q}\right) q
$$

for any primitive q th root of unity ω in \mathbb{C}, and

$$
g_{q}\left(\omega^{k}\right)=\left(\frac{k}{q}\right) g_{q}(\omega)
$$

for all $k \in\{1, \ldots, q-1\}$. We wish to prove that $g_{q}(x)$ has the same properties over any field.

Proposition 11 Gauss Sums Over a Field

Let \mathbb{F} be a field, let $q>2$ be a prime, and let ω be an element of order q in \mathbb{F}. Then

$$
g_{q}(\omega)^{2}=\left(\frac{-1}{q}\right) q
$$

in \mathbb{F}. Moreover,

$$
g_{q}\left(\omega^{k}\right)=\left(\frac{k}{q}\right) g_{q}(\omega)
$$

in \mathbb{F} for all $k \in\{1, \ldots, q-1\}$.

PROOF Consider the polynomials

$$
f(x)=g_{q}(x)^{2}-\left(\frac{-1}{q}\right) q \quad \text { and } \quad h_{k}(x)=g_{q}\left(x^{k}\right)-\left(\frac{k}{q}\right) g_{q}(x)
$$

where $k \in\{1, \ldots, q-1\}$. Every primitive q th root of unity in \mathbb{C} is a root of $f(x)$ as well as each $h_{k}(x)$, which means that the q th cyclotomic polynomial $\Phi_{q}(x)$ divides $f(x)$ as well as each $h_{k}(x)$.

Now, since $\Phi_{q}(x)$ is monic, the quotients $f(x) / \Phi_{q}(x)$ and $h_{k}(x) / \Phi_{q}(x)$ have integer coefficients. It follows that $\Phi_{q}(x)$ divides $f(x)$ and each $h_{k}(x)$ over any field \mathbb{F}. In particular, if ω is an element of a field \mathbb{F} with order q, then ω must be a root of $\Phi_{q}(x)$ in \mathbb{F}, so $f(\omega)=0$ and $h_{k}(\omega)=0$ for all $k \in\{1, \ldots, q-1\}$.

Theorem 12 Quadratic Reciprocity

Let $2<p<q$ be primes, and let

$$
q^{*}=\left(\frac{-1}{q}\right) q .
$$

Then q^{*} is a quadratic residue modulo p if and only if p is a quadratic residue modulo q.

PROOF Let \mathbb{F} be a field of characteristic p that has an element ω of order q, and let $r=g_{q}(\omega)$. By the previous proposition, $r^{2}=q^{*}$. Then q^{*} is a quadratic residue modulo p if and only if $r \in \mathbb{Z}_{p}$.

Let $\varphi: \mathbb{F} \rightarrow \mathbb{F}$ be the Frobenius automorphism, and recall that $r \in \mathbb{Z}_{p}$ if and only if $\varphi(r)=r$. But

$$
\varphi(r)=\varphi\left(g_{q}(\omega)\right)=g_{q}(\varphi(\omega))=g_{q}\left(\omega^{p}\right)=\left(\frac{p}{q}\right) g_{q}(\omega)=\left(\frac{p}{q}\right) r .
$$

Then $\varphi(r)=r$ if and only if $\left(\frac{p}{q}\right)=1$, so q^{*} is a quadratic residue modulo p if and only if p is a quadratic residue modulo q.

