
Classification of Finite Fields

In these notes we use the properties of the polynomial xpd − x to classify finite fields.
The importance of this polynomial is explained by the following basic proposition.

Proposition 1 Factorization of xp
d − x over F

Let F be a finite field with pd elements, where p is prime and d ≥ 1. Then every
element of F is a root of xpd − x, and hence

xpd − x =
∏
a∈F

(x− a).

PROOF If a ∈ F, then by Fermat’s little theorem for fields ap
d

= a, so a is a root
of xpd−x. Since F has pd elements, these are all of the roots of xpd−x, and the given
factorization follows. �

This is a generalization of our previous observation that

xp − x ≡ (x− 1)(x− 2) · · · (x− p) (mod p)

for any prime p. Indeed, this is the special case where d = 1 (and hence F = Zp).

Though xpd − x factors into linear factors over F, the same is not true over Zp.

Instead, the factorization of xpd − x in Zp[x] gives us information about the minimal
polynomials for elements of F.
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Proposition 2 Minimal Polynomials for Elements of F

Let F be a finite field with pd elements, where p is prime and d ≥ 1, and let

xpd − x = m1(x)m2(x) · · · mn(x)

be the factorization of xpd − x into irreducible polynomials in Zp[x]. Then:

1. The minimal polynomial for each element of F is one of the polynomials
m1(x),m2(x), . . . ,mn(x).

2. For each i, the number of elements of F with minimal polynomial mi(x) is
equal to the degree of mi(x).

PROOF Since the elements of F are precisely the roots of xpd − x, each mi(x) must
have a number of roots in F equal to its degree. Since mi(x) is irreducible, it must
be the minimal polynomial for each of these roots. �

EXAMPLE 1 Factors of x9 − x over Z3

The polynomial x9 − x factors over Z3 as follows:

x9 − x = x(x− 1)(x + 1)
(
x2 + 1

)(
x2 + x− 1

)(
x2 − x− 1

)
.

Thus any field with 9 elements must have the elements 0, 1, and −1 as well as two
roots of x2 + 1, two roots of x2 + x− 1, and two roots of x2 − x− 1. �

EXAMPLE 2 Factors of x16 − x over Z2

Over Z2, the polynomial x16 − x factors into irreducible polynomials as follows:

x16 − x = x(x + 1)
(
x2 + x + 1

)(
x4 + x + 1

)(
x4 + x3 + 1

)(
x4 + x3 + x2 + x + 1

)
Then any field F with 16 elements must consist of the following:

• The elements 0 and 1,

• Two roots of x2 + x + 1,

• Four roots of x4 + x + 1,

• Four roots of x4 + x3 + 1, and

• Four roots of x4 + x3 + x2 + x + 1.
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In particular, F must have two elements of degree 1 (the prime subfield), two elements
of degree 2, and twelve elements of degree 4, which are the generators for F. �

As we can see from these examples, Proposition 2 gives quite a lot of informa-
tion about any finite field. Indeed, we are ready to prove the following part of the
classification.

Theorem 3 Uniqueness of Finite Fields

Any two finite fields with the same number of elements are isomorphic.

PROOF Suppose that F1 and F2 are two fields with pd elements, where p is prime
and d ≥ 1. Let a be a generator for F1, and recall that a must have degree d. By
Proposition 2, the minimal polynomial m(x) for a must be an irreducible factor of
xpd − x in Zp[x]. Then by Proposition 2, there is at least one element b ∈ F2 whose
minimal polynomial is m(x). Then b has degree d, so b is a generator for F2, and
therefore F1 and F2 are both isomorphic to Zp[x]

/(
m(x)

)
. �

Because of this uniqueness theorem, it is common to denote “the” finite field
with pd elements as Fpd . For example, the finite field with 9 elements is usually
denoted F9 (instead of the notation Z3[i] that we have been using).

Irreducible Polynomials

All that remains of the classification theorem is to prove that there exists a finite
field with pd elements for every prime p and every d ≥ 1. Equivalently, we must show
that for every prime p, there exist irreducible polynomials in Zp[x] of every possible
degree. We will prove this using the following theorem.

Theorem 4 Factorization of xp
d − x

Let p be a prime and let d ≥ 1. Then xpd − x is the product of all irreducible
polynomials in Zp[x] whose degree divides d.
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The proof of this theorem consists of two lemmas.

Lemma 5 Irreducible Factors of xp
d − x

Let p be a prime, let d ≥ 1, and let m(x) be an irreducible polynomial over Zp

of degree k. Then

m(x) | xpd − x if and only if k | d.

PROOF Let F be the field Zp[x]
/(

m(x)
)
, and let a ∈ F be the residue class of x

modulo m(x). Then m(x) is the minimum polynomial for a, so m(x) divides xpd − x
if and only if a is a root of xpd − x. Let ϕ : F → F be the Frobenius automorphism.
Then

ϕd(a) = ap
d

,

so a is a root of xpd − x if and only if ϕd(a) = a. But a is a generator for F and F
has pk elements, so ϕd(a) = a if and only if k | d. �

Lemma 6 xp
d − x is Square-Free

If p is prime and d ≥ 1, then all of the irreducible factors of xpd−x are distinct.

We give a direct proof of this lemma using fields. Many sources instead use the
fact that a polynomial f(x) is square-free if and only if f(x) and its derivative f ′(x)
have no common factor. This is fairly obvious for polynomials over C, but it can be
proven for polynomials over any field.

PROOF Let m(x) ∈ Zp[x] be an irreducible polynomial that divides xpd − x. We

must prove that m(x)2 does not divide xpd − x.
Let k be the degree of m(x), and note that k | d by the previous lemma. Then

xpd − x =
(
xpk − x

)
g(x)

where g(x) is the polynomial

g(x) =
xpd − x

xpk − x
=

xpd−1 − 1

xpk−1 − 1
=

j−1∑
i=0

xi(pk−1)
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with j = (pd−1)/(pk−1). (Here we have used the formula for the sum of a geometric
progression.)

Now consider the field F = Zp[x]
/(

m(x)
)
, whose elements are the roots of the

polynomial xpk−x. Since xpk−x has no repeated roots over F, it must be divisible by
m(x) but not m(x)2. As for g(x), let a be an element of F whose minimal polynomial
is m(x). By Fermat’s little theorem for fields,

ap
d−1 = 1

and hence

g(a) =

j−1∑
i=0

ai(p
k−1) =

j−1∑
i=0

1i = j.

Since j = (pd − 1)/(pk − 1) is not divisible by p, we have that g(a) 6= 0 in F, and
therefore m(x) does not divide g(x). We conclude that xpd is divisible by m(x) but
not m(x)2. �

PROOF OF THEOREM 4 By Lemma 5, the irreducible factors of xpd are precisely
the irreducible polynomials in Zp[x] of degree dividing d. By Lemma 6, each of these

factors appears exactly once in the irreducible factorization of xpd − 1. �

EXAMPLE 3 Factorization of x25 − x over Z5

There are exactly five irreducible linear polynomials over Z5:

x, x− 1, x− 2, x− 3, x− 4.

There are also ten irreducible quadratics. In particular, since 2 is not a quadratic
residue modulo 5, the polynomials

x2 − 2, (x− 1)2 − 2, (x− 2)2 − 2, (x− 3)2 − 2, (x− 4)2 − 2

are irreducible in Z5[x], and since 3 is not a quadratic residue modulo 5, the polyno-
mials

x2 − 3, (x− 1)2 − 3, (x− 2)2 − 3, (x− 3)2 − 3, (x− 4)2 − 3

are irreducible in Z5[x]. According to Theorem 4, the product of these fifteen poly-
nomials is x25 − x. �

EXAMPLE 4 Factorization of x81 − x over Z3

Since 81 = 34, Theorem 4 tells us that x81 − x should be the product in Z3[x] of
all irreducible polynomials of degree 1, 2, or 4. As we have seen, there are three
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irreducible linear polynomials and three irreducible quadratic polynomials over Z3,
with their product being x9 − x:

x9 − x = x(x− 1)(x + 1)
(
x2 + 1

)(
x2 + x− 1

)(
x2 − x− 1

)
.

Then
x81 − x

x9 − x
= x72 + x64 + x56 + x48 + x40 + x32 + x24 + x16 + x8 + 1

should be the product of all irreducible polynomials of degree 4 in Z3[x]. Since
72/4 = 18, there are 18 such polynomials.

It follows from this that the field F81 with 81 elements has 3 elements of degree 1
(the prime subfield), 6 elements of degree 2, and 72 elements of degree 4, which are
the generators for F81. �

One quick corollary to Theorem 4 is the following.

Corollary 7 Degrees of Elements of Fpd

Let F be a field with pd elements, where p is prime and d ≥ 1. Then the degree
of every element of F is a divisor of d.

PROOF By Theorem 4, every irreducible factor of xpd − x has degree dividing d,
and by Proposition 2 these are precisely the minimal polynomials for the elements
of Fpd . �

Indeed, there is a nice characterization of degrees in terms of the Frobenius auto-
morphism.

Corollary 8 Degrees and the Frobenius Automorphism

Let F be a finite field, let a ∈ F, and let ϕ : F → F be the Frobenius automor-
phism. Then the degree of a is equal to the smallest positive integer d for which
ϕd(a) = a.

PROOF Let p be the characteristic of F, and let m(x) be the minimal polynomial
for a. Then the degree of a is equal to the degree of m(x), which by Theorem 4 is
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the smallest value of d for which m(x) | xpd − x. But m(x) | xpd − x if and only if a
is a root of xpd − x, i.e. if and only if ϕd(a) = a. �

We are finally ready to prove the existence of finite fields.

Theorem 9 Existence of Finite Fields

Let p be a prime and let d ≥ 1. Then there exists an irreducible polynomial in
Zp[x] of degree d, and hence there exists a finite field with pd elements.

PROOF Suppose to the contrary that there are no irreducible polynomials in Zp[x]

of degree d. Then every irreducible factor of xpd − x must have degree less than d, so
xpd − x must divide the product

d−1∏
k=0

(
xpk − x

)
.

But the degree of this product is

d−1∑
k=0

pk =
pd − 1

p− 1
< pd,

a contradiction. Thus there is at least one irreducible polynomial of degree d. �

Quadratic Reciprocity

As an application of finite fields, we provide a proof of quadratic reciprocity using
Gauss sums. Really the only result about finite fields that we need is the following.

Proposition 10 Existence of Roots of Unity

Let p be a prime, and let n be a positive integer not divisible by p. Then there
exists exists a finite field F of characteristic p that has an element of order n.

PROOF Since p and n are relatively prime, there exists a d ≥ 1 so that

pd ≡ 1 (mod n).
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Then n divides pd − 1, so the field with pd elements has an element of order n. �

For any prime q, let gq(x) be the Gauss polynomial

gq(x) =

q−1∑
k=1

(
k

q

)
xk.

Recall that

gq(ω)2 =

(
−1

q

)
q

for any primitive qth root of unity ω in C, and

gq(ω
k) =

(
k

q

)
gq(ω)

for all k ∈ {1, . . . , q − 1}. We wish to prove that gq(x) has the same properties over
any field.

Proposition 11 Gauss Sums Over a Field

Let F be a field, let q > 2 be a prime, and let ω be an element of order q in F.
Then

gq(ω)2 =

(
−1

q

)
q

in F. Moreover,

gq(ω
k) =

(
k

q

)
gq(ω)

in F for all k ∈ {1, . . . , q − 1}.

PROOF Consider the polynomials

f(x) = gq(x)2 −
(
−1

q

)
q and hk(x) = gq(x

k)−
(
k

q

)
gq(x),

where k ∈ {1, . . . , q − 1}. Every primitive qth root of unity in C is a root of f(x)
as well as each hk(x), which means that the qth cyclotomic polynomial Φq(x) divides
f(x) as well as each hk(x).

Now, since Φq(x) is monic, the quotients f(x)/Φq(x) and hk(x)/Φq(x) have integer
coefficients. It follows that Φq(x) divides f(x) and each hk(x) over any field F. In
particular, if ω is an element of a field F with order q, then ω must be a root of Φq(x)
in F, so f(ω) = 0 and hk(ω) = 0 for all k ∈ {1, . . . , q − 1}. �
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Theorem 12 Quadratic Reciprocity

Let 2 < p < q be primes, and let

q∗ =

(
−1

q

)
q.

Then q∗ is a quadratic residue modulo p if and only if p is a quadratic residue
modulo q.

PROOF Let F be a field of characteristic p that has an element ω of order q, and
let r = gq(ω). By the previous proposition, r2 = q∗. Then q∗ is a quadratic residue
modulo p if and only if r ∈ Zp.

Let ϕ : F→ F be the Frobenius automorphism, and recall that r ∈ Zp if and only
if ϕ(r) = r. But

ϕ(r) = ϕ
(
gq(ω)

)
= gq

(
ϕ(ω)

)
= gq

(
ωp
)

=

(
p

q

)
gq(ω) =

(
p

q

)
r.

Then ϕ(r) = r if and only if

(
p

q

)
= 1, so q∗ is a quadratic residue modulo p if and

only if p is a quadratic residue modulo q. �
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