Classification of Finite Fields

In these notes we use the properties of the polynomial $x^{p^d} - x$ to classify finite fields. The importance of this polynomial is explained by the following basic proposition.

Proposition 1 Factorization of $x^{p^d} - x$ over \mathbb{F}

Let \mathbb{F} be a finite field with p^d elements, where p is prime and $d \ge 1$. Then every element of \mathbb{F} is a root of $x^{p^d} - x$, and hence

$$x^{p^d} - x = \prod_{a \in \mathbb{F}} (x - a).$$

PROOF If $a \in \mathbb{F}$, then by Fermat's little theorem for fields $a^{p^d} = a$, so a is a root of $x^{p^d} - x$. Since \mathbb{F} has p^d elements, these are all of the roots of $x^{p^d} - x$, and the given factorization follows.

This is a generalization of our previous observation that

$$x^p - x \equiv (x - 1)(x - 2) \cdots (x - p) \pmod{p}$$

for any prime p. Indeed, this is the special case where d = 1 (and hence $\mathbb{F} = \mathbb{Z}_p$).

Though $x^{p^d} - x$ factors into linear factors over \mathbb{F} , the same is not true over \mathbb{Z}_p . Instead, the factorization of $x^{p^d} - x$ in $\mathbb{Z}_p[x]$ gives us information about the minimal polynomials for elements of \mathbb{F} .

Proposition 2 Minimal Polynomials for Elements of \mathbb{F}

Let \mathbb{F} be a finite field with p^d elements, where p is prime and $d \geq 1$, and let

$$x^{p^a} - x = m_1(x) m_2(x) \cdots m_n(x)$$

be the factorization of $x^{p^d} - x$ into irreducible polynomials in $\mathbb{Z}_p[x]$. Then:

- **1.** The minimal polynomial for each element of \mathbb{F} is one of the polynomials $m_1(x), m_2(x), \ldots, m_n(x)$.
- **2.** For each *i*, the number of elements of \mathbb{F} with minimal polynomial $m_i(x)$ is equal to the degree of $m_i(x)$.

PROOF Since the elements of \mathbb{F} are precisely the roots of $x^{p^d} - x$, each $m_i(x)$ must have a number of roots in \mathbb{F} equal to its degree. Since $m_i(x)$ is irreducible, it must be the minimal polynomial for each of these roots.

EXAMPLE 1 Factors of $x^9 - x$ over \mathbb{Z}_3 The polynomial $x^9 - x$ factors over \mathbb{Z}_3 as follows:

$$x^{9} - x = x(x-1)(x+1)(x^{2}+1)(x^{2}+x-1)(x^{2}-x-1).$$

Thus any field with 9 elements must have the elements 0, 1, and -1 as well as two roots of $x^2 + 1$, two roots of $x^2 + x - 1$, and two roots of $x^2 - x - 1$.

EXAMPLE 2 Factors of $x^{16} - x$ over \mathbb{Z}_2

Over \mathbb{Z}_2 , the polynomial $x^{16} - x$ factors into irreducible polynomials as follows:

$$x^{16} - x = x(x+1)(x^{2} + x + 1)(x^{4} + x + 1)(x^{4} + x^{3} + 1)(x^{4} + x^{3} + x^{2} + x + 1)$$

Then any field \mathbb{F} with 16 elements must consist of the following:

- The elements 0 and 1,
- Two roots of $x^2 + x + 1$,
- Four roots of $x^4 + x + 1$,
- Four roots of $x^4 + x^3 + 1$, and
- Four roots of $x^4 + x^3 + x^2 + x + 1$.

In particular, \mathbb{F} must have two elements of degree 1 (the prime subfield), two elements of degree 2, and twelve elements of degree 4, which are the generators for \mathbb{F} .

As we can see from these examples, Proposition 2 gives quite a lot of information about any finite field. Indeed, we are ready to prove the following part of the classification.

Theorem 3 Uniqueness of Finite Fields

Any two finite fields with the same number of elements are isomorphic.

PROOF Suppose that \mathbb{F}_1 and \mathbb{F}_2 are two fields with p^d elements, where p is prime and $d \geq 1$. Let a be a generator for \mathbb{F}_1 , and recall that a must have degree d. By Proposition 2, the minimal polynomial m(x) for a must be an irreducible factor of $x^{p^d} - x$ in $\mathbb{Z}_p[x]$. Then by Proposition 2, there is at least one element $b \in \mathbb{F}_2$ whose minimal polynomial is m(x). Then b has degree d, so b is a generator for \mathbb{F}_2 , and therefore \mathbb{F}_1 and \mathbb{F}_2 are both isomorphic to $\mathbb{Z}_p[x]/(m(x))$.

Because of this uniqueness theorem, it is common to denote "the" finite field with p^d elements as \mathbb{F}_{p^d} . For example, the finite field with 9 elements is usually denoted \mathbb{F}_9 (instead of the notation $\mathbb{Z}_3[i]$ that we have been using).

Irreducible Polynomials

All that remains of the classification theorem is to prove that there exists a finite field with p^d elements for every prime p and every $d \ge 1$. Equivalently, we must show that for every prime p, there exist irreducible polynomials in $\mathbb{Z}_p[x]$ of every possible degree. We will prove this using the following theorem.

Theorem 4 Factorization of $x^{p^d} - x$

Let p be a prime and let $d \ge 1$. Then $x^{p^d} - x$ is the product of all irreducible polynomials in $\mathbb{Z}_p[x]$ whose degree divides d.

The proof of this theorem consists of two lemmas.

Lemma 5 Irreducible Factors of $x^{p^d} - x$

Let p be a prime, let $d \geq 1$, and let m(x) be an irreducible polynomial over \mathbb{Z}_p of degree k. Then

 $m(x) \mid x^{p^d} - x$ if and only if $k \mid d$.

PROOF Let \mathbb{F} be the field $\mathbb{Z}_p[x]/(m(x))$, and let $a \in \mathbb{F}$ be the residue class of x modulo m(x). Then m(x) is the minimum polynomial for a, so m(x) divides $x^{p^d} - x$ if and only if a is a root of $x^{p^d} - x$. Let $\varphi \colon \mathbb{F} \to \mathbb{F}$ be the Frobenius automorphism. Then

$$\varphi^d(a) = a^{p^d},$$

so a is a root of $x^{p^d} - x$ if and only if $\varphi^d(a) = a$. But a is a generator for \mathbb{F} and \mathbb{F} has p^k elements, so $\varphi^d(a) = a$ if and only if $k \mid d$.

Lemma 6 $x^{p^d} - x$ is Square-Free

If p is prime and $d \ge 1$, then all of the irreducible factors of $x^{p^d} - x$ are distinct.

We give a direct proof of this lemma using fields. Many sources instead use the fact that a polynomial f(x) is square-free if and only if f(x) and its derivative f'(x) have no common factor. This is fairly obvious for polynomials over \mathbb{C} , but it can be proven for polynomials over any field.

PROOF Let $m(x) \in \mathbb{Z}_p[x]$ be an irreducible polynomial that divides $x^{p^d} - x$. We must prove that $m(x)^2$ does not divide $x^{p^d} - x$.

Let k be the degree of m(x), and note that $k \mid d$ by the previous lemma. Then

$$x^{p^d} - x = \left(x^{p^k} - x\right)g(x)$$

where g(x) is the polynomial

$$g(x) = \frac{x^{p^d} - x}{x^{p^k} - x} = \frac{x^{p^d - 1} - 1}{x^{p^k - 1} - 1} = \sum_{i=0}^{j-1} x^{i(p^k - 1)}$$

with $j = (p^d - 1)/(p^k - 1)$. (Here we have used the formula for the sum of a geometric progression.)

Now consider the field $\mathbb{F} = \mathbb{Z}_p[x]/(m(x))$, whose elements are the roots of the polynomial $x^{p^k} - x$. Since $x^{p^k} - x$ has no repeated roots over \mathbb{F} , it must be divisible by m(x) but not $m(x)^2$. As for g(x), let a be an element of \mathbb{F} whose minimal polynomial is m(x). By Fermat's little theorem for fields,

$$a^{p^d-1} = 1$$

and hence

$$g(a) = \sum_{i=0}^{j-1} a^{i(p^k-1)} = \sum_{i=0}^{j-1} 1^i = j.$$

Since $j = (p^d - 1)/(p^k - 1)$ is not divisible by p, we have that $g(a) \neq 0$ in \mathbb{F} , and therefore m(x) does not divide g(x). We conclude that x^{p^d} is divisible by m(x) but not $m(x)^2$.

PROOF OF THEOREM 4 By Lemma 5, the irreducible factors of x^{p^d} are precisely the irreducible polynomials in $\mathbb{Z}_p[x]$ of degree dividing d. By Lemma 6, each of these factors appears exactly once in the irreducible factorization of $x^{p^d} - 1$.

EXAMPLE 3 Factorization of $x^{25} - x$ over \mathbb{Z}_5

There are exactly five irreducible linear polynomials over \mathbb{Z}_5 :

 $x, \quad x-1, \quad x-2, \quad x-3, \quad x-4.$

There are also ten irreducible quadratics. In particular, since 2 is not a quadratic residue modulo 5, the polynomials

$$x^{2} - 2$$
, $(x - 1)^{2} - 2$, $(x - 2)^{2} - 2$, $(x - 3)^{2} - 2$, $(x - 4)^{2} - 2$

are irreducible in $\mathbb{Z}_5[x]$, and since 3 is not a quadratic residue modulo 5, the polynomials

$$x^{2}-3,$$
 $(x-1)^{2}-3,$ $(x-2)^{2}-3,$ $(x-3)^{2}-3,$ $(x-4)^{2}-3$

are irreducible in $\mathbb{Z}_5[x]$. According to Theorem 4, the product of these fifteen polynomials is $x^{25} - x$.

EXAMPLE 4 Factorization of $x^{81} - x$ over \mathbb{Z}_3

Since $81 = 3^4$, Theorem 4 tells us that $x^{81} - x$ should be the product in $\mathbb{Z}_3[x]$ of all irreducible polynomials of degree 1, 2, or 4. As we have seen, there are three

irreducible linear polynomials and three irreducible quadratic polynomials over \mathbb{Z}_3 , with their product being $x^9 - x$:

$$x^{9} - x = x(x-1)(x+1)(x^{2}+1)(x^{2}+x-1)(x^{2}-x-1).$$

Then

01

$$\frac{x^{81} - x}{x^9 - x} = x^{72} + x^{64} + x^{56} + x^{48} + x^{40} + x^{32} + x^{24} + x^{16} + x^8 + 1$$

should be the product of all irreducible polynomials of degree 4 in $\mathbb{Z}_3[x]$. Since 72/4 = 18, there are 18 such polynomials.

It follows from this that the field \mathbb{F}_{81} with 81 elements has 3 elements of degree 1 (the prime subfield), 6 elements of degree 2, and 72 elements of degree 4, which are the generators for \mathbb{F}_{81} .

One quick corollary to Theorem 4 is the following.

Corollary 7 Degrees of Elements of \mathbb{F}_{p^d}

Let \mathbb{F} be a field with p^d elements, where p is prime and $d \ge 1$. Then the degree of every element of \mathbb{F} is a divisor of d.

PROOF By Theorem 4, every irreducible factor of $x^{p^d} - x$ has degree dividing d, and by Proposition 2 these are precisely the minimal polynomials for the elements of \mathbb{F}_{p^d} .

Indeed, there is a nice characterization of degrees in terms of the Frobenius automorphism.

Corollary 8 Degrees and the Frobenius Automorphism

Let \mathbb{F} be a finite field, let $a \in \mathbb{F}$, and let $\varphi \colon \mathbb{F} \to \mathbb{F}$ be the Frobenius automorphism. Then the degree of a is equal to the smallest positive integer d for which $\varphi^d(a) = a$.

PROOF Let p be the characteristic of \mathbb{F} , and let m(x) be the minimal polynomial for a. Then the degree of a is equal to the degree of m(x), which by Theorem 4 is

the smallest value of d for which $m(x) \mid x^{p^d} - x$. But $m(x) \mid x^{p^d} - x$ if and only if a is a root of $x^{p^d} - x$, i.e. if and only if $\varphi^d(a) = a$.

We are finally ready to prove the existence of finite fields.

Theorem 9 Existence of Finite Fields

Let p be a prime and let $d \ge 1$. Then there exists an irreducible polynomial in $\mathbb{Z}_p[x]$ of degree d, and hence there exists a finite field with p^d elements.

PROOF Suppose to the contrary that there are no irreducible polynomials in $\mathbb{Z}_p[x]$ of degree d. Then every irreducible factor of $x^{p^d} - x$ must have degree less than d, so $x^{p^d} - x$ must divide the product

$$\prod_{k=0}^{d-1} \left(x^{p^k} - x \right).$$

But the degree of this product is

$$\sum_{k=0}^{d-1} p^k = \frac{p^d - 1}{p - 1} < p^d,$$

a contradiction. Thus there is at least one irreducible polynomial of degree d.

Quadratic Reciprocity

As an application of finite fields, we provide a proof of quadratic reciprocity using Gauss sums. Really the only result about finite fields that we need is the following.

Proposition 10 Existence of Roots of Unity

Let p be a prime, and let n be a positive integer not divisible by p. Then there exists exists a finite field \mathbb{F} of characteristic p that has an element of order n.

PROOF Since p and n are relatively prime, there exists a $d \ge 1$ so that

 $p^d \equiv 1 \pmod{n}.$

Then n divides $p^d - 1$, so the field with p^d elements has an element of order n.

For any prime q, let $g_q(x)$ be the Gauss polynomial

$$g_q(x) = \sum_{k=1}^{q-1} \left(\frac{k}{q}\right) x^k.$$

Recall that

$$g_q(\omega)^2 = \left(\frac{-1}{q}\right)q$$

for any primitive qth root of unity ω in \mathbb{C} , and

$$g_q(\omega^k) = \left(\frac{k}{q}\right)g_q(\omega)$$

for all $k \in \{1, \ldots, q-1\}$. We wish to prove that $g_q(x)$ has the same properties over any field.

Proposition 11 Gauss Sums Over a Field

Let \mathbb{F} be a field, let q > 2 be a prime, and let ω be an element of order q in \mathbb{F} . Then $g_q(\omega)^2 = \left(\frac{-1}{q}\right)q$

in \mathbb{F} . Moreover,

$$g_q(\omega^k) = \left(\frac{k}{q}\right)g_q(\omega)$$

in \mathbb{F} for all $k \in \{1, \ldots, q-1\}$.

PROOF Consider the polynomials

$$f(x) = g_q(x)^2 - \left(\frac{-1}{q}\right)q$$
 and $h_k(x) = g_q(x^k) - \left(\frac{k}{q}\right)g_q(x)$,

where $k \in \{1, \ldots, q-1\}$. Every primitive *q*th root of unity in \mathbb{C} is a root of f(x) as well as each $h_k(x)$, which means that the *q*th cyclotomic polynomial $\Phi_q(x)$ divides f(x) as well as each $h_k(x)$.

Now, since $\Phi_q(x)$ is monic, the quotients $f(x)/\Phi_q(x)$ and $h_k(x)/\Phi_q(x)$ have integer coefficients. It follows that $\Phi_q(x)$ divides f(x) and each $h_k(x)$ over any field \mathbb{F} . In particular, if ω is an element of a field \mathbb{F} with order q, then ω must be a root of $\Phi_q(x)$ in \mathbb{F} , so $f(\omega) = 0$ and $h_k(\omega) = 0$ for all $k \in \{1, \ldots, q-1\}$.

Theorem 12 Quadratic Reciprocity

Let 2 be primes, and let

$$q^* = \left(\frac{-1}{q}\right)q.$$

Then q^* is a quadratic residue modulo p if and only if p is a quadratic residue modulo q.

PROOF Let \mathbb{F} be a field of characteristic p that has an element ω of order q, and let $r = g_q(\omega)$. By the previous proposition, $r^2 = q^*$. Then q^* is a quadratic residue modulo p if and only if $r \in \mathbb{Z}_p$.

Let $\varphi \colon \mathbb{F} \to \mathbb{F}$ be the Frobenius automorphism, and recall that $r \in \mathbb{Z}_p$ if and only if $\varphi(r) = r$. But

$$\varphi(r) = \varphi(g_q(\omega)) = g_q(\varphi(\omega)) = g_q(\omega^p) = \left(\frac{p}{q}\right)g_q(\omega) = \left(\frac{p}{q}\right)r$$

Then $\varphi(r) = r$ if and only if $\left(\frac{p}{q}\right) = 1$, so q^* is a quadratic residue modulo p if and only if p is a quadratic residue modulo q.