Finite Fields

In these notes we discuss the general structure of finite fields. For these notes, we al-
ways let 0 denote the additive identity in a field, and we let 1 denote the multiplicative
identity. We also let

2=1+1, 3=1+1+1, 4=1+1+1+1,

Definition: Characteristic of a Field
We say that a field F has finite characteristic if there exists a positive integer n
so that

1+1+4---4+1=0

n times

in F. The smallest such n is called the characteristic of F, and is denoted char([F).

That is, the characteristic of F is the smallest positive integer n for which n = 0
in [F. For example, Z, has characteristic p for each prime p, but fields such as Q, R,
or C do not have finite characteristic.

Proposition 1

Every finite field has finite characteristic

PROOF Let I be a finite field. Then the sequence 1,2, 3,... in F has only finitely
many different terms, so there must exist positive intgers m < n such that m =n
in F. It follows that n —m = 0 in I, so [F has finite characteristic. [

If F is a field of characteristic n, then the elements {0,1,2,...,n — 1} of F obey
the rules for addition and multiplication modulo n, and therefore form a copy of
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Z, inside of F. Since Z, has zero divisors when n is not prime, it follows that the
characteristic of a field must be a prime number.

Thus every finite field F must have characteristic p for some prime p, and the
elements {0,1,2,...,p — 1} form a copy of Z,, inside of F. This copy of Z, is known
as the prime subfield of F.

EXAMPLE 1 Prime Subfield of Zj]i]
Recall that Zsli] = Zs[z]/(2z* + 1) is a field with 9 elements:
0, 1, 2, ¢ i+1, i+2, 2, 2a+1, 2i+2.
This field has characteristic 3, since 3 = 0 in the field, and the prime subfield consists
of the elements {0, 1, 2}. |

More generally, if p is a prime and m(z) is an irreducible polynomial over Z,, then
Zy[z]/ (m(z)) is always a field of characteristic p, with prime subfield {0,1,...,p—1}.

The Frobenius Automorphism

We begin with a surprising identity that holds in any field of characteristic p.

Proposition 2 The Frobenius Identity

Let p be a prime, and let F be a field of characteristic p. Then
(a+0b)P = a” +0bF

for all a,b € F.

PROOF By the binomial theorem

(a+b)p - aP + (Il))ap—lb_{_ <g>&p—262+,..+ (pf 1)abp—l+bp'

But it is easy to see that (Z) is a multiple of p for all k € {1,...,p—1}, and is hence
equal to 0 in F. Thus all the middle terms drop out, leaving (a + b)? = a? +b7. N
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Definition: Frobenius Automorphism
Let I be a field of characteristic p. The Frobenius automorphism of F is the
function ¢: F — F defined by

p(a) = a”.

Clearly p(ab) = p(a) p(b) for all a,b € F, and the Frobenius identity tells us that
ola +b) = p(a) + p(b) for all a,b € F. It follows that ¢ can be applied to any
expression by applying it to each part individually. For example, if a,b, ¢ € F, then

p(a® +b’c) = p(a)’ + (b)*¢(c).

Note that the properties of ¢ are similar to the properties of complex conjugation
in C. In particular, if @ denotes the complex conjugate of a, then

ab = ab and a+b=a+b

for all a,b € C. Thus the Frobenius automorphism ¢ can be thought of as something
similar to complex conjugation for finite fields.

EXAMPLE 2 The Frobenius Automorphism in Z,[i]
Recall that if p is a prime congruent to 3 modulo 4, then the field with p? elements
can be described as Z,[i], where i is a square root of —1. Let ¢: Z,[i] — Z,[i] be the
Frobenius automorphism. By Fermat’s little theorem

pla) = @ = a

for all a € Z,. Moreover, we have

It follows that

pla+bi) = p(a) +¢(b) (i) = a—bi
for all a,b € Z,. Thus the Frobenius automorphism is exactly the same as complex
conjugation for this field. [ |

EXAMPLE 3 The Frobenius Automorphism in [,
Let Fy = Z, [a:]/(xQ +x+ 1) be the field with 4 elements, and let ¢: F; — F4 be the
Frobenius automorphism ¢(a) = a®. Then

p(0)=0"=0, p(1)=1=1, px)=2"=z+1, ¢a+l)=@E+1)?=uz

Thus ¢ fixes 0 and 1 and switches z with x + 1. |
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EXAMPLE 4 The Frobenius Automorphism in [Fg
Let Fg = Z, [$]/(£E3 +r+ 1) be the field with 8 elements, and let ¢: Fg — Fg be the
Frobenius automorphism ¢(a) = a?. Clearly ¢(0) = 0 and (1) = 1, and it is easy to
check that

o(x) = 22, p(2?) = 2%+, p(z*+z) =1

and
plz+1) =241,  p@*+1)=2+z+1, (@®+z+1)=z+1
Thus ¢ fixes 0 and 1 and permutes the remaining 6 elements of Fg in two three-

cycles. [ |

In all of these examples, the fixed points of the Frobenius automorphism were
precisely the elements of the prime subfield. This is no accident.

Proposition 3 Fixed Points of the Frobenius Automorphism

Let T be a field of characteristic p, let @ be the Frobenius automorphism of F,
and let a € F. Then p(a) = a if and only if a lies in the prime subfield of F.

PROOF Recall that the prime subfield of F is isomorphic to Z,, with ¢(a) = a? for
all @ € F. By Fermat’s little theorem, we know that ¢(a) = a? = a for all elements
a of the prime subfield. But every fixed point of ¢ must be a root of the polynomial
2P — x, and this polynomial can have at most p different roots in I, so the fixed points
of ¢ are precisely the elements 0,1,...,p — 1. [ |

Again, this is analogous to complex conjugation, where the fixed points of complex
conjugation are precisely the real numbers.
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Orders of Elements

We collect here a few other facts about finite fields that we have collected.

Theorem 4 Fermat’'s Little Theorem for Finite Fields

Let F be a finite field with n elements. Then

for all a € F. Equivalently,

for all a € F*.

PROOF The multiplicative group F* has n — 1 elements. By Lagrange’s theorem
from group theory, it follows that the multiplicative order of any element of F* must
divide n—1. Then a" ! = 1 for all a € F*, and it follows that a” = aforalla € F. W

Theorem 5 Primitive Element Theorem

Let F be a finite field with n elements. Then for each divisor k of n — 1, there
exist elements of F* of order k.

PROOF This was proven in the notes on cyclotomic polynomials. |

Combining these two theorems together, we see that the orders of the elements
of I are precisely the divisors of n — 1.
Incidentally, we will show soon enough that every finite field with characteristic
p has p* elements for some positive integer k. Thus Fermat’s little theorem for finite
fields can be written as
a’ =a

for the elements of a field of order p*. Equivalently
p(a) = a

for all a € F, where ¢ is the Frobenius automorphism. Thus, for a field with p*
elements, every element will return to itself after k applications of the Frobenius
automorphism.
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Square Roots of 2

As an application of finite fields and the Frobenius automorphism, we determine for
which primes p the field Z, contains a square root of 2. The proof uses the field
with p? elements, which can be obtained by adjoining to Z, the square root of any
quadratic non-residue. That is,

F = Zp[a:]/(x2 — a),

where a is any quadratic non-residue modulo p.

Theorem 6 Second Supplement to the Law of Quadratic Reciprocity

Let p be an odd prime. Then 2 is a quadratic residue modulo p if and only if

p = %1 (mod 8).

PROOF Let F be the field with p? elements. Observe that
(-3 = (-1)* = 1> = 3> = 1 (mod 8),

so p> — 1 must be a multiple of 8, and hence F has an element w of order 8. Note
then that w* = —1.
Let r = w4+ w™!. Then

r? = (w—}—w‘l)z = w4+ 24w ? = 2+w_2(w4—|—1) = 2.

Thus r and —r are the square roots of 2 in F. Then 2 is a quadratic residue modulo
p if and only if r € Z,.

To check whether r € Z,, we apply the Frobenius automorphism to r and use
Proposition 3. Let ¢: F — F be the Frobenius automorphism, which is defined by
¢(a) = aP. Then

p(r) = plw+w™) = pw) +ow)™ =’ +w™® = +w™"
where k € {—3,—1,1,3} is the residue class of p modulo 8. We now break into cases
depending on the value of k:

e If p =1 (mod 8), then p(r) = w+w™ =r, sor € Z, by Proposition 3, and
hence 2 is a quadratic residue modulo p.

e Similarly, if p = —1 (mod 8), then ¢(r) =w™'+w =7, sor € Z, and hence 2
is a quadratic residue modulo p.
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e If p = —3 (mod 8), then p(r) = w3 +w? = —w—-w?! = —r £ r. By
Proposition 3, it follows that r ¢ Z, by, so 2 is not a quadratic residue modulo p.

e Finally, if p = 3 (mod 8), then ¢(r) = w3 +w™> = —w™ —w = —r # r, s0 again

2 is not a quadratic residue modulo p. [N



