Finite Fields

In these notes we discuss the general structure of finite fields. For these notes, we always let 0 denote the additive identity in a field, and we let 1 denote the multiplicative identity. We also let

2 = 1 + 1, 3 = 1 + 1 + 1, 4 = 1 + 1 + 1 + 1, ...

Definition: Characteristic of a Field

We say that a field \mathbb{F} has **finite characteristic** if there exists a positive integer nso that

$$\underbrace{1+1+\dots+1}_{n \text{ times}} = 0$$

in \mathbb{F} . The smallest such *n* is called the **characteristic** of \mathbb{F} , and is denoted char(\mathbb{F}).

That is, the characteristic of \mathbb{F} is the smallest positive integer n for which n = 0in \mathbb{F} . For example, \mathbb{Z}_p has characteristic p for each prime p, but fields such as \mathbb{Q} , \mathbb{R} , or \mathbb{C} do not have finite characteristic.

Proposition 1

Every finite field has finite characteristic

PROOF Let \mathbb{F} be a finite field. Then the sequence $1, 2, 3, \ldots$ in \mathbb{F} has only finitely many different terms, so there must exist positive intgers m < n such that m = nin \mathbb{F} . It follows that n - m = 0 in \mathbb{F} , so \mathbb{F} has finite characteristic.

If \mathbb{F} is a field of characteristic n, then the elements $\{0, 1, 2, \dots, n-1\}$ of \mathbb{F} obey the rules for addition and multiplication modulo n, and therefore form a copy of \mathbb{Z}_n inside of \mathbb{F} . Since \mathbb{Z}_n has zero divisors when *n* is not prime, it follows that the characteristic of a field must be a prime number.

Thus every finite field \mathbb{F} must have characteristic p for some prime p, and the elements $\{0, 1, 2, \ldots, p-1\}$ form a copy of \mathbb{Z}_p inside of \mathbb{F} . This copy of \mathbb{Z}_p is known as the **prime subfield** of \mathbb{F} .

EXAMPLE 1 Prime Subfield of $\mathbb{Z}_3[i]$ Recall that $\mathbb{Z}_3[i] = \mathbb{Z}_3[x]/(x^2 + 1)$ is a field with 9 elements:

 $0, \quad 1, \quad 2, \quad i, \quad i+1, \quad i+2, \quad 2i, \quad 2i+1, \quad 2i+2.$

This field has characteristic 3, since 3 = 0 in the field, and the prime subfield consists of the elements $\{0, 1, 2\}$.

More generally, if p is a prime and m(x) is an irreducible polynomial over \mathbb{Z}_p , then $\mathbb{Z}_p[x]/(m(x))$ is always a field of characteristic p, with prime subfield $\{0, 1, \ldots, p-1\}$.

The Frobenius Automorphism

We begin with a surprising identity that holds in any field of characteristic p.

Proposition 2 The Frobenius Identity

Let p be a prime, and let $\mathbb F$ be a field of characteristic p. Then $(a+b)^p \ = \ a^p + b^p$ for all $a,b \in \mathbb F.$

PROOF By the binomial theorem

 $(a+b)^{p} = a^{p} + \binom{p}{1}a^{p-1}b + \binom{p}{2}a^{p-2}b^{2} + \dots + \binom{p}{p-1}ab^{p-1} + b^{p}.$

But it is easy to see that $\binom{p}{k}$ is a multiple of p for all $k \in \{1, \ldots, p-1\}$, and is hence equal to 0 in \mathbb{F} . Thus all the middle terms drop out, leaving $(a+b)^p = a^p + b^p$.

Definition: Frobenius Automorphism

Let \mathbb{F} be a field of characteristic p. The **Frobenius automorphism** of \mathbb{F} is the function $\varphi \colon \mathbb{F} \to \mathbb{F}$ defined by

$$\varphi(a) = a^p.$$

Clearly $\varphi(ab) = \varphi(a) \varphi(b)$ for all $a, b \in \mathbb{F}$, and the Frobenius identity tells us that $\varphi(a + b) = \varphi(a) + \varphi(b)$ for all $a, b \in \mathbb{F}$. It follows that φ can be applied to any expression by applying it to each part individually. For example, if $a, b, c \in \mathbb{F}$, then

$$\varphi(a^3 + b^2c) = \varphi(a)^3 + \varphi(b)^2\varphi(c).$$

Note that the properties of φ are similar to the properties of complex conjugation in \mathbb{C} . In particular, if \overline{a} denotes the complex conjugate of a, then

$$\overline{ab} = \overline{a}\overline{b}$$
 and $\overline{a+b} = \overline{a} + \overline{b}$

for all $a, b \in \mathbb{C}$. Thus the Frobenius automorphism φ can be thought of as something similar to complex conjugation for finite fields.

EXAMPLE 2 The Frobenius Automorphism in $\mathbb{Z}_p[i]$

Recall that if p is a prime congruent to 3 modulo 4, then the field with p^2 elements can be described as $\mathbb{Z}_p[i]$, where i is a square root of -1. Let $\varphi \colon \mathbb{Z}_p[i] \to \mathbb{Z}_p[i]$ be the Frobenius automorphism. By Fermat's little theorem

$$\varphi(a) = a^p = a$$

for all $a \in \mathbb{Z}_p$. Moreover, we have

$$\varphi(i) = i^p = i^3 = -i.$$

It follows that

$$\varphi(a+bi) = \varphi(a) + \varphi(b) \varphi(i) = a - bi$$

for all $a, b \in \mathbb{Z}_p$. Thus the Frobenius automorphism is exactly the same as complex conjugation for this field.

EXAMPLE 3 The Frobenius Automorphism in \mathbb{F}_4

Let $\mathbb{F}_4 = \mathbb{Z}_2[x]/(x^2 + x + 1)$ be the field with 4 elements, and let $\varphi \colon \mathbb{F}_4 \to \mathbb{F}_4$ be the Frobenius automorphism $\varphi(a) = a^2$. Then

$$\varphi(0) = 0^2 = 0, \quad \varphi(1) = 1^2 = 1, \quad \varphi(x) = x^2 = x + 1, \quad \varphi(x+1) = (x+1)^2 = x.$$

Thus φ fixes 0 and 1 and switches x with x + 1.

EXAMPLE 4 The Frobenius Automorphism in \mathbb{F}_8

Let $\mathbb{F}_8 = \mathbb{Z}_2[x]/(x^3 + x + 1)$ be the field with 8 elements, and let $\varphi \colon \mathbb{F}_8 \to \mathbb{F}_8$ be the Frobenius automorphism $\varphi(a) = a^2$. Clearly $\varphi(0) = 0$ and $\varphi(1) = 1$, and it is easy to check that

$$\varphi(x) = x^2, \qquad \varphi(x^2) = x^2 + x, \qquad \varphi(x^2 + x) = x$$

and

$$\varphi(x+1) = x^2 + 1, \qquad \varphi(x^2+1) = x^2 + x + 1, \qquad \varphi(x^2 + x + 1) = x + 1.$$

Thus φ fixes 0 and 1 and permutes the remaining 6 elements of \mathbb{F}_8 in two threecycles.

In all of these examples, the fixed points of the Frobenius automorphism were precisely the elements of the prime subfield. This is no accident.

Proposition 3 Fixed Points of the Frobenius Automorphism

Let \mathbb{F} be a field of characteristic p, let φ be the Frobenius automorphism of \mathbb{F} , and let $a \in \mathbb{F}$. Then $\varphi(a) = a$ if and only if a lies in the prime subfield of \mathbb{F} .

PROOF Recall that the prime subfield of \mathbb{F} is isomorphic to \mathbb{Z}_p , with $\varphi(a) = a^p$ for all $a \in \mathbb{F}$. By Fermat's little theorem, we know that $\varphi(a) = a^p = a$ for all elements a of the prime subfield. But every fixed point of φ must be a root of the polynomial $x^p - x$, and this polynomial can have at most p different roots in \mathbb{F} , so the fixed points of φ are precisely the elements $0, 1, \ldots, p-1$.

Again, this is analogous to complex conjugation, where the fixed points of complex conjugation are precisely the real numbers.

Orders of Elements

We collect here a few other facts about finite fields that we have collected.

Theorem 4 Fermat's Little Theorem for Finite Fields

Let \mathbb{F} be a finite field with n elements. Then $a^n = a$ for all $a \in \mathbb{F}$. Equivalently, $a^{n-1} = 1$ for all $a \in \mathbb{F}^{\times}$.

PROOF The multiplicative group \mathbb{F}^{\times} has n-1 elements. By Lagrange's theorem from group theory, it follows that the multiplicative order of any element of \mathbb{F}^{\times} must divide n-1. Then $a^{n-1} = 1$ for all $a \in \mathbb{F}^{\times}$, and it follows that $a^n = a$ for all $a \in \mathbb{F}$.

Theorem 5 Primitive Element Theorem

Let \mathbb{F} be a finite field with n elements. Then for each divisor k of n-1, there exist elements of \mathbb{F}^{\times} of order k.

PROOF This was proven in the notes on cyclotomic polynomials.

Combining these two theorems together, we see that the orders of the elements of \mathbb{F} are precisely the divisors of n-1.

Incidentally, we will show soon enough that every finite field with characteristic p has p^k elements for some positive integer k. Thus Fermat's little theorem for finite fields can be written as

 $a^{p^k} = a$

for the elements of a field of order p^k . Equivalently

$$\varphi^k(a) = a$$

for all $a \in \mathbb{F}$, where φ is the Frobenius automorphism. Thus, for a field with p^k elements, every element will return to itself after k applications of the Frobenius automorphism.

Square Roots of 2

As an application of finite fields and the Frobenius automorphism, we determine for which primes p the field \mathbb{Z}_p contains a square root of 2. The proof uses the field \mathbb{F} with p^2 elements, which can be obtained by adjoining to \mathbb{Z}_p the square root of any quadratic non-residue. That is,

$$\mathbb{F} = \mathbb{Z}_p[x]/(x^2 - a),$$

where a is any quadratic non-residue modulo p.

Theorem 6 Second Supplement to the Law of Quadratic Reciprocity

Let p be an odd prime. Then 2 is a quadratic residue modulo p if and only if

 $p \equiv \pm 1 \pmod{8}.$

PROOF Let \mathbb{F} be the field with p^2 elements. Observe that

$$(-3)^2 \equiv (-1)^2 \equiv 1^2 \equiv 3^2 \equiv 1 \pmod{8},$$

so $p^2 - 1$ must be a multiple of 8, and hence \mathbb{F} has an element ω of order 8. Note then that $\omega^4 = -1$.

Let $r = \omega + \omega^{-1}$. Then

$$r^{2} = (\omega + \omega^{-1})^{2} = \omega^{2} + 2 + \omega^{-2} = 2 + \omega^{-2}(\omega^{4} + 1) = 2.$$

Thus r and -r are the square roots of 2 in \mathbb{F} . Then 2 is a quadratic residue modulo p if and only if $r \in \mathbb{Z}_p$.

To check whether $r \in \mathbb{Z}_p$, we apply the Frobenius automorphism to r and use Proposition 3. Let $\varphi \colon \mathbb{F} \to \mathbb{F}$ be the Frobenius automorphism, which is defined by $\varphi(a) = a^p$. Then

$$\varphi(r) = \varphi(\omega + \omega^{-1}) = \varphi(\omega) + \varphi(\omega)^{-1} = \omega^p + \omega^{-p} = \omega^k + \omega^{-k},$$

where $k \in \{-3, -1, 1, 3\}$ is the residue class of p modulo 8. We now break into cases depending on the value of k:

- If $p \equiv 1 \pmod{8}$, then $\varphi(r) = \omega + \omega^{-1} = r$, so $r \in \mathbb{Z}_p$ by Proposition 3, and hence 2 is a quadratic residue modulo p.
- Similarly, if $p \equiv -1 \pmod{8}$, then $\varphi(r) = \omega^{-1} + \omega = r$, so $r \in \mathbb{Z}_p$ and hence 2 is a quadratic residue modulo p.

- If $p \equiv -3 \pmod{8}$, then $\varphi(r) = \omega^{-3} + \omega^3 = -\omega \omega^{-1} = -r \neq r$. By Proposition 3, it follows that $r \notin \mathbb{Z}_p$ by, so 2 is not a quadratic residue modulo p.
- Finally, if $p \equiv 3 \pmod{8}$, then $\varphi(r) = \omega^3 + \omega^{-3} = -\omega^{-1} \omega = -r \neq r$, so again 2 is not a quadratic residue modulo p.