Finite Fields

In these notes we discuss the general structure of finite fields. For these notes, we always let 0 denote the additive identity in a field, and we let 1 denote the multiplicative identity. We also let

$$
2=1+1, \quad 3=1+1+1, \quad 4=1+1+1+1
$$

Definition: Characteristic of a Field

We say that a field \mathbb{F} has finite characteristic if there exists a positive integer n so that

$$
\underbrace{1+1+\cdots+1}_{n \text { times }}=0
$$

in \mathbb{F}. The smallest such n is called the characteristic of \mathbb{F}, and is denoted char (\mathbb{F}).

That is, the characteristic of \mathbb{F} is the smallest positive integer n for which $n=0$ in \mathbb{F}. For example, \mathbb{Z}_{p} has characteristic p for each prime p, but fields such as \mathbb{Q}, \mathbb{R}, or \mathbb{C} do not have finite characteristic.

Proposition 1

Every finite field has finite characteristic

PROOF Let \mathbb{F} be a finite field. Then the sequence $1,2,3, \ldots$ in \mathbb{F} has only finitely many different terms, so there must exist positive intgers $m<n$ such that $m=n$ in \mathbb{F}. It follows that $n-m=0$ in \mathbb{F}, so \mathbb{F} has finite characteristic.

If \mathbb{F} is a field of characteristic n, then the elements $\{0,1,2, \ldots, n-1\}$ of \mathbb{F} obey the rules for addition and multiplication modulo n, and therefore form a copy of
\mathbb{Z}_{n} inside of \mathbb{F}. Since \mathbb{Z}_{n} has zero divisors when n is not prime, it follows that the characteristic of a field must be a prime number.

Thus every finite field \mathbb{F} must have characteristic p for some prime p, and the elements $\{0,1,2, \ldots, p-1\}$ form a copy of \mathbb{Z}_{p} inside of \mathbb{F}. This copy of \mathbb{Z}_{p} is known as the prime subfield of \mathbb{F}.

EXAMPLE 1 Prime Subfield of $\mathbb{Z}_{3}[i]$
Recall that $\mathbb{Z}_{3}[i]=\mathbb{Z}_{3}[x] /\left(x^{2}+1\right)$ is a field with 9 elements:

$$
0, \quad 1, \quad 2, \quad i, \quad i+1, \quad i+2, \quad 2 i, \quad 2 i+1, \quad 2 i+2 .
$$

This field has characteristic 3 , since $3=0$ in the field, and the prime subfield consists of the elements $\{0,1,2\}$.

More generally, if p is a prime and $m(x)$ is an irreducible polynomial over \mathbb{Z}_{p}, then $\mathbb{Z}_{p}[x] /(m(x))$ is always a field of characteristic p, with prime subfield $\{0,1, \ldots, p-1\}$.

The Frobenius Automorphism

We begin with a surprising identity that holds in any field of characteristic p.

Proposition 2 The Frobenius Identity

Let p be a prime, and let \mathbb{F} be a field of characteristic p. Then

$$
(a+b)^{p}=a^{p}+b^{p}
$$

for all $a, b \in \mathbb{F}$.

PROOF By the binomial theorem

$$
(a+b)^{p}=a^{p}+\binom{p}{1} a^{p-1} b+\binom{p}{2} a^{p-2} b^{2}+\cdots+\binom{p}{p-1} a b^{p-1}+b^{p} .
$$

But it is easy to see that $\binom{p}{k}$ is a multiple of p for all $k \in\{1, \ldots, p-1\}$, and is hence equal to 0 in \mathbb{F}. Thus all the middle terms drop out, leaving $(a+b)^{p}=a^{p}+b^{p}$.

Definition: Frobenius Automorphism

Let \mathbb{F} be a field of characteristic p. The Frobenius automorphism of \mathbb{F} is the function $\varphi: \mathbb{F} \rightarrow \mathbb{F}$ defined by

$$
\varphi(a)=a^{p}
$$

Clearly $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in \mathbb{F}$, and the Frobenius identity tells us that $\varphi(a+b)=\varphi(a)+\varphi(b)$ for all $a, b \in \mathbb{F}$. It follows that φ can be applied to any expression by applying it to each part individually. For example, if $a, b, c \in \mathbb{F}$, then

$$
\varphi\left(a^{3}+b^{2} c\right)=\varphi(a)^{3}+\varphi(b)^{2} \varphi(c)
$$

Note that the properties of φ are similar to the properties of complex conjugation in \mathbb{C}. In particular, if \bar{a} denotes the complex conjugate of a, then

$$
\overline{a b}=\bar{a} \bar{b} \quad \text { and } \quad \overline{a+b}=\bar{a}+\bar{b}
$$

for all $a, b \in \mathbb{C}$. Thus the Frobenius automorphism φ can be thought of as something similar to complex conjugation for finite fields.

EXAMPLE 2 The Frobenius Automorphism in $\mathbb{Z}_{p}[i]$

Recall that if p is a prime congruent to 3 modulo 4 , then the field with p^{2} elements can be described as $\mathbb{Z}_{p}[i]$, where i is a square root of -1 . Let $\varphi: \mathbb{Z}_{p}[i] \rightarrow \mathbb{Z}_{p}[i]$ be the Frobenius automorphism. By Fermat's little theorem

$$
\varphi(a)=a^{p}=a
$$

for all $a \in \mathbb{Z}_{p}$. Moreover, we have

$$
\varphi(i)=i^{p}=i^{3}=-i
$$

It follows that

$$
\varphi(a+b i)=\varphi(a)+\varphi(b) \varphi(i)=a-b i
$$

for all $a, b \in \mathbb{Z}_{p}$. Thus the Frobenius automorphism is exactly the same as complex conjugation for this field.

EXAMPLE 3 The Frobenius Automorphism in \mathbb{F}_{4}

Let $\mathbb{F}_{4}=\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)$ be the field with 4 elements, and let $\varphi: \mathbb{F}_{4} \rightarrow \mathbb{F}_{4}$ be the Frobenius automorphism $\varphi(a)=a^{2}$. Then

$$
\varphi(0)=0^{2}=0, \quad \varphi(1)=1^{2}=1, \quad \varphi(x)=x^{2}=x+1, \quad \varphi(x+1)=(x+1)^{2}=x
$$

Thus φ fixes 0 and 1 and switches x with $x+1$.

EXAMPLE 4 The Frobenius Automorphism in \mathbb{F}_{8}
Let $\mathbb{F}_{8}=\mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)$ be the field with 8 elements, and let $\varphi: \mathbb{F}_{8} \rightarrow \mathbb{F}_{8}$ be the Frobenius automorphism $\varphi(a)=a^{2}$. Clearly $\varphi(0)=0$ and $\varphi(1)=1$, and it is easy to check that

$$
\varphi(x)=x^{2}, \quad \varphi\left(x^{2}\right)=x^{2}+x, \quad \varphi\left(x^{2}+x\right)=x
$$

and

$$
\varphi(x+1)=x^{2}+1, \quad \varphi\left(x^{2}+1\right)=x^{2}+x+1, \quad \varphi\left(x^{2}+x+1\right)=x+1 .
$$

Thus φ fixes 0 and 1 and permutes the remaining 6 elements of \mathbb{F}_{8} in two threecycles.

In all of these examples, the fixed points of the Frobenius automorphism were precisely the elements of the prime subfield. This is no accident.

Proposition 3 Fixed Points of the Frobenius Automorphism

Let \mathbb{F} be a field of characteristic p, let φ be the Frobenius automorphism of \mathbb{F}, and let $a \in \mathbb{F}$. Then $\varphi(a)=a$ if and only if a lies in the prime subfield of \mathbb{F}.

PROOF Recall that the prime subfield of \mathbb{F} is isomorphic to \mathbb{Z}_{p}, with $\varphi(a)=a^{p}$ for all $a \in \mathbb{F}$. By Fermat's little theorem, we know that $\varphi(a)=a^{p}=a$ for all elements a of the prime subfield. But every fixed point of φ must be a root of the polynomial $x^{p}-x$, and this polynomial can have at most p different roots in \mathbb{F}, so the fixed points of φ are precisely the elements $0,1, \ldots, p-1$.

Again, this is analogous to complex conjugation, where the fixed points of complex conjugation are precisely the real numbers.

Orders of Elements

We collect here a few other facts about finite fields that we have collected.

Theorem 4 Fermat's Little Theorem for Finite Fields

Let \mathbb{F} be a finite field with n elements. Then

$$
a^{n}=a
$$

for all $a \in \mathbb{F}$. Equivalently,

$$
a^{n-1}=1
$$

for all $a \in \mathbb{F}^{\times}$.

PROOF The multiplicative group \mathbb{F}^{\times}has $n-1$ elements. By Lagrange's theorem from group theory, it follows that the multiplicative order of any element of \mathbb{F}^{\times}must divide $n-1$. Then $a^{n-1}=1$ for all $a \in \mathbb{F}^{\times}$, and it follows that $a^{n}=a$ for all $a \in \mathbb{F}$.

Theorem 5 Primitive Element Theorem

Let \mathbb{F} be a finite field with n elements. Then for each divisor k of $n-1$, there exist elements of \mathbb{F}^{\times}of order k.

PROOF This was proven in the notes on cyclotomic polynomials.

Combining these two theorems together, we see that the orders of the elements of \mathbb{F} are precisely the divisors of $n-1$.

Incidentally, we will show soon enough that every finite field with characteristic p has p^{k} elements for some positive integer k. Thus Fermat's little theorem for finite fields can be written as

$$
a^{p^{k}}=a
$$

for the elements of a field of order p^{k}. Equivalently

$$
\varphi^{k}(a)=a
$$

for all $a \in \mathbb{F}$, where φ is the Frobenius automorphism. Thus, for a field with p^{k} elements, every element will return to itself after k applications of the Frobenius automorphism.

Square Roots of 2

As an application of finite fields and the Frobenius automorphism, we determine for which primes p the field \mathbb{Z}_{p} contains a square root of 2 . The proof uses the field \mathbb{F} with p^{2} elements, which can be obtained by adjoining to \mathbb{Z}_{p} the square root of any quadratic non-residue. That is,

$$
\mathbb{F}=\mathbb{Z}_{p}[x] /\left(x^{2}-a\right)
$$

where a is any quadratic non-residue modulo p.

Theorem 6 Second Supplement to the Law of Quadratic Reciprocity

Let p be an odd prime. Then 2 is a quadratic residue modulo p if and only if

$$
p \equiv \pm 1(\bmod 8)
$$

PROOF Let \mathbb{F} be the field with p^{2} elements. Observe that

$$
(-3)^{2} \equiv(-1)^{2} \equiv 1^{2} \equiv 3^{2} \equiv 1(\bmod 8)
$$

so $p^{2}-1$ must be a multiple of 8 , and hence \mathbb{F} has an element ω of order 8 . Note then that $\omega^{4}=-1$.

Let $r=\omega+\omega^{-1}$. Then

$$
r^{2}=\left(\omega+\omega^{-1}\right)^{2}=\omega^{2}+2+\omega^{-2}=2+\omega^{-2}\left(\omega^{4}+1\right)=2
$$

Thus r and $-r$ are the square roots of $2 \mathrm{in} \mathbb{F}$. Then 2 is a quadratic residue modulo p if and only if $r \in \mathbb{Z}_{p}$.

To check whether $r \in \mathbb{Z}_{p}$, we apply the Frobenius automorphism to r and use Proposition 3. Let $\varphi: \mathbb{F} \rightarrow \mathbb{F}$ be the Frobenius automorphism, which is defined by $\varphi(a)=a^{p}$. Then

$$
\varphi(r)=\varphi\left(\omega+\omega^{-1}\right)=\varphi(\omega)+\varphi(\omega)^{-1}=\omega^{p}+\omega^{-p}=\omega^{k}+\omega^{-k}
$$

where $k \in\{-3,-1,1,3\}$ is the residue class of p modulo 8 . We now break into cases depending on the value of k :

- If $p \equiv 1(\bmod 8)$, then $\varphi(r)=\omega+\omega^{-1}=r$, so $r \in \mathbb{Z}_{p}$ by Proposition 3 , and hence 2 is a quadratic residue modulo p.
- Similarly, if $p \equiv-1(\bmod 8)$, then $\varphi(r)=\omega^{-1}+\omega=r$, so $r \in \mathbb{Z}_{p}$ and hence 2 is a quadratic residue modulo p.
- If $p \equiv-3(\bmod 8)$, then $\varphi(r)=\omega^{-3}+\omega^{3}=-\omega-\omega^{-1}=-r \neq r$. By Proposition 3, it follows that $r \notin \mathbb{Z}_{p}$ by, so 2 is not a quadratic residue modulo p.
- Finally, if $p \equiv 3(\bmod 8)$, then $\varphi(r)=\omega^{3}+\omega^{-3}=-\omega^{-1}-\omega=-r \neq r$, so again 2 is not a quadratic residue modulo p.

