
Finite Fields

In these notes we discuss the general structure of finite fields. For these notes, we al-
ways let 0 denote the additive identity in a field, and we let 1 denote the multiplicative
identity. We also let

2 = 1 + 1, 3 = 1 + 1 + 1, 4 = 1 + 1 + 1 + 1, . . .

Definition: Characteristic of a Field
We say that a field F has finite characteristic if there exists a positive integer n
so that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0

in F. The smallest such n is called the characteristic of F, and is denoted char(F).

That is, the characteristic of F is the smallest positive integer n for which n = 0
in F. For example, Zp has characteristic p for each prime p, but fields such as Q, R,
or C do not have finite characteristic.

Proposition 1

Every finite field has finite characteristic

PROOF Let F be a finite field. Then the sequence 1, 2, 3, . . . in F has only finitely
many different terms, so there must exist positive intgers m < n such that m = n
in F. It follows that n−m = 0 in F, so F has finite characteristic. �

If F is a field of characteristic n, then the elements {0, 1, 2, . . . , n − 1} of F obey
the rules for addition and multiplication modulo n, and therefore form a copy of
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Zn inside of F. Since Zn has zero divisors when n is not prime, it follows that the
characteristic of a field must be a prime number.

Thus every finite field F must have characteristic p for some prime p, and the
elements {0, 1, 2, . . . , p− 1} form a copy of Zp inside of F. This copy of Zp is known
as the prime subfield of F.

EXAMPLE 1 Prime Subfield of Z3[i]
Recall that Z3[i] = Z3[x]/

(
x2 + 1

)
is a field with 9 elements:

0, 1, 2, i, i + 1, i + 2, 2i, 2i + 1, 2i + 2.

This field has characteristic 3, since 3 = 0 in the field, and the prime subfield consists
of the elements {0, 1, 2}. �

More generally, if p is a prime and m(x) is an irreducible polynomial over Zp, then
Zp[x]/

(
m(x)

)
is always a field of characteristic p, with prime subfield {0, 1, . . . , p−1}.

The Frobenius Automorphism

We begin with a surprising identity that holds in any field of characteristic p.

Proposition 2 The Frobenius Identity

Let p be a prime, and let F be a field of characteristic p. Then

(a + b)p = ap + bp

for all a, b ∈ F.

PROOF By the binomial theorem

(a + b)p = ap +

(
p

1

)
ap−1b +

(
p

2

)
ap−2b2 + · · ·+

(
p

p− 1

)
abp−1 + bp.

But it is easy to see that

(
p

k

)
is a multiple of p for all k ∈ {1, . . . , p−1}, and is hence

equal to 0 in F. Thus all the middle terms drop out, leaving (a + b)p = ap + bp. �
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Definition: Frobenius Automorphism
Let F be a field of characteristic p. The Frobenius automorphism of F is the
function ϕ : F→ F defined by

ϕ(a) = ap.

Clearly ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ F, and the Frobenius identity tells us that
ϕ(a + b) = ϕ(a) + ϕ(b) for all a, b ∈ F. It follows that ϕ can be applied to any
expression by applying it to each part individually. For example, if a, b, c ∈ F, then

ϕ
(
a3 + b2c

)
= ϕ(a)3 + ϕ(b)2ϕ(c).

Note that the properties of ϕ are similar to the properties of complex conjugation
in C. In particular, if a denotes the complex conjugate of a, then

ab = ab and a + b = a + b

for all a, b ∈ C. Thus the Frobenius automorphism ϕ can be thought of as something
similar to complex conjugation for finite fields.

EXAMPLE 2 The Frobenius Automorphism in Zp[i]
Recall that if p is a prime congruent to 3 modulo 4, then the field with p2 elements
can be described as Zp[i], where i is a square root of −1. Let ϕ : Zp[i]→ Zp[i] be the
Frobenius automorphism. By Fermat’s little theorem

ϕ(a) = ap = a

for all a ∈ Zp. Moreover, we have

ϕ(i) = ip = i3 = −i.

It follows that
ϕ(a + bi) = ϕ(a) + ϕ(b)ϕ(i) = a− bi

for all a, b ∈ Zp. Thus the Frobenius automorphism is exactly the same as complex
conjugation for this field. �

EXAMPLE 3 The Frobenius Automorphism in F4

Let F4 = Z2[x]/
(
x2 + x + 1

)
be the field with 4 elements, and let ϕ : F4 → F4 be the

Frobenius automorphism ϕ(a) = a2. Then

ϕ(0) = 02 = 0, ϕ(1) = 12 = 1, ϕ(x) = x2 = x + 1, ϕ(x + 1) = (x + 1)2 = x.

Thus ϕ fixes 0 and 1 and switches x with x + 1. �
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EXAMPLE 4 The Frobenius Automorphism in F8

Let F8 = Z2[x]/
(
x3 + x + 1

)
be the field with 8 elements, and let ϕ : F8 → F8 be the

Frobenius automorphism ϕ(a) = a2. Clearly ϕ(0) = 0 and ϕ(1) = 1, and it is easy to
check that

ϕ(x) = x2, ϕ
(
x2
)

= x2 + x, ϕ
(
x2 + x

)
= x

and

ϕ(x + 1) = x2 + 1, ϕ
(
x2 + 1

)
= x2 + x + 1, ϕ

(
x2 + x + 1

)
= x + 1.

Thus ϕ fixes 0 and 1 and permutes the remaining 6 elements of F8 in two three-
cycles. �

In all of these examples, the fixed points of the Frobenius automorphism were
precisely the elements of the prime subfield. This is no accident.

Proposition 3 Fixed Points of the Frobenius Automorphism

Let F be a field of characteristic p, let ϕ be the Frobenius automorphism of F,
and let a ∈ F. Then ϕ(a) = a if and only if a lies in the prime subfield of F.

PROOF Recall that the prime subfield of F is isomorphic to Zp, with ϕ(a) = ap for
all a ∈ F. By Fermat’s little theorem, we know that ϕ(a) = ap = a for all elements
a of the prime subfield. But every fixed point of ϕ must be a root of the polynomial
xp−x, and this polynomial can have at most p different roots in F, so the fixed points
of ϕ are precisely the elements 0, 1, . . . , p− 1. �

Again, this is analogous to complex conjugation, where the fixed points of complex
conjugation are precisely the real numbers.
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Orders of Elements

We collect here a few other facts about finite fields that we have collected.

Theorem 4 Fermat’s Little Theorem for Finite Fields

Let F be a finite field with n elements. Then

an = a

for all a ∈ F. Equivalently,
an−1 = 1

for all a ∈ F×.

PROOF The multiplicative group F× has n − 1 elements. By Lagrange’s theorem
from group theory, it follows that the multiplicative order of any element of F× must
divide n−1. Then an−1 = 1 for all a ∈ F×, and it follows that an = a for all a ∈ F. �

Theorem 5 Primitive Element Theorem

Let F be a finite field with n elements. Then for each divisor k of n − 1, there
exist elements of F× of order k.

PROOF This was proven in the notes on cyclotomic polynomials. �

Combining these two theorems together, we see that the orders of the elements
of F are precisely the divisors of n− 1.

Incidentally, we will show soon enough that every finite field with characteristic
p has pk elements for some positive integer k. Thus Fermat’s little theorem for finite
fields can be written as

ap
k

= a

for the elements of a field of order pk. Equivalently

ϕk(a) = a

for all a ∈ F, where ϕ is the Frobenius automorphism. Thus, for a field with pk

elements, every element will return to itself after k applications of the Frobenius
automorphism.
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Square Roots of 2

As an application of finite fields and the Frobenius automorphism, we determine for
which primes p the field Zp contains a square root of 2. The proof uses the field F
with p2 elements, which can be obtained by adjoining to Zp the square root of any
quadratic non-residue. That is,

F = Zp[x]/
(
x2 − a

)
,

where a is any quadratic non-residue modulo p.

Theorem 6 Second Supplement to the Law of Quadratic Reciprocity

Let p be an odd prime. Then 2 is a quadratic residue modulo p if and only if

p ≡ ±1 (mod 8).

PROOF Let F be the field with p2 elements. Observe that

(−3)2 ≡ (−1)2 ≡ 12 ≡ 32 ≡ 1 (mod 8),

so p2 − 1 must be a multiple of 8, and hence F has an element ω of order 8. Note
then that ω4 = −1.

Let r = ω + ω−1. Then

r2 =
(
ω + ω−1

)2
= ω2 + 2 + ω−2 = 2 + ω−2

(
ω4 + 1

)
= 2.

Thus r and −r are the square roots of 2 in F. Then 2 is a quadratic residue modulo
p if and only if r ∈ Zp.

To check whether r ∈ Zp, we apply the Frobenius automorphism to r and use
Proposition 3. Let ϕ : F → F be the Frobenius automorphism, which is defined by
ϕ(a) = ap. Then

ϕ(r) = ϕ
(
ω + ω−1

)
= ϕ(ω) + ϕ(ω)−1 = ωp + ω−p = ωk + ω−k,

where k ∈ {−3,−1, 1, 3} is the residue class of p modulo 8. We now break into cases
depending on the value of k:

• If p ≡ 1 (mod 8), then ϕ(r) = ω + ω−1 = r, so r ∈ Zp by Proposition 3, and
hence 2 is a quadratic residue modulo p.

• Similarly, if p ≡ −1 (mod 8), then ϕ(r) = ω−1 + ω = r, so r ∈ Zp and hence 2
is a quadratic residue modulo p.
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• If p ≡ −3 (mod 8), then ϕ(r) = ω−3 + ω3 = −ω − ω−1 = −r 6= r. By
Proposition 3, it follows that r /∈ Zp by, so 2 is not a quadratic residue modulo p.

• Finally, if p ≡ 3 (mod 8), then ϕ(r) = ω3 +ω−3 = −ω−1−ω = −r 6= r, so again
2 is not a quadratic residue modulo p. �.


