## Gauss Sums

As we have seen, there is a close connection between Legendre symbols of the form

$$
\left(\frac{-3}{p}\right)
$$

and cube roots of unity. Specifically, if $\omega$ is a primitive cube root of unity, then

$$
\omega-\omega^{2}= \pm i \sqrt{3}
$$

and hence

$$
\left(\omega-\omega^{2}\right)^{2}=-3
$$

In fact, this last equation holds for any element $\omega$ of order 3 in any field $\mathbb{F}$, and hence -3 is a perfect square in any field that has elements of order 3 .

There are similar considerations for other primes. For example, if $\omega$ is a primitive 5 th root of unity, then

$$
\omega-\omega^{2}-\omega^{3}+\omega^{4}= \pm \sqrt{5}
$$

and hence

$$
\left(\omega-\omega^{2}-\omega^{3}+\omega^{4}\right)^{2}=5
$$

Again, it is possible to show that this last equation holds for any element $\omega$ of order 5 in any field $\mathbb{F}$, and therefore 5 is a perfect square in any field that has elements of order 5.

Gauss discovered a beautiful generalization of these formulas.

## Theorem 1 Gauss Sum Formula

Let $p>2$ be prime, and let $\omega$ be a primitive pth root of unity. Then

$$
\sum_{k=1}^{p-1}\left(\frac{k}{p}\right) \omega^{k}= \begin{cases} \pm \sqrt{p} & \text { if } p \equiv 1(\bmod 4) \\ \pm i \sqrt{p} & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

The sum

$$
g_{p}(\omega)=\sum_{k=1}^{p-1}\left(\frac{k}{p}\right) \omega^{k}=\omega+\left(\frac{2}{p}\right) \omega^{2}+\left(\frac{3}{p}\right) \omega^{3}+\cdots+\left(\frac{p-1}{p}\right) \omega^{p-1}
$$

is known as a Gauss sum. According to the theorem

$$
g_{p}(\omega)^{2}=\left\{\begin{aligned}
p & \text { if } p \equiv 1(\bmod 4) \\
-p & \text { if } p \equiv 3(\bmod 4)
\end{aligned}\right.
$$

for any primitive $p$ th root of unity $\omega$. Equivalently, we can write this formula as

$$
g_{p}(\omega)^{2}=\left(\frac{-1}{p}\right) p
$$

## EXAMPLE 1 Gauss Sum for $p=7$

It is easy to check that the quadratic residues modulo 7 are $\{1,2,4\}$, while $\{3,5,6\}$ are quadratic non-residues. Therefore, by the Gauss sum formula

$$
\omega+\omega^{2}-\omega^{3}+\omega^{4}-\omega^{5}-\omega^{6}= \pm i \sqrt{7}
$$

for any primitive 7 th root of unity $\omega$.
It is not too hard to check that this is correct. Squaring the Gauss sum gives

$$
\begin{aligned}
\left(\omega+\omega^{2}-\omega^{3}+\omega^{4}\right. & \left.-\omega^{5}-\omega^{6}\right)^{2} \\
& =\omega^{2}+2 \omega^{3}-\omega^{4}+\omega^{6}-6 \omega^{7}+\omega^{8}-\omega^{10}+2 \omega^{11}+\omega^{12}
\end{aligned}
$$

and using the identity $\omega^{7}=1$ to reduce the powers of $\omega$ simplifies this to

$$
\left(\omega+\omega^{2}-\omega^{3}+\omega^{4}-\omega^{5}-\omega^{6}\right)^{2}=-6+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}
$$

But $1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}=\Phi_{7}(\omega)=0$, and hence

$$
\left(\omega+\omega^{2}-\omega^{3}+\omega^{4}-\omega^{5}-\omega^{6}\right)^{2}=-7
$$

EXAMPLE 2 Gauss Sum for $p=11$
It is easy to check that the quadratic residues modulo 11 are $\{1,3,4,5,9\}$, while $\{2,6,7,8,10\}$ are quadratic non-residues. Therefore, by the Gauss sum formula

$$
\omega-\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}-\omega^{6}-\omega^{7}-\omega^{8}+\omega^{9}-\omega^{10}= \pm i \sqrt{11}
$$

for any primitive 11th root of unity $\omega$.

Again, we can use simple algebra to show that this is correct. Squaring the Gauss sum and applying the identity $\omega^{11}=1$ gives the formula

$$
\begin{aligned}
& \left(\omega-\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}-\omega^{6}-\omega^{7}-\omega^{8}+\omega^{9}-\omega^{10}\right)^{2} \\
& \quad=-10+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}+\omega^{7}+\omega^{8}+\omega^{9}+\omega^{10}
\end{aligned}
$$

But $1+\omega+\omega^{2}+\cdots+\omega^{10}=\Phi_{11}(\omega)=0$, and hence

$$
\left(\omega-\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}-\omega^{6}-\omega^{7}-\omega^{8}+\omega^{9}-\omega^{10}\right)^{2}=-11
$$

## EXAMPLE 3 Gauss Sum for $p=13$

It is easy to check that the quadratic residues modulo 13 are $\{1,3,4,9,10,12\}$, while $\{2,5,6,7,8,11\}$ are quadratic non-residues. Therefore, by the Gauss sum formula

$$
\omega-\omega^{2}+\omega^{3}+\omega^{4}-\omega^{5}-\omega^{6}-\omega^{7}-\omega^{8}+\omega^{9}+\omega^{10}-\omega^{11}+\omega^{12}= \pm \sqrt{13}
$$

for any primitive 13 th root of unity $\omega$.
Since $13 \equiv 1(\bmod 4)$, the algebra for checking this goes a little differently. Squaring the Gauss sum and then reducing powers of $\omega$ modulo 13 gives

$$
\begin{aligned}
& \left(\omega-\omega^{2}+\omega^{3}+\omega^{4}-\omega^{5}-\omega^{6}-\omega^{7}-\omega^{8}+\omega^{9}+\omega^{10}-\omega^{11}+\omega^{12}\right)^{2} \\
& \quad=12-\omega-\omega^{2}-\omega^{3}-\omega^{4}-\omega^{5}-\omega^{6}-\omega^{7}-\omega^{8}-\omega^{9}-\omega^{10}-\omega^{11}-\omega^{12}
\end{aligned}
$$

But $1+\omega+\omega^{2}+\cdots+\omega^{12}=\Phi_{13}(\omega)=0$, and hence

$$
\left(\omega-\omega^{2}+\omega^{3}+\omega^{4}-\omega^{5}-\omega^{6}-\omega^{7}-\omega^{8}+\omega^{9}+\omega^{10}-\omega^{11}+\omega^{12}\right)^{2}=13
$$

Of course, the Gauss sum formula gives two possible values of $g_{p}(\omega)$ in each case, so a natural question to ask is which of these two values $g_{p}(\omega)$ is equal to. For example, if $p \equiv 1(\bmod 4)$, is $g_{p}(\omega)$ equal to $\sqrt{p}$ or $-\sqrt{p}$. The answer is that it depends on which primitive $p$ th root of unity $\omega$ we choose. However, in the case where $\omega=e^{2 \pi i / p}$, Gauss was able to prove that

$$
g_{p}(\omega)= \begin{cases}\sqrt{p} & \text { if } p \equiv 1(\bmod 4) \\ i \sqrt{p} & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

For example, if $\omega=e^{2 \pi i / 7}$ then

$$
\omega+\omega^{2}-\omega^{3}+\omega^{4}-\omega^{5}-\omega^{6}=i \sqrt{7},
$$

and if $\omega=e^{2 \pi i / 13}$ then

$$
\omega-\omega^{2}+\omega^{3}+\omega^{4}-\omega^{5}-\omega^{6}-\omega^{7}-\omega^{8}+\omega^{9}+\omega^{10}-\omega^{11}+\omega^{12}=\sqrt{13}
$$

This result is actually much more difficult than the Gauss sum formula, and we will not prove it here.

## Proof of the Gauss Sum Formula

Throughout this section, let $p>2$ be a prime, and let $\omega$ be a primitive $p$ th root of unity. Let $g_{p}(x)$ be the Gauss polynomial

$$
g_{p}(x)=\sum_{k=1}^{p-1}\left(\frac{k}{p}\right) x^{k} .
$$

Our goal is to prove that

$$
g_{p}(\omega)^{2}=\left(\frac{-1}{p}\right) p
$$

## Extension of the Legendre Symbol

For convenience, we will use the convention that

$$
\left(\frac{a}{p}\right)=0 \quad \text { if } p \mid a .
$$

Using this notation,

$$
g_{p}(x)=\sum_{k=0}^{p-1}\left(\frac{k}{p}\right) x^{k}
$$

where the sum starts at $k=0$ instead of $k=1$.

## Squaring the Gauss Sum

Observe first that

$$
g_{p}(\omega)^{2}=\sum_{j=0}^{p-1} \sum_{k=0}^{p-1}\left(\frac{j}{p}\right)\left(\frac{k}{p}\right) \omega^{j+k} .
$$

Since $\omega^{p}=1$, we can reduce each power of $\omega$ modulo $p$ and then combine like terms. This yields an equation of the form

$$
\begin{equation*}
g_{p}(\omega)^{2}=a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots+a_{p-1} \omega^{p-1} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n}=\sum_{\substack{j+k \equiv n \\(\bmod p)}}\left(\frac{j}{p}\right)\left(\frac{k}{p}\right) \tag{2}
\end{equation*}
$$

for each $n \in \mathbb{Z}_{p}$.

## Sum of the Coefficients

Note first that

$$
g_{p}(1)=\sum_{k=1}^{p-1}\left(\frac{k}{p}\right)=0
$$

since $\mathbb{Z}_{p}^{\times}$has an equal number of quadratic residues and quadratic non-residues. It follows that $g_{p}(1)^{2}=0$, so the sum of the coefficients in $g_{p}(x)^{2}$ is equal to 0 . Therefore,

$$
\begin{equation*}
a_{0}+a_{1}+\cdots+a_{p-1}=0 \tag{3}
\end{equation*}
$$

## Value of $a_{0}$

It is not hard to determine the value of $a_{0}$. By equation (2), we have

$$
a_{0}=\sum_{\substack{j+k=0 \\(\bmod p)}}\left(\frac{j}{p}\right)\left(\frac{k}{p}\right)=\sum_{j=0}^{p-1}\left(\frac{-j}{p}\right)\left(\frac{j}{p}\right) .
$$

But

$$
\left(\frac{-j}{p}\right)\left(\frac{j}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{j^{2}}{p}\right)=\left\{\begin{array}{cl}
0 & \text { if } j=0 \\
\left(\frac{-1}{p}\right) & \text { otherwise }
\end{array}\right.
$$

and thus

$$
\begin{equation*}
a_{0}=\sum_{j=1}^{p-1}\left(\frac{-1}{p}\right)=\left(\frac{-1}{p}\right)(p-1) . \tag{4}
\end{equation*}
$$

## Equality of the Remaining Coefficients

Let $n \in \mathbb{Z}_{p}^{\times}$. By equation (2), we have that

$$
a_{n}=\sum_{\substack{j+k \equiv n \\(\bmod p)}}\left(\frac{j}{p}\right)\left(\frac{k}{p}\right) .
$$

If we make the substitution $j=n j^{\prime}$ and $k=n k^{\prime}$, then $j^{\prime}+k^{\prime} \equiv 1(\bmod p)$, and indeed

$$
a_{n}=\sum_{\substack{j^{\prime}+k^{\prime} \equiv 1 \\(\bmod p)}}\left(\frac{n j^{\prime}}{p}\right)\left(\frac{n k^{\prime}}{p}\right) .
$$

But

$$
\left(\frac{n j^{\prime}}{p}\right)\left(\frac{n k^{\prime}}{p}\right)=\left(\frac{n^{2}}{p}\right)\left(\frac{j^{\prime}}{p}\right)\left(\frac{k^{\prime}}{p}\right)=\left(\frac{j^{\prime}}{p}\right)\left(\frac{k^{\prime}}{p}\right)
$$

and hence

$$
a_{n}=\sum_{\substack{j^{\prime}+k^{\prime}=1 \\(\bmod p)}}\left(\frac{j^{\prime}}{p}\right)\left(\frac{k^{\prime}}{p}\right)=a_{1}
$$

for all $n \in\{1, \ldots, p-1\}$. Thus

$$
\begin{equation*}
a_{1}=a_{2}=\cdots=a_{p-1} \tag{5}
\end{equation*}
$$

## End of the Proof

Equations (3) and (5) are

$$
a_{0}+a_{1}+\cdots+a_{p-1}=0 \quad \text { and } \quad a_{1}=a_{2}=\cdots=a_{p-1}
$$

and combining these together gives

$$
a_{n}=-\frac{a_{0}}{p-1}
$$

for each $n \in\{1, \ldots, p-1\}$. Substituting in the value of $a_{1}$ obtained in (4), we deduce that

$$
a_{n}=-\left(\frac{-1}{p}\right)
$$

for each $n \in\{1, \ldots, p-1\}$. Thus equation (1) becomes

$$
g_{p}(\omega)^{2}=\left(\frac{-1}{p}\right)\left((p-1)-\omega-\omega^{2}-\cdots-\omega^{p-1}\right) .
$$

But

$$
1+\omega+\omega^{2}+\cdots+\omega^{p-1}=\Phi_{p}(\omega)=0
$$

so

$$
\omega+\omega^{2}+\cdots+\omega^{p-1}=-1 .
$$

and hence

$$
g_{p}(\omega)^{2}=\left(\frac{-1}{p}\right) p
$$

This completes the proof of the Gauss sum formula.

## Symmetry of Gauss Sums

The Gauss sum formula tells us that

$$
g_{p}(\omega)^{2}=\left(\frac{-1}{p}\right)
$$

for any primitive $p$ th root of unity $\omega$. The following formula tells us how the sign of $g_{p}(\omega)$ changes when we use different $p$ th roots of unity.

## Proposition 2 Symmetry of the Gauss Sum

Let $p>2$ be a prime, let $\omega$ be a primitive pth root of unity, and let

$$
g_{p}(x)=\sum_{k=1}^{p-1}\left(\frac{k}{p}\right) x^{k} .
$$

Then for each $n \in\{1, \ldots, p-1\}$,

$$
g_{p}\left(\omega^{n}\right)=\left(\frac{n}{p}\right) g_{p}(\omega)
$$

PROOF Observe that

$$
g_{p}\left(\omega^{n}\right)=\sum_{k=1}^{p-1}\left(\frac{k}{p}\right) x^{n k}=\left(\frac{n}{p}\right) \sum_{k=1}^{p-1}\left(\frac{n k}{p}\right) x^{n k} .
$$

But as $k$ runs over the set $\{1, \ldots, p-1\}$, the product $m=n k$ also runs over the elements of this set. Hence we can substitute $m=n k$ to get

$$
g_{p}\left(\omega^{n}\right)=\left(\frac{n}{p}\right) \sum_{m=1}^{p-1}\left(\frac{m}{p}\right) x^{m}=\left(\frac{n}{p}\right) g_{p}(\omega) .
$$

EXAMPLE 4 Consider the polynomial

$$
g_{7}(x)=x+x^{2}+x^{4}-x^{3}-x^{5}-x^{6} .
$$

If $\omega=e^{2 \pi i / 7}$, then it is easy to check that

$$
g_{7}(\omega)=\omega+\omega^{2}+\omega^{4}-\omega^{3}-\omega^{5}-\omega^{6}=i \sqrt{7}
$$

According to the formula above, it follows that

$$
g_{7}\left(\omega^{n}\right)=\left(\frac{n}{p}\right) g_{7}(\omega)=\left(\frac{n}{p}\right) i \sqrt{7}
$$

for any $n \in \mathbb{Z}_{p}^{\times}$. For example,

$$
\begin{aligned}
g_{7}\left(\omega^{2}\right) & =\left(\omega^{2}\right)+\left(\omega^{2}\right)^{2}+\left(\omega^{2}\right)^{4}-\left(\omega^{2}\right)^{3}-\left(\omega^{2}\right)^{5}-\left(\omega^{2}\right)^{6} \\
& =\omega^{2}+\omega^{4}+\omega-\omega^{6}-\omega^{3}-\omega^{5}=g_{7}(\omega)=i \sqrt{7}
\end{aligned}
$$

since 2 is a quadratic residue modulo 7 , and

$$
\begin{aligned}
g_{7}\left(\omega^{3}\right) & =\left(\omega^{3}\right)+\left(\omega^{3}\right)^{2}+\left(\omega^{3}\right)^{4}-\left(\omega^{3}\right)^{3}-\left(\omega^{3}\right)^{5}-\left(\omega^{3}\right)^{6} \\
& =\omega^{3}+\omega^{6}+\omega^{5}-\omega^{2}-\omega-\omega^{4}=-g_{7}(\omega)=-i \sqrt{7}
\end{aligned}
$$

since 3 is a quadratic non-residue modulo 7 .

