Gauss Sums

As we have seen, there is a close connection between Legendre symbols of the form

=)

p

and cube roots of unity. Specifically, if w is a primitive cube root of unity, then
w—w? = +iV3

and hence
(w — w2)2 = =3

In fact, this last equation holds for any element w of order 3 in any field F, and hence
—3 is a perfect square in any field that has elements of order 3.

There are similar considerations for other primes. For example, if w is a primitive
5th root of unity, then

w—w? W+t = :I:\/g.

and hence )

(w—w?—w?+w!)” =5
Again, it is possible to show that this last equation holds for any element w of order 5
in any field F, and therefore 5 is a perfect square in any field that has elements of

order 5.
Gauss discovered a beautiful generalization of these formulas.

Theorem 1 Gauss Sum Formula

Let p > 2 be prime, and let w be a primitive pth root of unity. Then

1(E)wk— +p ifp=1(mod4),
“\p)" | +iyp ifp=3(mod4).
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The sum

p—1
k 2 3 -1

p(w) = Z(—)wk =w+ (—)w2 + <—>w3+---+ <p—)wpl

=\ p p p p

is known as a Gauss sum. According to the theorem

- p if p=1(mod4),
gp(w)” = :
—p if p=3(mod 4),

for any primitive pth root of unity w. Equivalently, we can write this formula as

gp(w)?* = (%)p-

EXAMPLE 1 Gauss Sum for p =7
It is easy to check that the quadratic residues modulo 7 are {1,2,4}, while {3,5,6}
are quadratic non-residues. Therefore, by the Gauss sum formula

wHw —w ot —w —wh = :I:iﬁ

for any primitive 7th root of unity w.
It is not too hard to check that this is correct. Squaring the Gauss sum gives

(w+w2 R —w6)2
0?1208 — ot Wb — BT 4 w® — w0 2t g 12
and using the identity w” = 1 to reduce the powers of w simplifies this to
(w+w —w® +w! =’ —w6)2 = b6+wt+w +ud+wt+w + b
But 1 4+ w + w? + w? + w? + w® + w® = &7(w) = 0, and hence
(w+w2—w3+w4—w5—w6)2:—7. [
EXAMPLE 2 Gauss Sum for p = 11

It is easy to check that the quadratic residues modulo 11 are {1,3,4,5,9}, while
{2,6,7,8,10} are quadratic non-residues. Therefore, by the Gauss sum formula

w—wH+w+wr+w® - — W W+ — W = £Vl

for any primitive 11th root of unity w.
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Again, we can use simple algebra to show that this is correct. Squaring the Gauss
sum and applying the identity w!! = 1 gives the formula
(w—w2+w3+w4+w5—w6—w7—w8+w9—w10)2
= 10+w+w?+P+uw +® + w0+ 0+ W
But 1 +w+w?+ -+ wl® = dy;(w) =0, and hence

(w—w2+w3+w4+w5—w6—w7—w8+w9—w10)2:—11. [ |

EXAMPLE 3 Gauss Sum for p =13
It is easy to check that the quadratic residues modulo 13 are {1, 3,4, 9,10, 12}, while
{2,5,6,7,8,11} are quadratic non-residues. Therefore, by the Gauss sum formula

w—w+uw+w - W W -+ W W — Wt + w2 = +V13

for any primitive 13th root of unity w.
Since 13 = 1 (mod 4), the algebra for checking this goes a little differently.
Squaring the Gauss sum and then reducing powers of w modulo 13 gives

2
(w—w2+w3+w4—w5—w6—w7—w8+w9+w10—w11+w12)
=12—w—w—w—w—w -l - = — W — Wl — W — W2
But 1 +w+w?+ -+ +w'? = ®&13(w) = 0, and hence

7

(w—w2+w3+w4—w5—w6—w —w8+w9+w10—w11+w12)2 = 13. [ |

Of course, the Gauss sum formula gives two possible values of g,(w) in each case, so
a natural question to ask is which of these two values g,(w) is equal to. For example,
if p=1 (mod 4), is gy(w) equal to \/p or —,/p. The answer is that it depends on
which primitive pth root of unity w we choose. However, in the case where w = ™/
Gauss was able to prove that

VP ifp=1(mod4),
gp(w) = < .
iy/p if p=3(mod4).
For example, if w = €2>™/7 then
wHw—wd+wt - —wh = i\ﬁ,
and if w = €*™/13 then
w—wF+wr ot = =W W W W W — Wt ! = V13

This result is actually much more difficult than the Gauss sum formula, and we will
not prove it here.
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Proof of the Gauss Sum Formula

Throughout this section, let p > 2 be a prime, and let w be a primitive pth root of
unity. Let g,(x) be the Gauss polynomial

p

-1
k

(_>
=1 \P

gp(x) =

Our goal is to prove that

Extension of the Legendre Symbol

For convenience, we will use the convention that

(E) =0 ifp]la.
p

gplz) = [i(g)x’“

k=0

Using this notation,

where the sum starts at £k = 0 instead of k = 1.

Squaring the Gauss Sum

Observe first that

- EE0)

7=0 k=0

Since wP = 1, we can reduce each power of w modulo p and then combine like terms.
This yields an equation of the form

gp(w)Q = g + 1w + a2w2 4+ 4 apfl(,upfl (1>
where | )
J
a, = Z (_) (_) 2
jtk=n p p
(mod p)

for each n € Z,,.
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Sum of the Coefficients
Note first that

(1) = Z(g) 0

k=1
since Z,; has an equal number of quadratic residues and quadratic non-residues. It
follows that g,(1)? = 0, so the sum of the coefficients in g,(z)?* is equal to 0. Therefore,

a0+a1+~--—|—ap,1:0. (3)

Value of ag
It is not hard to determine the value of ag. By equation (2), we have

- £00-E0)0

Jj=0
(mod p)

But
0 if 7 =0,

DO -{y .

-G ()

J=1

and thus

Equality of the Remaining Coefficients
Let n € Z)'. By equation (2), we have that

w2 ()G

(mod p)

If we make the substitution j = nj’ and k = nk’, then j'+ k" = 1 (mod p), and indeed

-/ k'
v X ()0)
'k =1 p p
(mod p)

()G -GGG - G)6)
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and hence

J+k =1
(mod p)
foralln e {1,...,p—1}. Thus
ay = G = *++ = QAp_1. (5)
End of the Proof
Equations (3) and (5) are
a0+a1+---+ap,1:0 and ap = Gy = -+ = Ay

and combining these together gives

foreachn € {1, ...

that

for each n € {1,...

But

SO

and hence

Qo
p—1

Qp = —

,p— 1}. Substituting in the value of a; obtained in (4), we deduce

--(3)

,p — 1}. Thus equation (1) becomes

w0 = (T (-1 -w-wt o),

p
l4+w+w+ - +w™ = d,w) =0

wrw Pt = 1.

wr = (=)o

This completes the proof of the Gauss sum formula.
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Symmetry of Gauss Sums

The Gauss sum formula tells us that

ar? = (=)

for any primitive pth root of unity w. The following formula tells us how the sign of
gp(w) changes when we use different pth roots of unity.

Proposition 2 Symmetry of the Gauss Sum

Let p > 2 be a prime, let w be a primitive pth root of unity, and let

p

—1
(ﬁ)xk.
=1 \P

gp(T) =
Then for each n € {1,...,p— 1},

) = (2 )t

p

PROOF Observe that

p—1 p—1
k n nk
G -G E6)
=1 \P P73\ P
But as k runs over the set {1,...,p — 1}, the product m = nk also runs over the
elements of this set. Hence we can substitute m = nk to get

s = (EG) - (o .

m=1

gp(W") =

EXAMPLE 4 Consider the polynomial

gr(z) = v+ 2* + 2t —2® — 2° — 2

2mi )7

fw=e , then it is easy to check that

gr(w) = w4 w4t —wd —w — Wt = VT
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According to the formula above, it follows that

= (ot - ()

for any n € Z. For example,
gr(w?) = (@) + (@) 4+ (@) = (@) = (@) = ()"
= w4+ W+ w - W - W - W= gr(w) = VT
since 2 is a quadratic residue modulo 7, and
gr(w’) = (&%) + (@) 4+ (@) = ()" = (") = (")
= W + W+ W - W - w = W= —gr(w) = —iVT

since 3 is a quadratic non-residue modulo 7.



