
Gauss Sums

As we have seen, there is a close connection between Legendre symbols of the form(
−3

p

)
and cube roots of unity. Specifically, if ω is a primitive cube root of unity, then

ω − ω2 = ± i
√

3

and hence (
ω − ω2

)2
= −3

In fact, this last equation holds for any element ω of order 3 in any field F, and hence
−3 is a perfect square in any field that has elements of order 3.

There are similar considerations for other primes. For example, if ω is a primitive
5th root of unity, then

ω − ω2 − ω3 + ω4 = ±
√

5.

and hence (
ω − ω2 − ω3 + ω4

)2
= 5.

Again, it is possible to show that this last equation holds for any element ω of order 5
in any field F, and therefore 5 is a perfect square in any field that has elements of
order 5.

Gauss discovered a beautiful generalization of these formulas.

Theorem 1 Gauss Sum Formula

Let p > 2 be prime, and let ω be a primitive pth root of unity. Then

p−1∑
k=1

(
k

p

)
ωk =

{
±√p if p ≡ 1 (mod 4),

± i
√
p if p ≡ 3 (mod 4).
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The sum

gp(ω) =

p−1∑
k=1

(
k

p

)
ωk = ω +

(
2

p

)
ω2 +

(
3

p

)
ω3 + · · ·+

(
p− 1

p

)
ωp−1

is known as a Gauss sum. According to the theorem

gp(ω)2 =

{
p if p ≡ 1 (mod 4),

−p if p ≡ 3 (mod 4),

for any primitive pth root of unity ω. Equivalently, we can write this formula as

gp(ω)2 =

(
−1

p

)
p.

EXAMPLE 1 Gauss Sum for p = 7
It is easy to check that the quadratic residues modulo 7 are {1, 2, 4}, while {3, 5, 6}
are quadratic non-residues. Therefore, by the Gauss sum formula

ω + ω2 − ω3 + ω4 − ω5 − ω6 = ± i
√

7

for any primitive 7th root of unity ω.
It is not too hard to check that this is correct. Squaring the Gauss sum gives(

ω + ω2 − ω3 + ω4 − ω5 − ω6
)2

= ω2 + 2ω3 − ω4 + ω6 − 6ω7 + ω8 − ω10 + 2ω11 + ω12

and using the identity ω7 = 1 to reduce the powers of ω simplifies this to(
ω + ω2 − ω3 + ω4 − ω5 − ω6

)2
= −6 + ω + ω2 + ω3 + ω4 + ω5 + ω6.

But 1 + ω + ω2 + ω3 + ω4 + ω5 + ω6 = Φ7(ω) = 0, and hence(
ω + ω2 − ω3 + ω4 − ω5 − ω6

)2
= −7. �

EXAMPLE 2 Gauss Sum for p = 11
It is easy to check that the quadratic residues modulo 11 are {1, 3, 4, 5, 9}, while
{2, 6, 7, 8, 10} are quadratic non-residues. Therefore, by the Gauss sum formula

ω − ω2 + ω3 + ω4 + ω5 − ω6 − ω7 − ω8 + ω9 − ω10 = ± i
√

11

for any primitive 11th root of unity ω.
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Again, we can use simple algebra to show that this is correct. Squaring the Gauss
sum and applying the identity ω11 = 1 gives the formula(

ω − ω2 + ω3 + ω4 + ω5 − ω6 − ω7 − ω8 + ω9 − ω10
)2

= −10 + ω + ω2 + ω3 + ω4 + ω5 + ω6 + ω7 + ω8 + ω9 + ω10

But 1 + ω + ω2 + · · ·+ ω10 = Φ11(ω) = 0, and hence(
ω − ω2 + ω3 + ω4 + ω5 − ω6 − ω7 − ω8 + ω9 − ω10

)2
= −11. �

EXAMPLE 3 Gauss Sum for p = 13
It is easy to check that the quadratic residues modulo 13 are {1, 3, 4, 9, 10, 12}, while
{2, 5, 6, 7, 8, 11} are quadratic non-residues. Therefore, by the Gauss sum formula

ω − ω2 + ω3 + ω4 − ω5 − ω6 − ω7 − ω8 + ω9 + ω10 − ω11 + ω12 = ±
√

13

for any primitive 13th root of unity ω.
Since 13 ≡ 1 (mod 4), the algebra for checking this goes a little differently.

Squaring the Gauss sum and then reducing powers of ω modulo 13 gives(
ω − ω2 + ω3 + ω4 − ω5 − ω6 − ω7 − ω8 + ω9 + ω10 − ω11 + ω12

)2
= 12− ω − ω2 − ω3 − ω4 − ω5 − ω6 − ω7 − ω8 − ω9 − ω10 − ω11 − ω12.

But 1 + ω + ω2 + · · ·+ ω12 = Φ13(ω) = 0, and hence(
ω − ω2 + ω3 + ω4 − ω5 − ω6 − ω7 − ω8 + ω9 + ω10 − ω11 + ω12

)2
= 13. �

Of course, the Gauss sum formula gives two possible values of gp(ω) in each case, so
a natural question to ask is which of these two values gp(ω) is equal to. For example,
if p ≡ 1 (mod 4), is gp(ω) equal to

√
p or −√p. The answer is that it depends on

which primitive pth root of unity ω we choose. However, in the case where ω = e2πi/p,
Gauss was able to prove that

gp(ω) =

{√
p if p ≡ 1 (mod 4),

i
√
p if p ≡ 3 (mod 4).

For example, if ω = e2πi/7 then

ω + ω2 − ω3 + ω4 − ω5 − ω6 = i
√

7,

and if ω = e2πi/13 then

ω − ω2 + ω3 + ω4 − ω5 − ω6 − ω7 − ω8 + ω9 + ω10 − ω11 + ω12 =
√

13.

This result is actually much more difficult than the Gauss sum formula, and we will
not prove it here.
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Proof of the Gauss Sum Formula

Throughout this section, let p > 2 be a prime, and let ω be a primitive pth root of
unity. Let gp(x) be the Gauss polynomial

gp(x) =

p−1∑
k=1

(
k

p

)
xk.

Our goal is to prove that

gp(ω)2 =

(
−1

p

)
p.

Extension of the Legendre Symbol

For convenience, we will use the convention that(
a

p

)
= 0 if p | a.

Using this notation,

gp(x) =

p−1∑
k=0

(
k

p

)
xk,

where the sum starts at k = 0 instead of k = 1.

Squaring the Gauss Sum

Observe first that

gp(ω)2 =

p−1∑
j=0

p−1∑
k=0

(
j

p

)(
k

p

)
ωj+k.

Since ωp = 1, we can reduce each power of ω modulo p and then combine like terms.
This yields an equation of the form

gp(ω)2 = a0 + a1ω + a2ω
2 + · · ·+ ap−1ω

p−1 (1)

where

an =
∑

j+k≡n
(mod p)

(
j

p

)(
k

p

)
(2)

for each n ∈ Zp.
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Sum of the Coefficients

Note first that

gp(1) =

p−1∑
k=1

(
k

p

)
= 0

since Z×p has an equal number of quadratic residues and quadratic non-residues. It
follows that gp(1)2 = 0, so the sum of the coefficients in gp(x)2 is equal to 0. Therefore,

a0 + a1 + · · ·+ ap−1 = 0. (3)

Value of a0

It is not hard to determine the value of a0. By equation (2), we have

a0 =
∑

j+k≡ 0
(mod p)

(
j

p

)(
k

p

)
=

p−1∑
j=0

(
−j
p

)(
j

p

)
.

But (
−j
p

)(
j

p

)
=

(
−1

p

)(
j2

p

)
=


0 if j = 0,(
−1

p

)
otherwise.

and thus

a0 =

p−1∑
j=1

(
−1

p

)
=

(
−1

p

)
(p− 1). (4)

Equality of the Remaining Coefficients

Let n ∈ Z×p . By equation (2), we have that

an =
∑

j+k≡n
(mod p)

(
j

p

)(
k

p

)
.

If we make the substitution j = nj′ and k = nk′, then j′+k′ ≡ 1 (mod p), and indeed

an =
∑

j′+k′≡ 1
(mod p)

(
nj′

p

)(
nk′

p

)
.

But (
nj′

p

)(
nk′

p

)
=

(
n2

p

)(
j′

p

)(
k′

p

)
=

(
j′

p

)(
k′

p

)
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and hence

an =
∑

j′+k′≡ 1
(mod p)

(
j′

p

)(
k′

p

)
= a1

for all n ∈ {1, . . . , p− 1}. Thus

a1 = a2 = · · · = ap−1. (5)

End of the Proof

Equations (3) and (5) are

a0 + a1 + · · ·+ ap−1 = 0 and a1 = a2 = · · · = ap−1

and combining these together gives

an = − a0
p− 1

for each n ∈ {1, . . . , p−1}. Substituting in the value of a1 obtained in (4), we deduce
that

an = −
(
−1

p

)
for each n ∈ {1, . . . , p− 1}. Thus equation (1) becomes

gp(ω)2 =

(
−1

p

)(
(p− 1)− ω − ω2 − · · · − ωp−1

)
.

But
1 + ω + ω2 + · · ·+ ωp−1 = Φp(ω) = 0

so
ω + ω2 + · · ·+ ωp−1 = −1.

and hence

gp(ω)2 =

(
−1

p

)
p.

This completes the proof of the Gauss sum formula.
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Symmetry of Gauss Sums

The Gauss sum formula tells us that

gp(ω)2 =

(
−1

p

)
for any primitive pth root of unity ω. The following formula tells us how the sign of
gp(ω) changes when we use different pth roots of unity.

Proposition 2 Symmetry of the Gauss Sum

Let p > 2 be a prime, let ω be a primitive pth root of unity, and let

gp(x) =

p−1∑
k=1

(
k

p

)
xk.

Then for each n ∈ {1, . . . , p− 1},

gp(ω
n) =

(
n

p

)
gp(ω).

PROOF Observe that

gp(ω
n) =

p−1∑
k=1

(
k

p

)
xnk =

(
n

p

) p−1∑
k=1

(
nk

p

)
xnk.

But as k runs over the set {1, . . . , p − 1}, the product m = nk also runs over the
elements of this set. Hence we can substitute m = nk to get

gp(ω
n) =

(
n

p

) p−1∑
m=1

(
m

p

)
xm =

(
n

p

)
gp(ω). �

EXAMPLE 4 Consider the polynomial

g7(x) = x + x2 + x4 − x3 − x5 − x6.

If ω = e2πi/7, then it is easy to check that

g7(ω) = ω + ω2 + ω4 − ω3 − ω5 − ω6 = i
√

7.
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According to the formula above, it follows that

g7
(
ωn
)

=

(
n

p

)
g7(ω) =

(
n

p

)
i
√

7

for any n ∈ Z×p . For example,

g7
(
ω2
)

=
(
ω2
)

+
(
ω2
)2

+
(
ω2
)4 − (ω2

)3 − (ω2
)5 − (ω2

)6
= ω2 + ω4 + ω − ω6 − ω3 − ω5 = g7(ω) = i

√
7

since 2 is a quadratic residue modulo 7, and

g7
(
ω3
)

=
(
ω3
)

+
(
ω3
)2

+
(
ω3
)4 − (ω3

)3 − (ω3
)5 − (ω3

)6
= ω3 + ω6 + ω5 − ω2 − ω − ω4 = −g7(ω) = −i

√
7

since 3 is a quadratic non-residue modulo 7. �


