
Minimal Polynomials

In these notes we continue to develop the theory of finite fields. Our main goal in
this theory is to prove the following classification theorem.

Theorem Classification of Finite Fields

1. If F is a finite field of characteristic p, then |F| is a power of p.

2. For every prime p and every d ≥ 1, there exists a finite field with pd elements.

3. Any two finite fields with the same number of elements are isomorphic.

Here isomorphic means that two fields have the same algebraic structure. That
is, fields F1 and F2 are isomorphic if there exists a bijection ψ : F1 → F2 satisfying

ψ(a+ b) = ψ(a) + ψ(b) and ψ(ab) = ψ(a)ψ(b)

for all a, b ∈ F1.

EXAMPLE 1 The field R[x]
/(
x2 + 1

)
is isomorphic to the complex numbers, with

the isomorphism
ψ : R[x]

/(
x2 + 1

)
→ C

being the function ψ(a+ bx) = a+ bi. �

EXAMPLE 2 Though it is not obvious, the fields

F1 = Z2[x]
/ (
x3 + x+ 1

)
and F2 = Z2[y]

/ (
y3 + y2 + 1

)
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are isomorphic via the isomorphism ψ : F1 → F2 defined as follows:

ψ(0) = 0 ψ(x) = y + 1 ψ
(
x2
)

= y2 + 1 ψ
(
x2 + x

)
= y2 + y

ψ(1) = 1 ψ(x+ 1) = y ψ
(
x2 + 1

)
= y2 ψ

(
x2 + x+ 1

)
= y2 + y + 1

This bijection ψ preserves all of the arithmetic operations. For example,

ψ
(
x2
)

+ ψ(x) =
(
y2 + 1

)
+ (y + 1) = y2 + y = ψ

(
x2 + x

)
and

ψ(x)ψ(x+ 1) = (y + 1)(y) = y2 + y = ψ
(
x2 + x

)
= ψ

(
x(x+ 1)

)
. �

Minimal Polynomials

We begin by associating a polynomial to each element of a finite field. Our definition
here is a little bit different than the one we used in class, but it is equivalent and we
will end up with all the same theorems.

Definition: Minimal Polynomial
Let F be a finite field of characteristic p, and let a ∈ F. A minimial polynomial
for a is an irreducible polynomial m(x) ∈ Zp[x] such that m(a) = 0.

Recall that irreducible polynomials are required to be monic, and therefore a
minimal polynomial m(x) for an element a is always a monic polynomial.

EXAMPLE 3 Consider the field Z3[i], which has characteristic 3. The minimal
polynomials in Z3[x] for the elements 0, 1,−1 ∈ Z3[i] are respectively

x, x− 1, and x+ 1,

and these are the only elements of Z3[i] whose minimal polynomials are linear.
The minimal polynomial for i is

m(x) = x2 + 1,

which is irreducible in Z3[x]. This is also the minimal polynomial for −i, and indeed
x2 + 1 factors into (x− i)(x+ i) over Z3[i].

Finally, the minimal polynomial for both 1 + i and 1− i is

m(x) = (x− 1)2 + 1 = x2 + x− 1

and the minimal polynomial for both −1 + i and −1− i is

m(x) = (x+ 1)2 + 1 = x2 − x− 1. �
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EXAMPLE 4 Let p be a prime, let m(x) ∈ Zp[x] be an irreducible polynomial, and
let F be the field

F = Zp[x]/
(
m(x)

)
.

Let a denote the residue class of x modulo m(x), i.e. the element of F corresponding
to x. Then m(a) = 0 in F, so m is the minimal polynomial for a. �

Proposition 1 Polynomials with a as a Root

Let F be a finite field of characteristic p, let a ∈ F, and let m(x) ∈ Zp[x] be a
minimal polynomial for a. Then for all f(x) ∈ Zp[x],

f(a) = 0 if and only if m(x) | f(x).

PROOF Let f(x) ∈ Zp[x]. If m(x) | f(x), then since m(a) = 0 it follows that
f(a) = 0. For the converse, suppose that f(a) = 0, and suppose to the contrary that
m(x) 6 | f(x). Since m(x) is irreducible, it follows that m(x) and f(x) are relatively
prime, so by Bézout’s lemma there exist polynomials b(x), c(x) ∈ Zp[x] such that

b(x) f(x) + c(x)m(x) = 1.

But since f(a) = m(a) = 0, substituting a for x gives the equation 0 = 1, a contra-
diction. We conclude that m(x) | f(x) whenever f(a) = 0. �

For example, according to this proposition, the element i ∈ Z3[i] is a root of a
polynomial f(x) ∈ Z3[x] if and only if x2 + 1 divides f(x).

It follows from this proposition that the minimal polynomial m(x) for a must
be a polynomial of the smallest possible degree that has a as a root. This was the
definition of the minimal polynomial given in class.

Corollary 2 Congruence Modulo m(x)

Let F be a finite field of characteristic p, let a ∈ F, and let m(x) ∈ Zp[x] be the
minimal polynomial for a. Then for all f(x), g(x) ∈ Zp[x],

f(a) = g(a) if and only if f(x) ≡ g(x)
(
mod m(x)

)
.

PROOF Let h(x) = f(x) − g(x). Then f(a) = g(a) if and only if h(a) = 0.
By Proposition 1, this occurs if and only if m(x) divides h(x), i.e. if and only if
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f(x) ≡ g(x)
(
mod h(x)

)
. �

For example, if f(x) and g(x) are polynomials over Z3, then

f(i) = g(i) if and only if f(x) ≡ g(x)
(
mod x2 + 1

)
.

Proposition 3 Existence and Uniqueness of Minimal Polynomials

Let F be a finite field of characteristic p, and let a ∈ F. Then a has a unique
minimal polynomial in Zp[x].

PROOF Let n = |F|. By Fermat’s little theorem for fields, we know that an = a, and
hence a is a root of the polynomial xn−x. Then a must be a root of some irreducible
factor of xn − x, and therefore a has at least one minimal polynomial m(x).

For uniqueness, suppose that m1(x) and m2(x) are minimal polynomials for a.
Then by Proposition 1 we know that m1(x) | m2(x) and m2(x) | m1(x), and since
m1(x) and m2(x) are monic it follows that m1(x) = m2(x). �

Generators for Fields

There is a notion of a generator for a field. This is similar to, but distinct from, the
notion of a primitive element.

Definition: Generator for a Field
Let F be a finite field of characteristic p. An element a ∈ F is called a generator
for F if the set

{f(a) | f(x) ∈ Zp[x]}

is equal to F.

That is, a is a generator for F if every element of F can be written as a polynomial
involving a.

EXAMPLE 5 Generators for Z3[i]
The element i is a generator for Z3[i], since each element of Z3[i] can be written as
a linear polynomial a+ bi involving i The element 1 + i is also a generator for Z3[i],
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since
a+ bi = b(i+ 1) + (a− b)

for any element a+ bi ∈ Z3[i].
However, 1 is not a generator for Z3[i], since f(1) ∈ {0, 1, 2} for any polynomial

f(x) ∈ Z3[x]. Indeed, none of the elements 0, 1, 2 of the prime subfield is a generator
for Z3[i], but it is possible to show that each of the remaining six elements is a
generator for Z3[i]. �

Proposition 4 Primitive Elements Generate

Every finite field F has at least one generator. In particular, any primitive
element of F× is a generator for F.

PROOF Let F be a finite field, and let a ∈ F× be a primitive element. Then every
nonzero element of F is a power of a, and can hence be written as f(a) for some
polynomial f(x) = xk. Finally, the element 0 ∈ F can be written as z(a), where z(x)
is the zero polynomial. �

We now prove that the structure of a finite field can be determined from the
minimal polynomial for any generator.

Theorem 5 Structure of Finite Fields

Let F be a finite field of characteristic p, and let a be a generator for F. Then
F is isomorphic to the field

Zp[x]
/(
m(x)

)
where m(x) is the minimal polynomial for a.

PROOF Let ψ : Zp[x]
/ (
m(x)

)
→ F be the function

ψ
(
f(x)

)
= f(a).

That is, ψ maps the residue class of each polynomial f(x) to the element f(a) ∈ F.
From Corollary 2, we know that

f(x) ≡ g(x)
(
mod m(x)

)
if and only if f(a) = g(a)
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for all f(x), g(x) ∈ Zp[x], and thus ψ is both well-defined and one-to-one. Moreover,
since a is a generator for F, the image of ψ is all of F, and therefore ψ is a bijection.
Finally, we have

ψ
(
f(x) + g(x)

)
= f(a) + g(a) = ψ

(
f(x)

)
+ ψ

(
g(x)

)
and

ψ
(
f(x) g(x)

)
= f(a) g(a) = ψ

(
f(x)

)
ψ
(
g(x)

)
for all f(x) and g(x), which proves that ψ is an isomorphism. �

EXAMPLE 6 Structure of Z3[i]
As we have seen, the minimal polynomial for the element i ∈ Z3[i] is

m(x) = x2 + 1.

Since i is a generator for Z3[i], it follows that Z3[i] is isomorphic to Z3[x]
/(
x2 + 1

)
.

Similarly, recall that 1 + i is also a generator for Z3[i]. The minimal polynomial
for 1 + i is

m(x) = (x− 1)2 + 1 = x2 + x− 1,

so it follows that Z3[i] is also isomorphic to Z3[x]
/(
x2 + x− 1

)
�

As a consequence of Theorem 5, we now know the possible sizes of a finite field.

Corollary 6 Sizes of Finite Fields

If F is a finite field of characteristic p, then |F| is a power of p.

PROOF Let a be a generator for F. By Theorem 5, the field F is isomorphic to

Zp[x]
/(
m(x)

)
where m(x) is the minimal polynomial for a. Then F has pd elements, where d is the
degree of m(x). �

More About Generators

We would like to prove a few more facts about generators, which will be useful later.
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Definition: Degree of an Element
Let F be a finite field. The degree of an element a ∈ F is the degree of the minimal
polynomial for a.

For example, an element of F has degree 1 if and only if it lies in the prime subfield
of F. We can use degree to give a nice characterization of the generators of F.

Proposition 7 Degrees of the Generators

Let F be a finite field with pd elements, where p is prime and d ≥ 1. Then the
generators for F are precisely the elements of F that have degree d.

PROOF Let a ∈ F, let m(x) ∈ Zp[x] be the minimal polynomial for a, and consider
the set

{f(a) | f(x) ∈ Zp[x]}.

By Corollary 2, the elements of this set are in one-to-one correspondence with the
elements of Zp[x]

/(
m(x)

)
. In particular, this set has precisely pk elements, where k

is the degree of m(x). Then this set is equal to all of F if and only if k = d. �

For example, this proposition proves our previous assertion that each of the six
elements of Z3[i] of degree 2 is a generator for Z3[i].

Next we would like to investigate the action of the Frobenius automorphism on
the generators.

Proposition 8 Periods of the Generators

Let F be a field with pd elements, where p is prime and d ≥ 1. Let a be a
generator for F, and let ϕ : F → F be the Frobenius automorphism. Then for
all n ∈ N,

ϕn(a) = a if and only if d | n.

PROOF It suffices to prove that ϕd(a) = a and that ϕk(a) 6= a for 1 ≤ k < d. The
first statement follows from Fermat’s little theorem for fields, since

ϕd(a) = ap
d

= a.
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To prove the second statement, suppose to the contrary that ϕk(a) = a for some k < d.
Then for any polynomial f(x) ∈ Zp[x], we have

ϕk
(
f(a)

)
= f

(
ϕk(a)

)
= f(a).

Since a is a generator for F, we conclude that ϕk(b) = b for all b ∈ F. But this is
impossible, since xp

k − x has at most pk different roots in F. �

Incidentally, it is possible to prove that for any element a of a finite field, the
degree of a is equal to the smallest positive number k for which ϕk(a) = a, but we
will not need this more general version.
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