
Number Theory for Polynomials

In these notes we develop the basic theory of polynomials over a field. We will use

this theory to construct finite fields.

Definition: Polynomials Over a Field

Let F be a field. A polynomial over F is a formal sum

f(x) =
n∑

k=0

akx
k = anx

n + an−1x
n−1 + · · ·+ a1x + a0

where a0, a1, . . . , an ∈ F, and x is an indeterminate. We will let F[x] denote the set

of all polynomials over F.

Note that a polynomial is defined to be a formal sum, not a function. For

example, the polynomial

f(x) = x7 − x

over Z7 has the property that f(a) = 0 for all a ∈ Z7, but this does not mean that f

is equal to zero polynomial. In general, two polynomials are only considered equal if

they have the same coefficients.

The degree of a polynomial f , denoted deg(f), is the largest power of x whose

coefficient in f(x) is nonzero. Thus, if

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

and an 6= 0, then f has degree n. In this case, anx
n is called the leading term

of f(x), and an is the leading coefficient. A polynomial is monic if its leading

coefficient is equal to one.

We can add and multiply polynomials in the usual fashion. Addition of polynomi-

als in associative, commutative, has an identity (the zero polynomial), and inverses,
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and multiplication of polynomials is associative, commutative, has an identity ele-

ment (the constant polynomial 1), and distributes over addition. Thus the set F[x]

of all polynomials over F forms a commutative ring, known as the polynomial ring

over F.

Finally, it is possible to divide one polynomial by another. The result is both a

quotient and a remainder, as with division of integers.

Theorem 1 Polynomial Division

Let F be a field, and let f, g ∈ F[x], with g 6= 0. Then there exist a unique pair

of polynomials q, r ∈ F[x] with deg(r) < deg(g) so that

f(x) = q(x) g(x) + r(x)

PROOF To prove existence, we proceed by induction on deg(f). The base case is

that deg(f) < deg(g), in which case q(x) = 0 and r(x) = f(x) suffices. Now suppose

that deg(f) ≥ deg(g), say

f(x) = amx
m + am−1x

m−1 + · · ·+ a0 and g(x) = bnx
n + bn−1x

n−1 + · · ·+ b0

where am 6= 0, bn 6= 0, and m ≥ n. Let

h(x) = f(x)− amb
−1
n xm−ng(x).

Note that the leading terms cancel in the subtraction, so deg(h) < deg(f). By our

induction hypothesis there exist q, r ∈ F[x] with deg(r) < deg(g) such that

h(x) = q(x) g(x) + r(x).

Then

f(x) = amb
−1
n xm−ng(x) + h(x) =

(
amb

−1
n xm−n + q(x)

)
g(x) + r(x)

which proves existence.

For uniqueness, suppose that

q1(x) g(x) + r1(x) = q2(x) g(x) + r2(x)

for some q1, q2, r1, r2 ∈ F[x] with deg(r1) < deg(g) and deg(r2) < deg(g). Rearranging

gives (
q1(x)− q2(x)

)
g(x) = r2(x)− r1(x).

The right side has smaller degree than g, so it must be the case that q1(x) = q2(x),

and it follows easily that r1(x) = r2(x). �
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The polynomial q(x) is called the quotient of f(x) divided by g(x), and r(x) is

the remainder. Note that if f(x) and g(x) are monic polynomials then the quotient

q(x) must be as well, though r(x) need not be.

Number Theory with Polynomials

Because polynomial division is so similar to integer division, many of the basic defi-

nitions and theorems of elementary number theory work for polynomials. We begin

with the following definition.

Definition: Divisibility

Let F be a field, and let f, g ∈ F[x]. We say that f divides g, denoted

f(x) | g(x)

if there exists an q ∈ F [x] so that g(x) = f(x) q(x).

A few notes about this definition:

1. This definition obeys all of the familiar rules for divisibility. For example,

f(x) | g(x) and f(x) | h(x) ⇒ f(x) | g(x) + h(x)

for any f, g, h ∈ F[x]. Similarly,

f(x) | g(x) and g(x) | h(x) ⇒ f(x) | h(x).

2. Any nonzero constant c ∈ F× divides every polynomial, since

f(x) = c
(
c−1f(x)

)
.

Thus nonzero constants play the same role for polynomials that 1 and −1 play

in the integers.

In the same way that it often makes sense to restrict to positive integers when dis-

cussing divisibility of integers, it often makes sense to restrict to monic polynomials

when discussing divisibility of polynomials.

Definition: Greatest Common Divisor

Let F be a field, and let f(x), g(x) ∈ F[x], not both zero. A greatest common

divisor of f(x) and g(x) is a monic polynomial d(x) ∈ F[x] of maximum degree

that divides both f(x) and g(x).
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We can use the Euclidean algorithm to compute the greatest common divisor of

two polynomials, just as though they were integers, and this lets us prove the following

theorem.

Theorem 2 Bézout’s Lemma

Let F be a field, and let f(x) and g(x) be polynomials over F, not both zero.

Then f(x) and g(x) have a unique greatest common divisor d(x), and there exist

polynomials a(x) and b(x) over F so that

a(x) f(x) + b(x) g(x) = d(x).

PROOF Suppose without loss of generality that deg(g) ≤ deg(f). We proceed by

induction on deg(g). The base case is that g is the zero polynomial, in which case the

only greatest common divisor is d(x) = a−1
n f(x), where an is the leading coefficient

of f , and

a−1
n f(x) + 0 g(x) = d(x).

Now suppose that g 6= 0. Then there exist q(x), r(x) ∈ F[x] with deg(r) < deg(g) so

that

f(x) = q(x) g(x) + r(x).

Note that any common divisor of f(x) and g(x) is also a common divisor of g(x)

and r(x), and vice-versa. By our induction hyopothesis, g(x) and r(x) have a unique

greatest common divisor d(x), so this is the unique greatest common divisor of f(x)

and g(x) as well. Moreover, by our induction hypothesis there exist polynomials a(x)

and b(x) so that

a(x) g(x) + b(x) r(x) = d(x).

Since r(x) = f(x)− q(x) g(x), it follows that

b(x) f(x) +
(
a(x)− b(x) q(x)

)
g(x) = d(x). �

This lets us prove the analog of prime factorization for polynomials. We begin by

introducing the analog of prime numbers.

Definition: Irreducible Polynomial

Let F be a field, and let f(x) be a monic polynomial over F with deg(f) ≥ 1. We

say that f(x) is irreducible if the only monic divisors of f(x) are 1 and f(x).



5

EXAMPLE 1 Irreducible Polynomials over C and R
The only irreducible polynomials over C are the monic linear polynomials

{x− a | a ∈ C}.

By the fundamental theorem of algebra, every monic polynomial over C can be ex-

pressed as a product of these irreducible polynomials.

Over R, every monic linear polynomial is irreducible, as are quadratic polynomials

like x2 + 1. Indeed, any quadratic polynomial of the form x2 + bx + c for which

b2 − 4c < 0 is irreducible over R. It is not hard to show that these are the only

irreducible polynomials over R. For if f(x) is any polynomial over R, then either

f has a real root, in which case it has a linear factor, or it has at least one pair of

complex conjugate roots a± bi, in which case(
x− (a + bi)

)(
x− (a− bi)

)
= x2 − 2ax + (a2 + b2)

is a factor of f(x). �

EXAMPLE 2 Irreducible Polynomials Over Z2

There are two linear polynomials over Z2 (namely x and x + 1), both of which are

irreducible. There are four quadratic polynomials:

x2, x2 + x, x2 + 1, x2 + x + 1.

However,

x2 = (x)(x), x2 + x = x(x + 1), and x2 + 1 = (x + 1)(x + 1)

so the only irreducible quadratic polynomial over Z2 is x2 + x + 1.

There are also eight cubic polynomials over Z2, of which six can be factored:

x3, x2(x + 1), x(x + 1)2, (x + 1)3, x(x2 + x + 1), (x + 1)(x2 + x + 1).

The remaining two are irreducible:

x3 + x + 1 and x3 + x2 + 1.

This process continues, and indeed there are irreducible polynomials of every degree

over Z2. This is not easy to prove, but it is easy to prove that there are infinitely

many irreducible polynomials. In particular, if p1(x), . . . , pn(x) are irreducible, then

p1(x) · · · pn(x)+1 is not divisible by any pi(x), so it must be divisible by an irreducible

polynomial not on this list. �
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EXAMPLE 3 Irreducible Quadratics Over Zp

If p is prime, then a quadratic of the form x2 − a is irreducible over Zp if and only if

a is a quadratic non-residue modulo p. More generally, every quadratic polynomial

over Zp can be written as (x + b)2 − a for some a, b ∈ Zp, and such a polynomial is

irreducible if and only if a is a quadratic non-residue. Thus there are exactly

p(p− 1)

2

irreducible quadratic polynomials over Zp, since there are p choices for b and (p−1)/2

choices for a. �

Lemma 3 Euclid’s Lemma for Polynomials

Let F be a field, let p(x) be an irreducible polynomial over F, and let f, g ∈ F[x].

If p(x) | f(x) g(x), then either p(x) | f(x) or p(x) | g(x).

PROOF Suppose that p(x) | f(x) g(x) but p(x) 6 | f(x). Then the greatest common

divisor of p(x) and f(x) must be 1, so by Bézout’s lemma there exist polynomials

a(x) and b(x) over F so that

a(x) p(x) + b(x) f(x) = 1.

Multiplying through by g(x) gives

a(x) g(x) p(x) + b(x) f(x) g(x) = g(x).

Then p(x) divides the left side since p(x) | f(x) g(x), and hence p(x) | g(x). �

Irreducible factorization of polynomials follows immediately.

Theorem 4 Irreducible Factorization of Polynomials

Let F be a field, and let f(x) be a monic polynomial over F. Then there exist

irreducible polynomials q1(x), . . . , qn(x) such that

f(x) = q1(x) q2(x) · · · qn(x).

Moreover, q1(x), . . . , qn(x) are unique up to reordering of the factors.
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For example, it follows from this theorem that every polynomial over R can be

factored into irreducible linear and quadratic factors, and this factorization is unique

up to reordering of the factors.

Modular Arithmetic

We can define modular arithmetic for polynomials in much the same way as we do

for numbers.

Definition: Congruence Modulo m(x)

Let F be a field, let f(x), g(x) ∈ F[x], and let m(x) be a monic polynomial over F.

We say that f(x) and g(x) are congruent modulo m(x), denoted

f(x) ≡ g(x)
(
mod m(x)

)
,

if m(x) divides the difference f(x)− g(x).

It is easy to prove that congruence modulo m(x) is an equivalence relation on F[x].

There is a simple way of describing the congruence classes modulo m(x).

Proposition 5 Congruence Classes Modulo m(x)

Let F be a field, and let m(x) be a monic polynomial over F. Then for every

f(x) ∈ F[x], there exists a unique r(x) ∈ F[x] such that deg(r) < deg(m) and

f(x) ≡ r(x)
(
mod m(x)

)
.

PROOF Let f(x) ∈ F[x]. Since m 6= 0, there exist polynomials q(x) and r(x) over F
with deg(r) < deg(m) so that

f(x) = q(x)m(x) + r(x)

Then f(x) ≡ r(x)
(
mod m(x)

)
, as desired.

To prove uniqueness, suppose that r1(x) and r2(x) are polynomials over F with

deg(r1) < deg(m) and deg(r2) < deg(m) such that

f(x) ≡ r1(x)
(
mod m(x)

)
and f(x) ≡ r2(x)

(
mod m(x)

)
.
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Then r1(x) ≡ r2(x)
(
mod m(x)

)
, so m(x) divides r1(x)− r2(x). But r1(x)− r2(x) has

smaller degree than m(x), so r1(x)−r2(x) must be zero, and hence r1(x) = r2(x). �

If F is a field and m(x) is a monic polynomial over F, we let F[x]/
(
m(x)

)
denote

the set of all congruence classes of polynomials modulo m(x). Then F[x]/
(
m(x)

)
forms a ring under the operations of addition and multiplication modulo m(x).

EXAMPLE 4 Real Polynomials Modulo x2 + 1

Consider the ring R[x]/
(
x2 + 1

)
. By Proposition 5, for every polynomial f(x) over R

there exist a, b ∈ R so that

f(x) ≡ a + bx
(
mod x2 + 1

)
.

That is, the elements of R[x]/
(
x2 +1

)
are precisely the polynomials of the form a+bx

for a, b ∈ R. But observe that

x2 ≡ −1
(
mod x2 + 1

)
.

It follows that R[x]/
(
x2 + 1

)
is isomorphic to the ring C of complex numbers. �

Corollary 6 Number of Congruence Classes

Let p be a prime number, and let m(x) be a monic polynomial in Zp[x] of degree n.

Then the ring Zp[x]/
(
m(x)

)
has exactly pn elements.

PROOF If r(x) is a polynomial over m(x) of degree less than n, then r(x) can be

written

r(x) = an−1x
n−1 + · · ·+ a1x + a0,

where a0, . . . , an−1 ∈ Zp. There are p choices for each of a0, . . . , an−1, and thus there

are exactly pn such polynomials. �

EXAMPLE 5 The Field with Four Elements

Consider the ring Z2[x]/
(
x2+x+1

)
. Since x2+x+1 has degree 2, this ring has exactly

22 = 4 elements, namely 0, 1, x, and x + 1. But note that 1 is its own multiplicative

inverse, and

x(x + 1) = x2 + x ≡ 1
(
mod x2 + x + 1

)
,
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so x and x+ 1 are multiplicative inverses. Thus Z2[x]/
(
x2 +x+ 1

)
is a field with four

elements. �

The following theorem lets us construct finite fields using polynomials.

Theorem 7 Constructing Finite Fields

Let F be a field, and let m(x) be an irreducible polynomial over F[x]. Then

F[x]/
(
m(x)

)
is a field.

PROOF We must show that every element of F[x]/
(
m(x)

)
has a multiplicative

inverse modulo m(x). So let r(x) be a nonzero polynomial over F, and suppose that

deg(r) < deg(m). Since m(x) is irreducible, then greatest common divisor of r(x)

and m(x) must be 1. By Bézout’s lemma, there exist polynomials a(x) and b(x) so

that

a(x) r(x) + b(x)m(x) = 1.

Then

a(x) r(x) ≡ 1
(
mod m(x)

)
,

so a(x) is a multiplicative inverse for r(x) in F[x]/
(
m(x)

)
. �

In particular, if p is prime and m(x) is an irreducible polynomial over Zp of

degree n, then Zp[x]/
(
m(x)

)
is a field with pn elements.

EXAMPLE 6 The Field with Eight Elements

Recall that the polynomial x3 + x+ 1 is irreducible over Z2. Then Z2[x]/
(
x3 + x+ 1

)
should be a field with 23 = 8 elements. Specifically, the elements of Z2[x]/

(
x3 +x+1

)
are

0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1,

and it is easy to check that

x
(
x2 + 1

)
≡ 1, x2

(
x2 + x + 1

)
≡ 1, and (x + 1)(x2 + x) ≡ 1

modulo x3 + x + 1. �
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EXAMPLE 7 The Field with p2 Elements

Let p be an odd prime, and let a be a quadratic non-residue modulo p. Then x2 − a

is an irreducible polynomial over Zp, so Zp[x]/
(
x2 − a

)
is a field with p2 elements,

namely

{b + cx | b, c ∈ Zp}.

Note that

x2 ≡ a
(
mod x2 − a

)
so x is a square root of a. Thus Zp[x]/

(
x2 − a

)
can be thought of as a field obtained

from Zp by adjoining a square root of a, with elements of the form{
b + c

√
a
∣∣ b, c ∈ Zp

}
. �


