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Abstract. We compute the iterated monodromy group for a postcritically
finite endomorphism F of P2. The postcritical set is the union of six lines, and
the wreath recursion for the group closely reflects the dynamics of F on these
lines.

Introduction

In [BN], L. Bartholdi and V. Nekrashevych solved the twisted rabbit problem
with iterated monodromy groups. Their work has brought new tools to bear in
the fields of dynamics and algebra. In [N2], V. Nekrashevych uses a more general
notion of iterated monodromy group to obtain combinatorial models for Julia sets
of certain maps of several complex variables. Other than this, little has been
done with iterated monodromy groups in dimensions greater than one. Here we
compute the iterated monodromy group for a postcritically finite endomorphism
F : P2 → P2. The ideas used in this computation could generalize to calculate the
iterated monodromy groups for other maps Pn → Pn.

Let F : C2 → C2 be the following rational function:

F (x, y) =

(

1 −
y2

x2
, 1 −

1

x2

)

.

Then F extends to a holomorphic endomorphism of the complex projective plane P2,
i.e. an everywhere-defined holomorphic map P2 → P2. In homogeneous coordinates,
this endomorphism is given by F (x : y : z) = (x2 − y2 : x2 − z2 : x2).

Topologically, the map F is a branched cover of degree four, with fibers of the
form {(x, y), (−x, y), (x,−y), (−x,−y)}. The critical locus of F is the union of the
complex lines x = 0 and y = 0 in C2, as well as the line at infinity L∞ := P2 \ C2,
and F restricts to a covering map on the complement of these lines.

The postcritical locus of F is the forward orbit of the critical locus. A map is
called postcritically finite if the postcritical locus is an algebraic set, i.e. the union
of finitely many algebraic varieties. (Postcritically finite endomorphisms were first
studied by Fornæss and Sibony in [FS].) Our map F is postcritically finite, and
the postcritical locus is the union of six lines:

∆ = {x = 0} ∪ {y = 0} ∪ L∞ ∪ {x = 1} ∪ {y = 1} ∪ {y = x}.
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The map F permutes these lines as follows:

x = 0 !! L∞

""
y = x

##

y = 1$$

y = 0

%%
x = 1

&&

Any postcritically finite endomorphism restricts to a partially-defined covering map
on the complement of the postcritical locus. That is, F restricts to a covering map
F : X1 → X , where X = P2 \ ∆ and X1 ⊂ X . This partial self-cover has an
associated iterated monodromy group, which describes the topology of the cover
and can be used to create combinatorial models of the associated Julia set.

Here is our main result:

Theorem. The iterated monodromy group for the map F can be defined by the
following wreath recursion:

a = 〈b, 1, 1, b〉
b = 〈c, c, 1, 1〉
c = 〈d, dy , dx, 1〉 (1 4)(2 3)

d = 〈1, a, 1, a〉 (1 2)(3 4)

e = 〈f, 1, f, 1〉

f = 〈b−1, 1, be, e〉 (1 3)(2 4)

where dx = (af)−1 and dy = (bec)−1.

In section 1 we give the necessary background on tree automorphisms, wreath
recursions, and iterated monodromy groups, and section 2 is devoted to a proof of
this theorem.

The map F is very special; it arises naturally as a map on a certain moduli
space, and there is a certain amount of Teichmüller theory underlying the construc-
tion. This provides a link between the dynamics of this map F : P2 → P2, and
the dynamics of a particular holomorphic map, the Thurston pullback map, on an
appropriate Teichmüller space (see [DH]). The thesis [K] contains the details of
this calculation.

Ordinarily, complex dynamics in several variables is quite difficult; few of the
techniques from one variable dynamics carry over to higher dimensions. As demon-
strated in [N1], the techniques of iterated monodromy groups can be used to obtain
combinatorial models for Julia sets; understanding the structure of the Julia set is
a key part of understanding the dynamics.

1. Background

1.1. Tree Automorphisms. Let Td be the tree of all finite d-ary sequences.
For example, the tree T2 of finite binary sequences is shown in figure 1. The vertices
of Td are finite sequences of digits {1, . . . , d}, and the edges are pairs of the form
{ω, kω}, where ω is a finite d-ary sequence and k ∈ {1, . . . , d}.

An automorphism of Td is a bijection of the vertices that maps edges to edges.
By convention, automorphisms of Td will act on the right. That is, ω ·α will denote
the automorphism α applied to the d-ary sequence ω. Similarly, the composition
αβ of two automorphisms will denote α followed by β, that is ω · (αβ) = (ω ·α) · β.
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Figure 1. The infinite binary tree T2.

There are two basic kinds of automorphisms of Td:

(1) If σ is a permutation of the set {1, . . . , d} (acting on the right), then σ
can be extended to an automorphism of Td by the rule

(ωk) · σ = ω(k · σ).

That is, σ simply permutes the first-level subtrees of Td.
(2) If α1, . . . , αd are automorphisms of Td, we can define an automorphism

〈α1 . . . αd〉 of Td by the rule

(ωk) · 〈α1 . . . αd〉 = (ω · αk)k

That is, 〈α1 . . . αd〉 acts trivially on the first-level vertices of Td, and re-
stricts to the automorphisms α1, . . . , αd on the first-level subtrees.

Any automorphism α of Td can be written uniquely as a product

α = 〈α1, . . . , αd〉σ
where α1, . . . , αd are automorphisms of Td and σ is a permutation of {1, . . . , d}.

The discussion above amounts to a structure theorem for the automorphism
group Aut(Td). Specifically, Aut(Td) can be written as a semidirect product

Aut(Td) ∼= Aut(Td)
d

! Σd

where Σd denotes the permutation group on the set {1, . . . , d}, and Σd acts on
Aut(Td)d by permutation of factors:

〈α1, . . . , αd〉σ 〈β1, . . . , βd〉 τ = 〈α1β1·σ, . . . , αdβd·σ〉στ.
A semidirect product of the form Gn !Σn with Σn acting by permutation of factors
is known as a wreath product, and is usually denoted G )Σn. The results above are
summarized by the following theorem which can be found in [N1]:

Theorem 1.1. Let Td be the infinite d-ary tree, and let Σd denote the permu-
tation group on the set {1, . . . , d}. Then:

Aut(Td) ∼= Aut(Td) ) Σd.

That is, Aut(Td) is isomorphic to the infinite wreath product ((· · · ) Σd) ) Σd) ) Σd.

We can use this description of Aut(Td) to define automorphisms recursively.
For example, consider the following equation:

α = 〈1, α〉 (1 2)
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This equation describes an automorphism α ∈ Aut(T2) with the following proper-
ties:

(1) The automorphism α swaps the first-level subtrees of T2.
(2) Neglecting this swap, α acts trivially on the left subtree, but acts as α on

the right subtree.

These conditions uniquely determine an automorphism α ∈ Aut(T2).
More generally, a set of automorphisms can be defined using a recursive sys-

tem of equations. For example, the Grigorchuk group of intermediate growth is
the subgroup of Aut(T2) generated by elements α, β, γ, δ defined by the following
equations:

α = (1 2) β = 〈α, γ〉 γ = 〈α, δ〉 δ = 〈1, β〉.
See [dlH] for more information on wreath products, automorphisms of trees, and
the Grigorchuk group.

A subgroup G ≤ Aut(Td) is called self-similar if, for every automorphism
〈α1, . . . , αd〉σ ∈ G, each automorphism αk also lies in G. Equivalently, G is self-
similar if the isomorphism Aut(Td) → Aut(Td) ) Σd restricts to an inclusion of G
into G ) Σd. Any finitely-generated self-similar group can be specified via a recursive
system of equations for the generators:

g1 = 〈g11, . . . , g1d〉 σ1

...
gn = 〈gn1, . . . , gnd〉σn

Here each gij is a product of the generators g1, . . . , gn and their inverses. A system
of equations of this form is known as a wreath recursion.

1.2. Iterated Monodromy Groups. Let X be a topological space. A partial
self-covering of X is a covering map f : X1 → X , where X1 is an open subset of X .
For example, if f : Pn → Pn is a postcritically finite endomorphism with postcritical
locus ∆, then f restricts to a partial self-covering of Pn\∆, with domain Pn\f−1(∆).

If we iterate a partial self-covering f : X1 → X , we obtain maps

fn : Xn → X.

where Xn = f−n(X) is the domain on which fn is defined. If f has degree d, then
fn is a partial self-covering of X with degree dn.

Choose a basepoint t ∈ X . The backwards orbit of t is the disjoint union

T =
∐

n≥0

f−n(t).

The backwards orbit T has the structure of an infinite d-ary tree, with edges corre-
sponding to the action of f . The root of this tree is the basepoint t, the first-level
vertices are the d elements of f−1(t), the second-level vertices are the d2 elements
of f−2(d), and so forth.

The fundamental group π1(X, t) acts on the tree T by monodromy. Specifically,
if α is an oriented loop in X based at t, then α lifts to one oriented path starting at
each vertex v of T , and we define v ·α to be the endpoint of this path. This action
defines a homomorphism

π1(X, t) → Aut(T )

where Aut(T ) is the automorphism group of T . The image of this homomorphism
is the iterated monodromy group of f based at t, denoted IMG(f, t). Equivalently,
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Figure 2. The iterated monodromy action for the map f(z) = z2.

the iterated monodromy group can be defined as the quotient of the fundamental
group π1(X, t) by the kernel of the monodromy action on T . We will often blur
the distinction between a loop α in X based at t, the corresponding group element
α ∈ π1(X, t), and the resulting automorphism α of the tree T .

Example 1.2. Figure 2 shows the iterated monodromy action for the map
f(z) = z2, where X = C \ {0}. The basepoint is chosen to be a real number t > 1,
and only the first few lifts of the basepoint are shown. The loop α represents a
generator of π1(X, t). Its preimage f−1(α) is the union of a path from

√
t to −

√
t

and a path from −
√

t to
√

t, so:
√

t · α = −
√

t and
(

−
√

t
)

· α =
√

t

Similarly, the second preimage f−2(α) consists of four paths, each starting at a
vertex v and ending at iv. The resulting action is shown in the figure. In this
case, the action of π1(X, t) on the tree T is faithful (with αn acting nontrivially
on the nth level of the tree), so the iterated monodromy group is isomorphic to
π1(X, t) ∼= Z. !

If we wish to analyze the structure of IMG(f, t), we must define an isomorphism
Td → T , where Td is the tree of finite d-ary sequences. To that end, choose con-
necting paths )1, . . . , )d in X from the basepoint t to each of the first-level vertices
in T . Lifting these paths under the iterates of f , we obtain one lift of )k starting
at v for each k ∈ {1, . . . , d} and each vertex v ∈ T . This allows us to define an
isomorphism ω → tω inductively by the following rule:

The vertex tωk is the endpoint of the lift of )k starting at tω.

The base case is t∅ = t, which makes t1, . . . , td the endpoints of the paths )1, . . . , )d,
respectively.

Note 1.3. Observe that the rule for the isomorphism Td → T involves ap-
pending digits to the right of a d-ary sequence, while the rule for adjacency in
Td involves appending digits to the left. This is because the lifts of the connecting
paths )1, . . . , )k do not correspond to edges in T . Instead, the lifts of )k connect each
vertex v to δk(v), where δk is an isomorphism between T and one of its first-level
subtrees.
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Identifying T and Td, we can now regard any loop α in X based at t as an
automorphism of the infinite d-ary tree Td. The following proposition found in
[N1] explains how to calculate this automorphism:

Proposition 1.4. Let α be a loop in X based at t, and let 〈α1, . . . , αk〉σ be
the associated automorphism of Td. Then the permutation σ is determined by the
monodromy action of α:

tk · α = tk·σ

Furthermore, αk is the automorphism of Td associated to the loop

)k · α̃ · )−1

k·σ

where α̃ is the lift of α starting at tk. !

It follows immediately from this proposition that the iterated monodromy group
IMG(f, t) is self-similar when regarded as a subgroup of Aut(Td).

2. The Set-Up

Recall the map F : C2 → C2 defined by

F (x, y) =

(

1 −
y2

x2
, 1 −

1

x2

)

.

As discussed in the introduction, this map restricts to a partially-defined covering
map F : X1 → X , where

X = C
2 \

(

{x = 0} ∪ {y = 0} ∪ {x = 1} ∪ {y = 1} ∪ {y = x}
)

and X1 = F−1(X) = X \
(

{x = −1} ∪ {y = −1} ∪ {y = −x}
)

.

Paths in X. For purposes of visualization, we can regard C2 as the configu-
ration space of two points x, y on the complex plane. From this point of view, X is
the configuration space of two distinct points x ,= y in the twice-punctured plane
C \ {0, 1}.

A path in X is a pair (px, py), where px and py are paths in C\{0, 1} describing
the motions of the points x and y, respectively. A path for which y is fixed is called
an x-path, and a path for which x is fixed is called a y-path.

Conventions 2.1. We shall use the following conventions for figures:

(1) Positions for x will be drawn as closed dots, and positions for y will be
drawn as open circles.

(2) Paths for x will be drawn as solid lines, and paths for y will be drawn as
dotted lines.

(3) The points 0 and 1 will be marked by crosses (×).

Basepoint and Connecting Paths. We must choose a basepoint for X . For
convenience, we shall use one of the fixed points of F , namely the point

t = (x0, y0) ≈ (0.66 + 1.11i, 1.28 + 0.53i).

This point has four preimages:

t1 = t = (x0, y0) t2 = (−x0, y0) t3 = (x0,−y0) t4 = (−x0,−y0)

Figure 3 shows each of these four points, as well as connecting paths )1, )2, )3, )4
from these points to the basepoint t. (Since t1 = t, the path )1 is trivial.)
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Figure 3. The connecting paths )1, )2, )3, and )4.

Generating Loops. The fundamental group π1(X, t) is generated1 by the six
loops a, b, c, d, e, f shown in figure 4. Each of these generators encircles one of the
six lines of ∆, as shown in the following table:

Generator a b c d e f
Line x = 0 y = x y = 1 L∞ y = 0 x = 1

The lifts of these generators based at the basepoint t exactly mimic the action of
F on the six lines of ∆. In particular:

(1) The lift of a based at t is homotopic to b,
(2) The lift of b based at t is homotopic to c,
(3) The lift of c2 based at t is homotopic to d,
(4) The lift of d2 based at t is homotopic to a,
(5) The lift of e based at t is homotopic to f , and
(6) The lift of f2 based at t is homotopic to e.

As you can see in figure 4, the loops a and f only involve motion of the point x,
while the loops c and e only involve motion of the point y. As we have drawn it,

1The fundamental group of the complement of a hyperplane arrangement in Cn is well-
understood. In particular, there always exists a generating set consisting of one loop around each
hyperplane. See [OT].

Figure 4. The six generators of π1(X, t).
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the loop b involves the point x moving counterclockwise around y, but b is also
homotopic to a loop where y moves counterclockwise around x.

Finally, the loop d involves motion of both x and y. In particular, we can write
d as a product:

d = dxdy

where dx ∈ π1(X, t) only involves motion of x, and dy ∈ π1(X, t) only involves
motion of y. Because the x and y paths are disjoint, the loops dx and dy commute
up to homotopy. Moreover, each of these loops can be expressed in terms of the
other generators:

dx = f−1a−1 and dy = e−1c−1b−1.

3. The Computation

We are now in a position to calculate the wreath recursion for IMG(F, t). Ac-
cording to proposition 1.4, the recursive equation for a loop α ∈ π1(X, t) is

α = 〈α1, α2, α3, α4〉σ
where σ is a permutation of {1, 2, 3, 4} representing the mondromy action of α on
{t1, t2, t3, t4}, and

αi = )i · α̃i · )−1

i·σ.

Here )i is the connecting path to ti, α̃i is the lift of α beginning at ti, and )i·σ is
the connecting path to the endpoint of α̃i.

Theorem 3.1. Using the basepoint t, the connecting paths )1, )2, )3, ), 4, and
the generators a, b, c, d, e, f , the wreath recursion for IMG(F ) is the following:

a = 〈b, 1, 1, b〉
b = 〈c, c, 1, 1〉
c = 〈d, dy , dx, 1〉 (1 4)(2 3)

d = 〈1, a, 1, a〉 (1 2)(3 4)

e = 〈f, 1, f, 1〉

f = 〈b−1, 1, be, e〉 (1 3)(2 4)

where dx = (af)−1 and dy = (bec)−1.

Proof. The lifts of the six generators are shown in figure 5. We will explain
each part of the wreath recursion in turn.
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a

b

c

d

e

f

Figure 5. The lifts of the generators.
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Lifting generator a. The path a1 is homotopic to b, and a2 is trivial since
the x-loop around y0 is nullhomotopic. The path a3 is trivial since the x-loop
around −y0 is nullhomotopic. Finally, the path a4 is homotopic to b. In particular,
a4 consists of the path )4, followed by a loop in which y moves counterclockwise
around x, followed by the path )−1

4 . By contracting the beginning and ending paths,
the counterclockwise motion of y around x can be moved through the third and
second quadrants to the first quadrant, resulting in the loop b. Since the lifts of a
are all loops, the permutation associated with a is trivial.

Lifting generator b. The path b1 is homotopic to c, and the path b2 is
homotopic to c since the motion of the point x (from x0 to −x0 along )2, and then
back along )−1

2 ) is homotopically trivial. The paths b3 and b4 are trivial, since the
y-loop around −1 is nullhomotopic. Since the lifts of b are all loops, the permutation
associated with b is trivial.

Lifting generator c. Path c1 is homotopic to d since the lift of c moves x and
y half a rotation clockwise, and the connecting path )−1

4 completes the clockwise
rotation. The path c2 is homotopic to dy. The initial connecting path )2 moves x
counterclockwise, and the lift of c moves it clockwise, resulting in a trivial motion
of x. However, the point y move clockwise under the lift of c, and then moves
clockwise again during the final connecting path )−1

3 , resulting in a full clockwise
rotation for y.

The path c3 is homotopic to dx. The point x moves clockwise under the lift of
c and clockwise again under )−1

2 , while y moves counterclockwise under )3 and then
clockwise under the lift of c. And finally the path c4 is trivial since both x and y
move counterclockwise under )4, and then clockwise under the lift of c. The lifts
of c are paths connecting t1 with t4 and t2 with t3, so the permutation associated
with c is (1 4)(2 3).

Lifting generator d. The path d1 is trivial since the lift of d moves x counter-
clockwise around 0, and then the connecting path )−1

2 moves x clockwise. The path
d2 is homotopic to a as the connecting path )2 moves x counterclockwise around 0,
and then the lift of d continues the counterclockwise motion, resulting in a complete
loop around 0. The path d3 is trivial, for the same reason as d1. The path d4 is
homotopic to a, for the same reason as d2; the motion of y from y0 to −y0 and back
to y0 is homotopically trivial. The lifts of d are paths connecting t1 with t2 and tr
with t3, so the permutation associated with d is (1 2)(3 4).

Lifting generator e. The paths e1 and e3 is homotopic to f . The paths e2

and e4 are trivial, since the x-loop around −1 is nullhomotopic. Since the lifts of e
are all loops, the permutation associated with b is trivial.

Lifting generator f . The path f1 is homotopic to b−1; the point y moves
along the indicated path under the lift of f , and then moves clockwise along the
outside under the connecting path )−1

3 . The result is that y moves clockwise around
x. The path f2 is trivial; first x moves down under )2, then y moves left under the
lift of f , then y moves right and x moves back up under )−1

4 .
The path f3 is homotopic to be. First y moves counterclockwise around the

outside under )3, and then y moves along the indicated path back to y0 under the
lift of f . The result is that y moves counterclockwise around both x and 0, which
is homotopic to the loop b followed by the loop e.

The path f4 is homotopic to e, though this is not quite obvious. The problem is
that the paths traveled by x and y cross, making it slightly difficult to disentangle
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Figure 6. By redrawing the lift of f , we can make the x and y
paths of f4 disjoint.

the motion. The solution is to redraw the lift of f as in figure 6, so that the path
of y goes around the outside of x0. This makes the paths of x and y disjoint, with
x moving trivially and y moving counterclockwise around 0.

Finally, the lifts of f are paths connecting t1 with t3 and t2 with t4, so the
permutation associated with f is (1 3)(2 4).

!

The iterated monodromy group for F is actually contracting; this is because
the map F is expanding on its Julia set. Using Mathematica, we were able to
calculate the nucleus for this recursion. According to our program, the nucleus has
59 elements, consisting of the identity element plus the following 29 elements and
their inverses:

a, b, c, d, e, f, ab, ac, af, ac−1, bc, bd, be, bd−1, cd, cf, da,
de, ea, ec, fb, fd, abe, acf, afb, afd, bcf, eac, f−1be.

See [BN] or [N1] to learn more about contracting actions and the nucleus associated
with a recursion.
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